metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cyclo-Tetra­kis{μ-2,2′-di­methyl-1,1′-[2,2-bis­­(bromo­meth­yl)propane-1,3-di­yl]di(1H-benzimidazole)-κ2N3:N3′}tetra­kis­[bromidocopper(I)]

aSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
*Correspondence e-mail: guangbocheujs@yahoo.com.cn

(Received 28 November 2011; accepted 10 January 2012; online 14 January 2012)

The title compound, [Cu4Br4(C21H22Br2N4)4], features a macrocyclic Cu4L4 ring system in which each CuI atom is coordinated by one bromide ion and two N atoms from two 2,2′-dimethyl-1,1′-[2,2-bis­(bromo­meth­yl)propane-1,3-di­yl]di(1H-benzimidazole) (L) ligands in a distorted trigonal–planar geometry. The L ligands adopt either a cis or trans configuration. The asymmetric unit contains one half-mol­ecule with the center of the macrocycle located on a crystallographic center of inversion. Each bromide ion binds to a CuI atom in a terminal mode and is oriented outside the ring. The macrocycles are inter­connected into a two-dimensional network by ππ inter­actions between benzimid­azole groups from different rings [centroid–centroid distance = 3.803 (5) Å.

Related literature

For the synthesis of the organic ligand, see: Bai et al. (2010[Bai, H.-Y., Xia, D.-C. & Ma, J.-F. (2010). Z. Kristallogr. New Cryst. Struct. 225, 101-102.]). For related structures, see: Zhu et al. (2005[Zhu, H.-F., Fan, J., Okamura, T.-A., Sun, W.-Y. & Ueyama, N. (2005). Cryst. Growth Des. 5, 289-294.]); Qi et al. (2008[Qi, Y., Luo, F., Batten, S. R., Che, Y.-X. & Zheng, J.-M. (2008). Cryst. Growth Des. 8, 2806-2813.]); Li & Du (2006[Li, T. & Du, S.-W. (2006). Acta Cryst. E62, m1812-m1813.]); Peng et al. (2010[Peng, R., Li, M. & Li, D. (2010). Coord. Chem. Rev. 254, 1-18.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu4Br4(C21H22Br2N4)4]

  • Mr = 2534.78

  • Triclinic, [P \overline 1]

  • a = 11.585 (2) Å

  • b = 12.597 (3) Å

  • c = 15.273 (3) Å

  • α = 77.75 (3)°

  • β = 84.88 (3)°

  • γ = 89.54 (3)°

  • V = 2169.4 (8) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 6.55 mm−1

  • T = 293 K

  • 0.12 × 0.11 × 0.10 mm

Data collection
  • Rigaku Mercury CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.458, Tmax = 0.535

  • 15281 measured reflections

  • 7799 independent reflections

  • 5648 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.079

  • wR(F2) = 0.177

  • S = 1.12

  • 7799 reflections

  • 523 parameters

  • H-atom parameters constrained

  • Δρmax = 1.60 e Å−3

  • Δρmin = −3.27 e Å−3

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Due to the charming structure topologies and applications in various areas, metal-organic frameworks have been widely developed (Zhu et al. 2005). A successful stategy for the construction of metal-organic frameworks is related to the coordination sites of linker and metal ion geometry. The flexible bis(imidazole) ligands are good candidates for constructing metal-organic networks, because of their numerous possible conformations, mainly cis- and trans-geometry (Qi et al. 2008). Copper (I) shows a variety of different coordination numbers such as two, three and four, and the interconversion between copper (I) and copper (II) makes their crystal structures even more versatile (Li et al. 2006; Peng et al. 2010). Here, we have used the flexible bis(benzimidazole) ligand, 1,1'-(2,2-bis(bromomethyl)propane-1,3-diyl) bis(2-methyl-1H- benzimidazol (L), and copper (II) bromide to obtain the title compound in which copper (II) was reduced to copper (I) under hydrothermal conditions.

In the crystal structure of the title compound, each copper (I) atom is coordinated by one bromide ion, and two N atoms from two ligands L, resulting in a trigonal planar geometry. The Cu—N distances range from 1.932 (8) to 2.003 (8) Å, while the distances of Cu1—Br3 and Cu2—Br6 are 2.381 (2) and 2.316 (3) Å, respectively. Two Cu1 atoms and two Cu2 atoms are linked by eight N atoms from four organic ligands L in an alternative cis-/trans-configuration, resulting in a centrosymmetric Cu4L4 ring. Only one half of the molecule is observed in the asymmetric unit, and there is a crystallographic center of inversion in the center of the macrocyclic molecule. Each bromide ion connects a copper (I) atom in a monodentate mode, oriented outside the ring (Fig. 2). The pitches of Cu1—Cu2 and Cu1—Cu2A are 12.738 (4) and 9.939 (4) Å, respectively. The rings are further interconnected to a two-dimensional network by ππ interactions. Around the ring, benzimidazol groups connected to N3 and N4, and benzimidazol groups based on N1 and N2, are stacked with a distance of 3.803 (5) Å (red dashed) and 3.613 (4) Å (black dashed), respectively (Fig. 2).

Related literature top

For the synthesis of the organic ligand, see: Bai et al. (2010). For related structures, see: Zhu et al. (2005); Qi et al. (2008); Li & Du (2006); Peng et al. (2010).

Experimental top

The organic ligand (L) was synthesized according to a previously reported procedure (Bai et al. 2010). A mixture of CuBr2 (22.365 mg, 0.1 mmol), and L (49.023 mg, 0.1 mmol) was dissolved in 10 mL of water of pH = 6. The resulting mixture was then transferred to a 25 mL Teflon–lined stainless steel reactor, and heated to 438 K for three days. After the reactor was slowly cooled to the room temperature yellow block-shaped crystals were obtained with a yield of 53 %.

Refinement top

Anisotropical displacement parameters were applied for all non-hydrogen atoms. Hydrogen atoms were positioned geometrically and refined in a riding model with C—H distances of 0.96, 0.97 and 0.93 Å for methyl groups, methylene groups and benzene rings and with Uiso(H)=1.5Ueq(CH3), Uiso(H)=1.2Ueq(CH2), Uiso(H)=1.2Ueq(CH), respectively.

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalClear (Rigaku, 2007) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound (30% probability ellipsoids). All hydrogen atoms are omited for clarity.
[Figure 2] Fig. 2. Two-dimensional layered structure constructed from different eight-membered Cu4L4 ring by π-π stacking interactions (dashed lines). All hydrogen atoms were omitted for clarity.
cyclo-Tetrakis{µ-2,2'-dimethyl-1,1'-[2,2-bis(bromomethyl)propane-1,3- diyl]di(1H-benzimidazole)- κ2N3:N3'}tetrakis[bromidocopper(I)] top
Crystal data top
[Cu4Br4(C21H22Br2N4)4]Z = 1
Mr = 2534.78F(000) = 1240
Triclinic, P1Dx = 1.940 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.585 (2) ÅCell parameters from 8554 reflections
b = 12.597 (3) Åθ = 3.3–29.0°
c = 15.273 (3) ŵ = 6.55 mm1
α = 77.75 (3)°T = 293 K
β = 84.88 (3)°Prism, yellow
γ = 89.54 (3)°0.12 × 0.11 × 0.10 mm
V = 2169.4 (8) Å3
Data collection top
Rigaku DIFFRACTOMETER NAME? CCD area-detector
diffractometer
7799 independent reflections
Radiation source: fine-focus sealed tube5648 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 28.5714 pixels mm-1θmax = 25.4°, θmin = 3.1°
ω scansh = 1313
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
k = 1512
Tmin = 0.458, Tmax = 0.535l = 1816
15281 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0217P)2 + 38.1476P]
where P = (Fo2 + 2Fc2)/3
7799 reflections(Δ/σ)max < 0.001
523 parametersΔρmax = 1.60 e Å3
0 restraintsΔρmin = 3.27 e Å3
Crystal data top
[Cu4Br4(C21H22Br2N4)4]γ = 89.54 (3)°
Mr = 2534.78V = 2169.4 (8) Å3
Triclinic, P1Z = 1
a = 11.585 (2) ÅMo Kα radiation
b = 12.597 (3) ŵ = 6.55 mm1
c = 15.273 (3) ÅT = 293 K
α = 77.75 (3)°0.12 × 0.11 × 0.10 mm
β = 84.88 (3)°
Data collection top
Rigaku DIFFRACTOMETER NAME? CCD area-detector
diffractometer
7799 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
5648 reflections with I > 2σ(I)
Tmin = 0.458, Tmax = 0.535Rint = 0.041
15281 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0790 restraints
wR(F2) = 0.177H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0217P)2 + 38.1476P]
where P = (Fo2 + 2Fc2)/3
7799 reflectionsΔρmax = 1.60 e Å3
523 parametersΔρmin = 3.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0662 (9)0.2709 (9)0.6373 (7)0.037 (3)
H1A0.12980.30340.67880.055*
H1B0.09570.22770.58460.055*
H1C0.02170.22560.66530.055*
C20.0092 (8)0.3581 (8)0.6113 (6)0.026 (2)
C30.0703 (8)0.5202 (8)0.5981 (6)0.021 (2)
C40.0897 (9)0.6300 (8)0.5968 (6)0.028 (2)
H40.03850.68420.62820.034*
C50.1869 (9)0.6541 (8)0.5474 (7)0.029 (2)
H50.20180.72640.54610.035*
C60.2646 (9)0.5744 (9)0.4990 (7)0.030 (2)
H60.33040.59440.46710.036*
C70.2445 (8)0.4654 (8)0.4981 (6)0.027 (2)
H70.29530.41160.46540.032*
C80.1468 (8)0.4398 (8)0.5471 (6)0.023 (2)
C90.2330 (12)0.1854 (9)0.6870 (8)0.050 (3)
H9A0.26700.18150.74140.075*
H9B0.25320.25300.67040.075*
H9C0.15020.18100.69670.075*
C100.2767 (9)0.0950 (8)0.6148 (7)0.029 (2)
C110.3050 (9)0.0145 (8)0.4853 (7)0.028 (2)
C120.3069 (9)0.0668 (9)0.3958 (7)0.033 (3)
H120.26440.04070.35580.040*
C130.3748 (10)0.1593 (10)0.3688 (8)0.041 (3)
H130.37550.19750.30950.050*
C140.4429 (10)0.1984 (9)0.4270 (8)0.041 (3)
H140.48980.25950.40520.049*
C150.4407 (9)0.1468 (9)0.5161 (8)0.036 (3)
H150.48490.17210.55550.043*
C160.3700 (9)0.0556 (8)0.5447 (7)0.030 (2)
C170.4021 (9)0.0112 (8)0.7096 (7)0.028 (2)
H17A0.48040.01710.69240.034*
H17B0.40840.08530.74300.034*
C180.3425 (8)0.0559 (8)0.7744 (6)0.024 (2)
C190.2133 (8)0.0289 (8)0.8004 (7)0.028 (2)
H19A0.18850.06030.85160.033*
H19B0.20490.04940.81980.033*
C200.3630 (8)0.1758 (8)0.7329 (7)0.026 (2)
H20A0.33470.19120.67370.031*
H20B0.44590.19000.72490.031*
C210.4077 (9)0.0133 (8)0.8599 (7)0.029 (2)
H21A0.38350.06140.88440.034*
H21B0.48980.01270.84120.034*
C220.5738 (9)0.1851 (10)0.8873 (7)0.037 (3)
H22A0.58200.14600.83960.056*
H22B0.63920.17090.92230.056*
H22C0.57020.26150.86220.056*
C230.4659 (9)0.1491 (8)0.9457 (6)0.026 (2)
C240.3034 (9)0.0598 (8)1.0015 (6)0.028 (2)
C250.3275 (9)0.1347 (9)1.0528 (7)0.031 (2)
C260.2557 (10)0.1443 (10)1.1279 (7)0.040 (3)
H260.27100.19441.16220.048*
C270.2074 (9)0.0117 (9)1.0241 (7)0.035 (3)
H270.19260.06330.99100.042*
C280.1367 (10)0.0006 (11)1.0991 (8)0.048 (3)
H280.07100.04341.11620.058*
C290.1594 (11)0.0753 (11)1.1498 (8)0.051 (3)
H290.10910.07971.19980.061*
C300.2859 (10)0.4545 (9)0.9838 (7)0.035 (3)
H30A0.32770.40501.01460.053*
H30B0.20840.42740.96520.053*
H30C0.28320.52441.02360.053*
C310.3457 (9)0.4648 (8)0.9028 (6)0.027 (2)
C320.4755 (9)0.4457 (8)0.8064 (6)0.028 (2)
C330.3936 (8)0.5168 (8)0.7814 (6)0.023 (2)
C340.5741 (9)0.4194 (9)0.7605 (7)0.030 (2)
H340.62900.37170.77770.036*
C350.4076 (9)0.5659 (8)0.7100 (6)0.027 (2)
H350.35390.61520.69390.033*
C360.5865 (9)0.4672 (9)0.6885 (7)0.033 (2)
H360.65100.45100.65620.039*
C370.5053 (9)0.5388 (9)0.6633 (7)0.031 (2)
H370.51620.56930.61420.038*
C380.2155 (8)0.6045 (8)0.8477 (6)0.027 (2)
H38A0.23830.66480.82250.032*
H38B0.20540.63310.91070.032*
C390.0963 (8)0.5607 (8)0.7996 (6)0.026 (2)
C400.0547 (9)0.4732 (10)0.8464 (8)0.039 (3)
H40A0.06920.49910.91100.047*
H40B0.10080.40860.82970.047*
C410.1132 (8)0.5181 (9)0.6990 (6)0.028 (2)
H41A0.13910.57860.67540.033*
H41B0.17550.46590.69530.033*
C420.0157 (10)0.6584 (10)0.8086 (7)0.042 (3)
H42A0.05830.63550.77530.050*
H42B0.04860.71300.78170.050*
N10.0138 (7)0.4666 (6)0.6392 (5)0.0233 (18)
N20.1043 (7)0.3380 (7)0.5564 (5)0.0279 (19)
N30.2474 (8)0.0801 (7)0.5328 (6)0.032 (2)
N40.3491 (7)0.0150 (6)0.6276 (5)0.0265 (19)
N50.3924 (7)0.0722 (7)0.9319 (5)0.0263 (19)
N60.4314 (7)0.1893 (7)1.0158 (5)0.030 (2)
N70.4426 (7)0.4119 (7)0.8828 (5)0.0259 (19)
N80.3119 (7)0.5267 (6)0.8428 (5)0.0232 (18)
Cu10.17897 (11)0.19933 (10)0.48635 (8)0.0321 (3)
Cu20.51139 (12)0.29469 (11)1.06772 (9)0.0328 (3)
Br10.01050 (11)0.72422 (12)0.93423 (8)0.0536 (4)
Br20.10711 (13)0.43322 (15)0.81878 (9)0.0755 (6)
Br30.22461 (15)0.19296 (11)0.33021 (9)0.0632 (4)
Br40.10892 (9)0.07814 (9)0.70714 (8)0.0376 (3)
Br50.29072 (10)0.27524 (9)0.80146 (8)0.0367 (3)
Br60.70608 (18)0.25901 (17)1.08162 (14)0.0914 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.037 (6)0.038 (7)0.035 (6)0.003 (5)0.001 (5)0.008 (5)
C20.027 (5)0.028 (6)0.022 (5)0.000 (4)0.003 (4)0.003 (4)
C30.020 (5)0.028 (5)0.015 (5)0.001 (4)0.006 (4)0.003 (4)
C40.033 (6)0.030 (6)0.019 (5)0.006 (5)0.002 (4)0.001 (4)
C50.037 (6)0.021 (5)0.027 (5)0.004 (5)0.002 (5)0.001 (4)
C60.028 (5)0.039 (6)0.023 (5)0.005 (5)0.004 (4)0.008 (5)
C70.024 (5)0.032 (6)0.023 (5)0.002 (4)0.002 (4)0.004 (5)
C80.027 (5)0.025 (5)0.018 (5)0.001 (4)0.005 (4)0.007 (4)
C90.088 (10)0.026 (6)0.036 (7)0.015 (6)0.013 (7)0.003 (5)
C100.044 (6)0.017 (5)0.026 (5)0.002 (5)0.003 (5)0.001 (4)
C110.030 (6)0.025 (6)0.027 (5)0.006 (4)0.000 (4)0.004 (5)
C120.037 (6)0.031 (6)0.031 (6)0.007 (5)0.006 (5)0.008 (5)
C130.049 (7)0.036 (7)0.034 (6)0.007 (6)0.009 (5)0.001 (5)
C140.046 (7)0.025 (6)0.046 (7)0.003 (5)0.019 (6)0.004 (5)
C150.037 (6)0.030 (6)0.043 (7)0.004 (5)0.009 (5)0.019 (5)
C160.042 (6)0.022 (5)0.023 (5)0.005 (5)0.006 (5)0.001 (4)
C170.030 (6)0.023 (5)0.035 (6)0.001 (4)0.002 (5)0.013 (5)
C180.025 (5)0.026 (5)0.020 (5)0.000 (4)0.004 (4)0.003 (4)
C190.028 (5)0.024 (5)0.028 (5)0.005 (4)0.002 (4)0.001 (4)
C200.025 (5)0.024 (5)0.030 (5)0.003 (4)0.001 (4)0.008 (4)
C210.030 (6)0.029 (6)0.027 (5)0.000 (5)0.001 (4)0.007 (5)
C220.033 (6)0.044 (7)0.035 (6)0.007 (5)0.002 (5)0.010 (5)
C230.032 (6)0.018 (5)0.025 (5)0.001 (4)0.002 (4)0.003 (4)
C240.037 (6)0.029 (6)0.022 (5)0.000 (5)0.008 (4)0.011 (4)
C250.031 (6)0.030 (6)0.031 (6)0.003 (5)0.001 (5)0.005 (5)
C260.044 (7)0.048 (7)0.031 (6)0.005 (6)0.001 (5)0.016 (6)
C270.036 (6)0.032 (6)0.034 (6)0.011 (5)0.002 (5)0.002 (5)
C280.039 (7)0.055 (8)0.045 (7)0.018 (6)0.006 (6)0.004 (6)
C290.053 (8)0.066 (9)0.032 (6)0.008 (7)0.013 (6)0.015 (6)
C300.043 (7)0.036 (6)0.028 (6)0.002 (5)0.007 (5)0.008 (5)
C310.030 (6)0.028 (6)0.021 (5)0.006 (5)0.003 (4)0.000 (4)
C320.034 (6)0.023 (5)0.024 (5)0.014 (5)0.003 (4)0.001 (4)
C330.015 (5)0.026 (5)0.023 (5)0.002 (4)0.004 (4)0.000 (4)
C340.023 (5)0.031 (6)0.036 (6)0.002 (4)0.005 (5)0.003 (5)
C350.027 (5)0.029 (6)0.026 (5)0.006 (4)0.004 (4)0.008 (5)
C360.031 (6)0.035 (6)0.031 (6)0.013 (5)0.008 (5)0.001 (5)
C370.031 (6)0.043 (7)0.022 (5)0.013 (5)0.001 (4)0.013 (5)
C380.027 (5)0.033 (6)0.019 (5)0.001 (5)0.000 (4)0.003 (4)
C390.021 (5)0.034 (6)0.019 (5)0.004 (4)0.002 (4)0.002 (4)
C400.033 (6)0.049 (7)0.035 (6)0.018 (5)0.004 (5)0.006 (6)
C410.017 (5)0.038 (6)0.027 (5)0.005 (4)0.001 (4)0.004 (5)
C420.031 (6)0.059 (8)0.028 (6)0.003 (6)0.001 (5)0.006 (6)
N10.029 (4)0.024 (4)0.016 (4)0.007 (4)0.003 (3)0.001 (3)
N20.028 (5)0.032 (5)0.023 (4)0.005 (4)0.002 (4)0.003 (4)
N30.039 (5)0.029 (5)0.026 (5)0.005 (4)0.002 (4)0.005 (4)
N40.034 (5)0.019 (4)0.029 (4)0.000 (4)0.004 (4)0.009 (4)
N50.027 (4)0.027 (5)0.027 (4)0.005 (4)0.001 (4)0.012 (4)
N60.034 (5)0.028 (5)0.027 (5)0.003 (4)0.001 (4)0.008 (4)
N70.026 (4)0.029 (5)0.024 (4)0.002 (4)0.002 (4)0.007 (4)
N80.024 (4)0.025 (5)0.021 (4)0.002 (4)0.000 (3)0.005 (4)
Cu10.0396 (8)0.0265 (7)0.0297 (7)0.0038 (6)0.0016 (6)0.0055 (6)
Cu20.0426 (8)0.0274 (7)0.0297 (7)0.0036 (6)0.0031 (6)0.0088 (6)
Br10.0370 (7)0.0776 (10)0.0342 (6)0.0100 (6)0.0023 (5)0.0140 (6)
Br20.0549 (9)0.1109 (14)0.0479 (8)0.0538 (9)0.0222 (7)0.0207 (8)
Br30.1107 (13)0.0428 (8)0.0343 (7)0.0003 (8)0.0047 (7)0.0089 (6)
Br40.0331 (6)0.0377 (7)0.0400 (6)0.0039 (5)0.0069 (5)0.0017 (5)
Br50.0378 (6)0.0299 (6)0.0440 (7)0.0057 (5)0.0030 (5)0.0118 (5)
Br60.1004 (14)0.0840 (13)0.0890 (13)0.0020 (11)0.0091 (11)0.0162 (11)
Geometric parameters (Å, º) top
C1—C21.496 (14)C23—N61.309 (12)
C1—H1A0.9600C23—N51.356 (12)
C1—H1B0.9600C24—C251.393 (14)
C1—H1C0.9600C24—N51.398 (12)
C2—N21.316 (12)C24—C271.409 (14)
C2—N11.364 (12)C25—C261.381 (14)
C3—N11.363 (12)C25—N61.403 (13)
C3—C81.405 (13)C26—C291.391 (17)
C3—C41.404 (14)C26—H260.9300
C4—C51.366 (14)C27—C281.383 (15)
C4—H40.9300C27—H270.9300
C5—C61.395 (14)C28—C291.380 (17)
C5—H50.9300C28—H280.9300
C6—C71.388 (14)C29—H290.9300
C6—H60.9300C30—C311.501 (14)
C7—C81.375 (13)C30—H30A0.9600
C7—H70.9300C30—H30B0.9600
C8—N21.400 (12)C30—H30C0.9600
C9—C101.465 (15)C31—N71.326 (13)
C9—H9A0.9600C31—N81.355 (12)
C9—H9B0.9600C32—C331.384 (14)
C9—H9C0.9600C32—C341.394 (14)
C10—N31.301 (13)C32—N71.408 (12)
C10—N41.372 (13)C33—N81.378 (12)
C11—C121.384 (14)C33—C351.385 (13)
C11—N31.397 (13)C34—C361.380 (14)
C11—C161.409 (15)C34—H340.9300
C12—C131.378 (16)C35—C371.394 (14)
C12—H120.9300C35—H350.9300
C13—C141.405 (17)C36—C371.384 (15)
C13—H130.9300C36—H360.9300
C14—C151.375 (16)C37—H370.9300
C14—H140.9300C38—N81.476 (12)
C15—C161.385 (14)C38—C391.552 (13)
C15—H150.9300C38—H38A0.9700
C16—N41.387 (12)C38—H38B0.9700
C17—N41.453 (12)C39—C421.529 (15)
C17—C181.547 (13)C39—C401.538 (15)
C17—H17A0.9700C39—C411.546 (13)
C17—H17B0.9700C40—Br21.932 (10)
C18—C201.521 (13)C40—H40A0.9700
C18—C191.536 (13)C40—H40B0.9700
C18—C211.560 (13)C41—N11.467 (12)
C19—Br41.948 (10)C41—H41A0.9700
C19—H19A0.9700C41—H41B0.9700
C19—H19B0.9700C42—Br11.971 (11)
C20—Br51.936 (9)C42—H42A0.9700
C20—H20A0.9700C42—H42B0.9700
C20—H20B0.9700N2—Cu12.003 (8)
C21—N51.449 (12)N3—Cu11.990 (9)
C21—H21A0.9700N6—Cu21.962 (8)
C21—H21B0.9700N7—Cu2i1.932 (8)
C22—C231.484 (14)Cu1—Br32.3806 (18)
C22—H22A0.9600Cu2—N7i1.932 (8)
C22—H22B0.9600Cu2—Br62.316 (3)
C22—H22C0.9600
C2—C1—H1A109.5C25—C26—C29116.9 (11)
C2—C1—H1B109.5C25—C26—H26121.6
H1A—C1—H1B109.5C29—C26—H26121.6
C2—C1—H1C109.5C28—C27—C24115.0 (10)
H1A—C1—H1C109.5C28—C27—H27122.5
H1B—C1—H1C109.5C24—C27—H27122.5
N2—C2—N1112.3 (9)C27—C28—C29122.8 (11)
N2—C2—C1123.3 (9)C27—C28—H28118.6
N1—C2—C1124.4 (9)C29—C28—H28118.6
N1—C3—C8106.1 (8)C28—C29—C26121.7 (11)
N1—C3—C4133.9 (9)C28—C29—H29119.1
C8—C3—C4120.0 (9)C26—C29—H29119.1
C5—C4—C3117.3 (9)C31—C30—H30A109.5
C5—C4—H4121.3C31—C30—H30B109.5
C3—C4—H4121.3H30A—C30—H30B109.5
C4—C5—C6122.5 (10)C31—C30—H30C109.5
C4—C5—H5118.7H30A—C30—H30C109.5
C6—C5—H5118.7H30B—C30—H30C109.5
C7—C6—C5120.6 (10)N7—C31—N8111.9 (8)
C7—C6—H6119.7N7—C31—C30121.6 (9)
C5—C6—H6119.7N8—C31—C30126.5 (9)
C8—C7—C6117.6 (9)C33—C32—C34121.8 (9)
C8—C7—H7121.2C33—C32—N7109.0 (9)
C6—C7—H7121.2C34—C32—N7129.2 (10)
C7—C8—N2129.7 (9)N8—C33—C32105.9 (8)
C7—C8—C3121.9 (9)N8—C33—C35133.1 (9)
N2—C8—C3108.4 (8)C32—C33—C35120.9 (9)
C10—C9—H9A109.5C36—C34—C32117.0 (10)
C10—C9—H9B109.5C36—C34—H34121.5
H9A—C9—H9B109.5C32—C34—H34121.5
C10—C9—H9C109.5C33—C35—C37117.5 (9)
H9A—C9—H9C109.5C33—C35—H35121.3
H9B—C9—H9C109.5C37—C35—H35121.3
N3—C10—N4113.1 (9)C34—C36—C37121.6 (10)
N3—C10—C9123.4 (10)C34—C36—H36119.2
N4—C10—C9123.4 (9)C37—C36—H36119.2
C12—C11—N3130.9 (10)C36—C37—C35121.2 (9)
C12—C11—C16120.5 (10)C36—C37—H37119.4
N3—C11—C16108.6 (8)C35—C37—H37119.4
C13—C12—C11116.8 (11)N8—C38—C39116.9 (8)
C13—C12—H12121.6N8—C38—H38A108.1
C11—C12—H12121.6C39—C38—H38A108.1
C12—C13—C14122.8 (11)N8—C38—H38B108.1
C12—C13—H13118.6C39—C38—H38B108.1
C14—C13—H13118.6H38A—C38—H38B107.3
C15—C14—C13120.4 (11)C42—C39—C40112.3 (9)
C15—C14—H14119.8C42—C39—C41108.8 (8)
C13—C14—H14119.8C40—C39—C41113.7 (9)
C14—C15—C16117.3 (11)C42—C39—C38106.3 (8)
C14—C15—H15121.3C40—C39—C38107.8 (8)
C16—C15—H15121.3C41—C39—C38107.5 (8)
C15—C16—N4132.1 (10)C39—C40—Br2115.0 (8)
C15—C16—C11122.1 (9)C39—C40—H40A108.5
N4—C16—C11105.8 (9)Br2—C40—H40A108.5
N4—C17—C18118.5 (8)C39—C40—H40B108.5
N4—C17—H17A107.7Br2—C40—H40B108.5
C18—C17—H17A107.7H40A—C40—H40B107.5
N4—C17—H17B107.7N1—C41—C39118.3 (8)
C18—C17—H17B107.7N1—C41—H41A107.7
H17A—C17—H17B107.1C39—C41—H41A107.7
C20—C18—C19111.9 (8)N1—C41—H41B107.7
C20—C18—C17108.4 (8)C39—C41—H41B107.7
C19—C18—C17114.2 (8)H41A—C41—H41B107.1
C20—C18—C21114.2 (8)C39—C42—Br1113.4 (7)
C19—C18—C21107.3 (8)C39—C42—H42A108.9
C17—C18—C21100.4 (8)Br1—C42—H42A108.9
C18—C19—Br4116.5 (7)C39—C42—H42B108.9
C18—C19—H19A108.2Br1—C42—H42B108.9
Br4—C19—H19A108.2H42A—C42—H42B107.7
C18—C19—H19B108.2C3—N1—C2107.5 (8)
Br4—C19—H19B108.2C3—N1—C41125.4 (8)
H19A—C19—H19B107.3C2—N1—C41127.1 (8)
C18—C20—Br5115.3 (6)C2—N2—C8105.6 (8)
C18—C20—H20A108.4C2—N2—Cu1132.3 (7)
Br5—C20—H20A108.4C8—N2—Cu1121.9 (6)
C18—C20—H20B108.4C10—N3—C11106.1 (9)
Br5—C20—H20B108.4C10—N3—Cu1121.7 (7)
H20A—C20—H20B107.5C11—N3—Cu1129.2 (7)
N5—C21—C18117.5 (8)C10—N4—C16106.4 (8)
N5—C21—H21A107.9C10—N4—C17126.6 (8)
C18—C21—H21A107.9C16—N4—C17126.8 (9)
N5—C21—H21B107.9C23—N5—C24106.6 (8)
C18—C21—H21B107.9C23—N5—C21125.5 (8)
H21A—C21—H21B107.2C24—N5—C21127.8 (8)
C23—C22—H22A109.5C23—N6—C25106.0 (9)
C23—C22—H22B109.5C23—N6—Cu2128.5 (7)
H22A—C22—H22B109.5C25—N6—Cu2125.4 (7)
C23—C22—H22C109.5C31—N7—C32105.3 (8)
H22A—C22—H22C109.5C31—N7—Cu2i128.3 (7)
H22B—C22—H22C109.5C32—N7—Cu2i125.6 (7)
N6—C23—N5112.9 (9)C31—N8—C33107.8 (8)
N6—C23—C22123.2 (9)C31—N8—C38127.3 (8)
N5—C23—C22123.9 (9)C33—N8—C38124.3 (8)
C25—C24—N5105.8 (9)N3—Cu1—N2128.3 (3)
C25—C24—C27122.4 (10)N3—Cu1—Br3115.4 (2)
N5—C24—C27131.8 (9)N2—Cu1—Br3115.1 (2)
C26—C25—C24121.1 (10)N7i—Cu2—N6127.2 (4)
C26—C25—N6130.2 (10)N7i—Cu2—Br6118.6 (3)
C24—C25—N6108.6 (9)N6—Cu2—Br6113.9 (3)
N1—C3—C4—C5179.2 (10)C39—C41—N1—C384.9 (12)
C8—C3—C4—C52.5 (14)C39—C41—N1—C298.2 (12)
C3—C4—C5—C60.6 (15)N1—C2—N2—C80.2 (11)
C4—C5—C6—C71.1 (16)C1—C2—N2—C8178.0 (9)
C5—C6—C7—C80.8 (15)N1—C2—N2—Cu1175.1 (6)
C6—C7—C8—N2178.4 (9)C1—C2—N2—Cu13.1 (15)
C6—C7—C8—C31.2 (14)C7—C8—N2—C2179.3 (10)
N1—C3—C8—C7178.4 (9)C3—C8—N2—C21.0 (10)
C4—C3—C8—C72.9 (14)C7—C8—N2—Cu15.2 (14)
N1—C3—C8—N21.9 (10)C3—C8—N2—Cu1174.5 (6)
C4—C3—C8—N2176.8 (8)N4—C10—N3—C111.4 (12)
N3—C11—C12—C13179.0 (10)C9—C10—N3—C11179.0 (10)
C16—C11—C12—C130.0 (15)N4—C10—N3—Cu1163.7 (6)
C11—C12—C13—C142.3 (16)C9—C10—N3—Cu118.7 (15)
C12—C13—C14—C152.6 (17)C12—C11—N3—C10178.7 (11)
C13—C14—C15—C160.5 (16)C16—C11—N3—C100.4 (11)
C14—C15—C16—N4179.0 (10)C12—C11—N3—Cu118.3 (16)
C14—C15—C16—C111.7 (15)C16—C11—N3—Cu1160.8 (7)
C12—C11—C16—C152.1 (15)N3—C10—N4—C161.9 (12)
N3—C11—C16—C15177.2 (9)C9—C10—N4—C16179.5 (10)
C12—C11—C16—N4179.9 (9)N3—C10—N4—C17176.3 (9)
N3—C11—C16—N40.7 (11)C9—C10—N4—C176.1 (16)
N4—C17—C18—C2073.9 (11)C15—C16—N4—C10176.1 (11)
N4—C17—C18—C1951.7 (12)C11—C16—N4—C101.4 (11)
N4—C17—C18—C21166.1 (9)C15—C16—N4—C171.6 (17)
C20—C18—C19—Br451.5 (10)C11—C16—N4—C17175.9 (9)
C17—C18—C19—Br472.1 (10)C18—C17—N4—C1096.5 (12)
C21—C18—C19—Br4177.6 (7)C18—C17—N4—C1690.1 (12)
C19—C18—C20—Br551.1 (10)N6—C23—N5—C241.7 (12)
C17—C18—C20—Br5177.9 (6)C22—C23—N5—C24178.8 (10)
C21—C18—C20—Br571.1 (9)N6—C23—N5—C21179.8 (9)
C20—C18—C21—N552.5 (11)C22—C23—N5—C210.6 (16)
C19—C18—C21—N572.2 (11)C25—C24—N5—C232.0 (11)
C17—C18—C21—N5168.2 (8)C27—C24—N5—C23176.3 (11)
N5—C24—C25—C26179.9 (10)C25—C24—N5—C21179.9 (9)
C27—C24—C25—C261.6 (17)C27—C24—N5—C211.8 (18)
N5—C24—C25—N61.6 (12)C18—C21—N5—C2397.2 (12)
C27—C24—C25—N6176.8 (10)C18—C21—N5—C2485.0 (12)
C24—C25—C26—C290.4 (17)N5—C23—N6—C250.6 (12)
N6—C25—C26—C29177.7 (12)C22—C23—N6—C25179.8 (10)
C25—C24—C27—C282.1 (16)N5—C23—N6—Cu2175.8 (7)
N5—C24—C27—C28179.9 (11)C22—C23—N6—Cu24.6 (15)
C24—C27—C28—C291.5 (18)C26—C25—N6—C23178.9 (12)
C27—C28—C29—C260 (2)C24—C25—N6—C230.7 (12)
C25—C26—C29—C280.2 (19)C26—C25—N6—Cu23.5 (17)
C34—C32—C33—N8177.7 (9)C24—C25—N6—Cu2174.7 (7)
N7—C32—C33—N80.5 (10)N8—C31—N7—C322.4 (11)
C34—C32—C33—C350.9 (15)C30—C31—N7—C32177.1 (9)
N7—C32—C33—C35177.3 (8)N8—C31—N7—Cu2i167.7 (6)
C33—C32—C34—C360.2 (15)C30—C31—N7—Cu2i12.8 (14)
N7—C32—C34—C36178.0 (10)C33—C32—N7—C311.8 (11)
N8—C33—C35—C37177.5 (10)C34—C32—N7—C31176.3 (10)
C32—C33—C35—C371.7 (14)C33—C32—N7—Cu2i168.7 (6)
C32—C34—C36—C370.5 (15)C34—C32—N7—Cu2i13.3 (15)
C34—C36—C37—C350.3 (16)N7—C31—N8—C332.2 (11)
C33—C35—C37—C361.4 (15)C30—C31—N8—C33177.3 (10)
N8—C38—C39—C42175.7 (8)N7—C31—N8—C38173.6 (8)
N8—C38—C39—C4063.7 (11)C30—C31—N8—C385.9 (16)
N8—C38—C39—C4159.3 (11)C32—C33—N8—C311.0 (10)
C42—C39—C40—Br248.3 (11)C35—C33—N8—C31175.3 (10)
C41—C39—C40—Br275.8 (10)C32—C33—N8—C38172.7 (8)
C38—C39—C40—Br2165.1 (7)C35—C33—N8—C383.6 (16)
C42—C39—C41—N168.5 (12)C39—C38—N8—C3193.0 (11)
C40—C39—C41—N157.5 (12)C39—C38—N8—C3397.0 (11)
C38—C39—C41—N1176.8 (8)C10—N3—Cu1—N218.6 (10)
C40—C39—C42—Br154.8 (10)C11—N3—Cu1—N2176.3 (8)
C41—C39—C42—Br1178.4 (7)C10—N3—Cu1—Br3148.1 (7)
C38—C39—C42—Br163.0 (10)C11—N3—Cu1—Br39.7 (10)
C8—C3—N1—C22.0 (10)C2—N2—Cu1—N365.2 (10)
C4—C3—N1—C2176.5 (10)C8—N2—Cu1—N3120.6 (7)
C8—C3—N1—C41179.5 (8)C2—N2—Cu1—Br3128.0 (8)
C4—C3—N1—C411.0 (16)C8—N2—Cu1—Br346.1 (8)
N2—C2—N1—C31.5 (11)C23—N6—Cu2—N7i141.2 (8)
C1—C2—N1—C3176.7 (9)C25—N6—Cu2—N7i44.5 (10)
N2—C2—N1—C41178.9 (8)C23—N6—Cu2—Br645.3 (9)
C1—C2—N1—C410.7 (15)C25—N6—Cu2—Br6129.1 (8)
Symmetry code: (i) x, y, z+2.

Experimental details

Crystal data
Chemical formula[Cu4Br4(C21H22Br2N4)4]
Mr2534.78
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)11.585 (2), 12.597 (3), 15.273 (3)
α, β, γ (°)77.75 (3), 84.88 (3), 89.54 (3)
V3)2169.4 (8)
Z1
Radiation typeMo Kα
µ (mm1)6.55
Crystal size (mm)0.12 × 0.11 × 0.10
Data collection
DiffractometerRigaku DIFFRACTOMETER NAME? CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2007)
Tmin, Tmax0.458, 0.535
No. of measured, independent and
observed [I > 2σ(I)] reflections
15281, 7799, 5648
Rint0.041
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.177, 1.12
No. of reflections7799
No. of parameters523
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0217P)2 + 38.1476P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.60, 3.27

Computer programs: , SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalClear (Rigaku, 2007) and DIAMOND (Brandenburg, 1998), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors are indebted to Jiangsu University for supporting this work.

References

First citationBai, H.-Y., Xia, D.-C. & Ma, J.-F. (2010). Z. Kristallogr. New Cryst. Struct. 225, 101–102.  CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationLi, T. & Du, S.-W. (2006). Acta Cryst. E62, m1812–m1813.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPeng, R., Li, M. & Li, D. (2010). Coord. Chem. Rev. 254, 1–18.  Web of Science CrossRef CAS Google Scholar
First citationQi, Y., Luo, F., Batten, S. R., Che, Y.-X. & Zheng, J.-M. (2008). Cryst. Growth Des. 8, 2806–2813.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, H.-F., Fan, J., Okamura, T.-A., Sun, W.-Y. & Ueyama, N. (2005). Cryst. Growth Des. 5, 289–294.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds