organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(5-Oxo-5H-1,2,4-di­thia­zol-3-yl)phenyl 4-methyl­benzene­sulfonate

aState Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
*Correspondence e-mail: luo_youfu@scu.edu.cn

(Received 12 December 2011; accepted 25 December 2011; online 18 January 2012)

In the mol­ecular structure of the title compound, C15H11NO4S3, the 1,2,4-dithia­zolone and central benzene rings are approximately coplanar, making a dihedral angle of 3.08 (7)°. The central benzene ring and the 4-methyl­benzene ring subtend a dihedral angle of 57.47 (8)°. In the crystal, ππ stacking occurs between the central benzene ring and the 1,2,4-dithia­zolone ring of adjacent mol­ecules, which are aligned almost parallel, the centroid–centroid distance being 3.555 (7) Å.

Related literature

For the synthesis of related compounds, see: Cho et al. (2003[Cho, C. H., Yun, H. S. & Park, K. Y. (2003). J. Org. Chem. 68, 3017-3025.]); Chen et al. (1996[Chen, L., Thompson, T. R., Hammer, R. P. & Barany, G. (1996). J. Org. Chem. 61, 6639-6645.]). For their biological activity, see: Iwakawa et al. (1994[Iwakawa, T., Sato, T. & Murabayashi, A. (1994). Heterocycles, 38, 1015-1024.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11NO4S3

  • Mr = 365.43

  • Orthorhombic, P b c n

  • a = 30.2449 (9) Å

  • b = 7.0841 (3) Å

  • c = 14.6755 (5) Å

  • V = 3144.36 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 145 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Agilent Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.952, Tmax = 1.000

  • 6725 measured reflections

  • 2775 independent reflections

  • 2355 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.078

  • S = 1.04

  • 2775 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

3H-1,2,4-dithiazol-3-one derivatives have been reported to posses antibacterial activity against a variety of bacteria and fungus strains including Staphylococcus aureus, Pasteurella piscicida and Botlytis cinerea (Iwakawa et al., 1994).

The molecular structure of the title compound is shown in Fig. 1. The central benzene ring is twisted away from the planes of the 3H-1,2,4-dithiazol-3-one and 4-methylbenzene rings by 3.08 (7) and 57.47 (8)°, respectively. In the crystal structure, intermolecular π-π stacking between central benzene rings and 3H-1,2,4-dithiazol-3-one rings of adjacent molecules which are aligned almost parallel {centroid–centroid distance = 3.555 (7) Å} are observed (Fig. 2).

Related literature top

For the synthesis of related compounds, see: Cho et al. (2003); Chen et al. (1996). For their biological activity, see: Iwakawa et al. (1994).

Experimental top

To a solution of 4-hydroxybenzothioamide (19.10 mmol) in chloroform (20 ml) at 273 K was added pyridine (3.70 ml, 45.84 mmol) dropwise over a period of 20 min and then p-toluenesulfonyl chloride (22.92 mmol) in small portions. This reaction mixture was stirred at room temperature for 12 h and diluted with dichloromethane and then 10% aqueous HCl. The separated organic layer was washed with 10% aqueous HCl, water and saturated aqueous NaCl. The organic phase was then dried over Na2SO4 and concentrated in vacuo. Recrystallization from EtOAc afforded 4-carbamothioylphenyl 4-methylbenzenesulfonate. To the solution of 4-carbamothioylphenyl 4-methylbenzenesulfonate (2 mmol) in THF (10 ml) was added chlorocarbonyl sulfenyl chloride (350 µL, 4 mmol). The mixture was stirred at ambient temperature for 16 h. The solvent was removed in vacuo and the residue was purified by silica-gel column chromatography using EtOAc/hexane as eluent solvent system to get the title compound. Crystals suitable for X-ray analysis were obtained by slow evaporation from a solution in EtOAc at room temperature.

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms and C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal structure of the title compound.
4-(5-Oxo-5H-1,2,4-dithiazol-3-yl)phenyl 4-methylbenzenesulfonate top
Crystal data top
C15H11NO4S3Dx = 1.544 Mg m3
Mr = 365.43Mo Kα radiation, λ = 0.7107 Å
Orthorhombic, PbcnCell parameters from 3356 reflections
a = 30.2449 (9) Åθ = 2.9–28.8°
b = 7.0841 (3) ŵ = 0.49 mm1
c = 14.6755 (5) ÅT = 145 K
V = 3144.36 (18) Å3Block, colorless
Z = 80.25 × 0.20 × 0.20 mm
F(000) = 1504
Data collection top
Agilent Xcalibur Eos
diffractometer
2775 independent reflections
Radiation source: Enhance (Mo) X-ray Source2355 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 16.0874 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scansh = 3335
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 68
Tmin = 0.952, Tmax = 1.000l = 1017
6725 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0338P)2 + 1.4416P]
where P = (Fo2 + 2Fc2)/3
2775 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C15H11NO4S3V = 3144.36 (18) Å3
Mr = 365.43Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 30.2449 (9) ŵ = 0.49 mm1
b = 7.0841 (3) ÅT = 145 K
c = 14.6755 (5) Å0.25 × 0.20 × 0.20 mm
Data collection top
Agilent Xcalibur Eos
diffractometer
2775 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2355 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 1.000Rint = 0.022
6725 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.04Δρmax = 0.41 e Å3
2775 reflectionsΔρmin = 0.29 e Å3
209 parameters
Special details top

Experimental. CrysAlisPro, Agilent Technologies, Version 1.171.35.11 (release 16-05-2011 CrysAlis171 .NET) (compiled May 16 2011,17:55:39) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.163728 (17)0.52253 (8)0.56985 (4)0.03114 (16)
S20.060198 (17)0.13631 (7)0.67063 (4)0.02683 (15)
S30.094456 (17)0.09859 (7)0.70721 (4)0.02913 (15)
O10.20211 (5)0.5638 (2)0.51776 (12)0.0445 (4)
O20.13702 (5)0.6722 (2)0.60383 (12)0.0418 (4)
O30.05762 (5)0.4287 (2)0.68332 (12)0.0405 (4)
O40.13468 (5)0.3962 (2)0.50138 (10)0.0308 (4)
N20.01393 (5)0.1767 (2)0.63961 (12)0.0252 (4)
C10.17634 (6)0.3654 (3)0.65777 (15)0.0255 (5)
C20.15800 (7)0.3921 (3)0.74340 (16)0.0312 (5)
H20.13780.49240.75400.037*
C30.16952 (7)0.2713 (4)0.81257 (16)0.0379 (6)
H30.15740.29030.87160.045*
C40.19842 (7)0.1220 (4)0.79851 (17)0.0388 (6)
C50.21578 (7)0.0968 (3)0.71170 (18)0.0402 (6)
H50.23530.00570.70070.048*
C60.20530 (7)0.2173 (3)0.64109 (16)0.0324 (5)
H60.21770.19930.58220.039*
C70.21083 (9)0.0087 (5)0.8753 (2)0.0632 (9)
H7A0.24300.02610.87610.095*
H7B0.20120.04600.93330.095*
H7C0.19640.13110.86640.095*
C80.09673 (6)0.3042 (3)0.53602 (14)0.0249 (5)
C90.05942 (6)0.4055 (3)0.55942 (15)0.0287 (5)
H90.05880.53900.55350.034*
C100.02302 (7)0.3088 (3)0.59164 (15)0.0275 (5)
H100.00280.37620.60910.033*
C110.02389 (6)0.1121 (3)0.59875 (13)0.0218 (4)
C120.06182 (6)0.0141 (3)0.57370 (14)0.0245 (4)
H120.06250.11970.57800.029*
C130.09845 (7)0.1102 (3)0.54266 (14)0.0264 (5)
H130.12450.04370.52610.032*
C140.01431 (6)0.0060 (3)0.63420 (13)0.0224 (4)
C150.05148 (7)0.2615 (3)0.67444 (15)0.0282 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0248 (3)0.0286 (3)0.0401 (3)0.0061 (2)0.0028 (2)0.0039 (3)
S20.0256 (3)0.0214 (3)0.0335 (3)0.0013 (2)0.0051 (2)0.0017 (2)
S30.0264 (3)0.0249 (3)0.0361 (3)0.0036 (2)0.0070 (2)0.0011 (2)
O10.0302 (8)0.0534 (11)0.0498 (11)0.0164 (8)0.0020 (8)0.0137 (9)
O20.0383 (9)0.0240 (8)0.0631 (11)0.0013 (7)0.0100 (9)0.0006 (8)
O30.0388 (9)0.0220 (8)0.0607 (11)0.0036 (7)0.0145 (9)0.0032 (8)
O40.0254 (7)0.0375 (9)0.0297 (8)0.0089 (6)0.0002 (7)0.0033 (7)
N20.0254 (9)0.0224 (9)0.0279 (10)0.0009 (7)0.0009 (8)0.0009 (8)
C10.0181 (10)0.0261 (11)0.0322 (11)0.0028 (8)0.0013 (9)0.0050 (9)
C20.0237 (11)0.0336 (12)0.0362 (13)0.0027 (9)0.0021 (10)0.0091 (10)
C30.0297 (12)0.0543 (16)0.0296 (12)0.0033 (11)0.0023 (11)0.0029 (11)
C40.0259 (12)0.0476 (15)0.0428 (14)0.0008 (10)0.0059 (11)0.0102 (12)
C50.0270 (12)0.0368 (13)0.0566 (16)0.0108 (10)0.0000 (11)0.0002 (12)
C60.0255 (11)0.0347 (12)0.0369 (13)0.0022 (10)0.0040 (10)0.0060 (11)
C70.0435 (15)0.081 (2)0.065 (2)0.0094 (15)0.0105 (15)0.0295 (17)
C80.0214 (10)0.0319 (12)0.0215 (10)0.0066 (9)0.0007 (9)0.0013 (9)
C90.0280 (11)0.0229 (11)0.0350 (12)0.0024 (9)0.0036 (10)0.0027 (10)
C100.0221 (10)0.0275 (11)0.0329 (12)0.0001 (9)0.0001 (9)0.0009 (10)
C110.0230 (10)0.0237 (11)0.0186 (10)0.0030 (8)0.0034 (8)0.0004 (8)
C120.0259 (10)0.0230 (11)0.0247 (10)0.0002 (8)0.0027 (9)0.0016 (9)
C130.0238 (10)0.0289 (12)0.0266 (11)0.0004 (9)0.0013 (9)0.0017 (9)
C140.0223 (10)0.0263 (11)0.0185 (10)0.0002 (8)0.0030 (8)0.0025 (9)
C150.0293 (11)0.0252 (12)0.0300 (11)0.0001 (9)0.0028 (10)0.0007 (9)
Geometric parameters (Å, º) top
S1—O11.4204 (16)C4—C71.506 (3)
S1—O21.4229 (16)C5—H50.9500
S1—O41.6069 (15)C5—C61.380 (3)
S1—C11.746 (2)C6—H60.9500
S2—S32.0325 (7)C7—H7A0.9800
S2—C141.7506 (19)C7—H7B0.9800
S3—C151.803 (2)C7—H7C0.9800
O3—C151.206 (2)C8—C91.381 (3)
O4—C81.414 (2)C8—C131.379 (3)
N2—C141.297 (2)C9—H90.9500
N2—C151.383 (3)C9—C101.380 (3)
C1—C21.387 (3)C10—H100.9500
C1—C61.388 (3)C10—C111.398 (3)
C2—H20.9500C11—C121.390 (3)
C2—C31.373 (3)C11—C141.473 (3)
C3—H30.9500C12—H120.9500
C3—C41.387 (3)C12—C131.378 (3)
C4—C51.390 (3)C13—H130.9500
O1—S1—O2119.95 (10)C4—C7—H7B109.5
O1—S1—O4103.00 (9)C4—C7—H7C109.5
O1—S1—C1110.51 (10)H7A—C7—H7B109.5
O2—S1—O4108.89 (9)H7A—C7—H7C109.5
O2—S1—C1109.88 (10)H7B—C7—H7C109.5
O4—S1—C1103.08 (9)C9—C8—O4120.89 (18)
C14—S2—S393.04 (7)C13—C8—O4116.98 (18)
C15—S3—S294.93 (7)C13—C8—C9122.11 (19)
C8—O4—S1118.39 (13)C8—C9—H9120.7
C14—N2—C15116.67 (17)C10—C9—C8118.61 (19)
C2—C1—S1119.67 (16)C10—C9—H9120.7
C2—C1—C6121.0 (2)C9—C10—H10119.8
C6—C1—S1119.29 (17)C9—C10—C11120.38 (19)
C1—C2—H2120.6C11—C10—H10119.8
C3—C2—C1118.9 (2)C10—C11—C14121.35 (18)
C3—C2—H2120.6C12—C11—C10119.56 (18)
C2—C3—H3119.2C12—C11—C14119.07 (17)
C2—C3—C4121.7 (2)C11—C12—H12119.9
C4—C3—H3119.2C13—C12—C11120.30 (19)
C3—C4—C5118.2 (2)C13—C12—H12119.9
C3—C4—C7121.0 (2)C8—C13—H13120.5
C5—C4—C7120.9 (2)C12—C13—C8119.03 (19)
C4—C5—H5119.3C12—C13—H13120.5
C6—C5—C4121.5 (2)N2—C14—S2120.98 (15)
C6—C5—H5119.3N2—C14—C11121.59 (17)
C1—C6—H6120.7C11—C14—S2117.42 (14)
C5—C6—C1118.7 (2)O3—C15—S3119.25 (16)
C5—C6—H6120.7O3—C15—N2126.36 (19)
C4—C7—H7A109.5N2—C15—S3114.38 (15)

Experimental details

Crystal data
Chemical formulaC15H11NO4S3
Mr365.43
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)145
a, b, c (Å)30.2449 (9), 7.0841 (3), 14.6755 (5)
V3)3144.36 (18)
Z8
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerAgilent Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.952, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6725, 2775, 2355
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.078, 1.04
No. of reflections2775
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.29

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

We thank the Analytical and Testing Center of Sichuan University for the X-ray measurements.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationChen, L., Thompson, T. R., Hammer, R. P. & Barany, G. (1996). J. Org. Chem. 61, 6639–6645.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationCho, C. H., Yun, H. S. & Park, K. Y. (2003). J. Org. Chem. 68, 3017–3025.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIwakawa, T., Sato, T. & Murabayashi, A. (1994). Heterocycles, 38, 1015–1024.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds