organic compounds
4,5-Diiodo-2-phenyl-1H-imidazole
aDepartment of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic, and bInstitute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
*Correspondence e-mail: zdenka.padelkova@upce.cz
The structure of the title compound, C9H6I2N2, contains two symmetry-independent molecules. The interplanar angles between the imidazole and phenyl ring planes are 16.35 (3) and 17.48 (6)°. Molecules are connected via N—H⋯N hydrogen bonds to form zigzag chains along the b axis. The title compound is the first example of a structurally characterized 4,5-diiodoimidazole with an organic substituent in the 2-position and without protection on the N—H group of imidazole.
Related literature
For the structures of various related compounds, see: Delest et al. (2008); Poverlein et al. (2007); Panday et al. (2000); Phillips et al. (1997); Terinek & Vasella (2003); Mukai & Nishikawa (2010a,b); Noland et al. (2003); Dou & Weiss (1992); Nagatomo et al. (1995). For the use of diiodoimidazoles as starting compounds for ligand synthesis, see: Haruki et al. (1965); Ito & Uedaira (2004); Kim et al. (1999); Zhang et al. (2006). For the synthetic procedure, see: Garden et al. (2001); Ishihara & Togo (2006). For typical bond lengths, see: Allen et al. (1987).
Experimental
Crystal data
|
Data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); cell COLLECT and DENZO; data reduction: COLLECT and DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536812003017/im2350sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812003017/im2350Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812003017/im2350Isup3.cml
The title compound I was isolated in 30% yield as a byproduct from the reaction mixture of 2-phenyl-1H-imidazole-4-carbaldehyde with ethan-1,2-diamine, iodine and potassium carbonate in tert-butylalcohol, according to Ishihara (Ishihara & Togo, 2006) in order to prepare 2'-phenyl-4,5-dihydro-1H,1'H-2,4'-biimidazole. The reaction mixture was separated by the help of
on silicagel (ethyl acetate, hexane and dichloromethane – 1:3:10). Further crystallization from dichloromethane gave pure I. The identity and purity of I was confirmed by the same melting point, 1H NMR and mass spectra patterns as published elsewhere (Garden et al., 2001). Single crystals of I were obtained by slow vapour diffussion of hexane into a solution of I in dichloromethane.All hydrogen atoms were discernible in the difference
However, all hydrogen atoms were placed into idealized positions and refined riding on their parent C or N atoms, with N–H = 0.86 Å, C–H = 0.93 Å for aromatic H atoms, with U(H) = 1.2Ueq(C/N) for the NH group and U(H) = 1.5Ueq(C/N) for other H atoms, respectively.Data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); cell
COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); data reduction: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C9H6I2N2 | Dx = 2.409 Mg m−3 |
Mr = 395.96 | Melting point: 472 K |
Orthorhombic, Aba2 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: A 2 -2ac | Cell parameters from 20579 reflections |
a = 31.0150 (6) Å | θ = 1–27.5° |
b = 17.5010 (5) Å | µ = 5.72 mm−1 |
c = 8.0461 (9) Å | T = 150 K |
V = 4367.4 (5) Å3 | Needle, colourless |
Z = 16 | 0.45 × 0.16 × 0.07 mm |
F(000) = 2880 |
Bruker–Nonius KappaCCD area-detector diffractometer | 4914 independent reflections |
Radiation source: fine-focus sealed tube | 4499 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.058 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 2.3° |
ϕ and ω scans to fill the Ewald sphere | h = −39→40 |
Absorption correction: gaussian (Coppens, 1970) | k = −22→19 |
Tmin = 0.256, Tmax = 0.675 | l = −9→10 |
20468 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.029 | H-atom parameters constrained |
wR(F2) = 0.051 | w = 1/[σ2(Fo2) + (0.0196P)2 + 8.5806P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
4914 reflections | Δρmax = 0.63 e Å−3 |
235 parameters | Δρmin = −0.63 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 2233 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.01 (3) |
C9H6I2N2 | V = 4367.4 (5) Å3 |
Mr = 395.96 | Z = 16 |
Orthorhombic, Aba2 | Mo Kα radiation |
a = 31.0150 (6) Å | µ = 5.72 mm−1 |
b = 17.5010 (5) Å | T = 150 K |
c = 8.0461 (9) Å | 0.45 × 0.16 × 0.07 mm |
Bruker–Nonius KappaCCD area-detector diffractometer | 4914 independent reflections |
Absorption correction: gaussian (Coppens, 1970) | 4499 reflections with I > 2σ(I) |
Tmin = 0.256, Tmax = 0.675 | Rint = 0.058 |
20468 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | H-atom parameters constrained |
wR(F2) = 0.051 | Δρmax = 0.63 e Å−3 |
S = 1.04 | Δρmin = −0.63 e Å−3 |
4914 reflections | Absolute structure: Flack (1983), 2233 Friedel pairs |
235 parameters | Absolute structure parameter: 0.01 (3) |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
I3 | 0.239603 (10) | 0.127609 (18) | 0.00147 (5) | 0.02406 (8) | |
I2 | 0.185474 (11) | 0.465127 (18) | 0.86344 (5) | 0.02557 (9) | |
I1 | 0.142369 (12) | 0.262855 (18) | 0.73764 (5) | 0.02639 (9) | |
I4 | 0.225974 (10) | 0.324363 (17) | 0.26443 (4) | 0.02035 (8) | |
N1 | 0.11736 (13) | 0.3687 (2) | 0.4558 (5) | 0.0172 (9) | |
N3 | 0.14573 (13) | 0.1439 (2) | 0.0814 (5) | 0.0160 (8) | |
C14 | 0.05141 (17) | 0.1305 (3) | 0.0519 (7) | 0.0210 (12) | |
H14 | 0.0683 | 0.1040 | −0.0242 | 0.025* | |
C9 | 0.11213 (17) | 0.5450 (3) | 0.2022 (6) | 0.0217 (12) | |
H9 | 0.1321 | 0.5741 | 0.2610 | 0.026* | |
C3 | 0.15163 (16) | 0.4339 (3) | 0.6553 (6) | 0.0166 (10) | |
C1 | 0.11925 (16) | 0.4415 (3) | 0.4126 (6) | 0.0153 (10) | |
C4 | 0.10087 (15) | 0.4731 (2) | 0.2585 (7) | 0.0178 (10) | |
C13 | 0.07108 (16) | 0.1796 (3) | 0.1643 (6) | 0.0151 (10) | |
C11 | 0.18543 (15) | 0.1775 (3) | 0.1070 (6) | 0.0163 (10) | |
C2 | 0.13758 (15) | 0.3637 (3) | 0.6074 (6) | 0.0146 (10) | |
C12 | 0.18168 (16) | 0.2429 (3) | 0.1949 (6) | 0.0170 (10) | |
C10 | 0.11796 (16) | 0.1907 (3) | 0.1591 (6) | 0.0150 (10) | |
N2 | 0.13961 (13) | 0.4833 (2) | 0.5321 (5) | 0.0184 (9) | |
H2 | 0.1441 | 0.5318 | 0.5297 | 0.022* | |
C18 | 0.04545 (16) | 0.2180 (3) | 0.2794 (7) | 0.0219 (11) | |
H18 | 0.0582 | 0.2511 | 0.3556 | 0.026* | |
C5 | 0.07161 (18) | 0.4297 (3) | 0.1697 (7) | 0.0269 (13) | |
H5 | 0.0637 | 0.3815 | 0.2079 | 0.032* | |
C16 | −0.01789 (19) | 0.1579 (3) | 0.1692 (8) | 0.0301 (14) | |
H16 | −0.0476 | 0.1507 | 0.1714 | 0.036* | |
N4 | 0.13889 (12) | 0.2501 (2) | 0.2280 (6) | 0.0147 (8) | |
H4 | 0.1273 | 0.2867 | 0.2834 | 0.018* | |
C17 | 0.00127 (17) | 0.2077 (3) | 0.2786 (8) | 0.0296 (13) | |
H17 | −0.0156 | 0.2343 | 0.3548 | 0.035* | |
C15 | 0.00750 (18) | 0.1195 (3) | 0.0545 (8) | 0.0284 (13) | |
H15 | −0.0053 | 0.0865 | −0.0215 | 0.034* | |
C8 | 0.0937 (2) | 0.5739 (3) | 0.0577 (7) | 0.0313 (14) | |
H8 | 0.1005 | 0.6230 | 0.0224 | 0.038* | |
C7 | 0.0656 (2) | 0.5299 (3) | −0.0314 (8) | 0.0343 (15) | |
H7 | 0.0542 | 0.5487 | −0.1302 | 0.041* | |
C6 | 0.0541 (2) | 0.4581 (3) | 0.0261 (8) | 0.0347 (15) | |
H6 | 0.0350 | 0.4285 | −0.0352 | 0.042* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I3 | 0.02447 (18) | 0.02458 (16) | 0.02313 (18) | 0.00572 (12) | 0.00691 (17) | −0.00173 (16) |
I2 | 0.03117 (19) | 0.02441 (17) | 0.02114 (18) | 0.00247 (14) | −0.01031 (16) | −0.00504 (16) |
I1 | 0.0322 (2) | 0.01704 (15) | 0.0299 (2) | −0.00235 (14) | −0.00951 (16) | 0.00849 (16) |
I4 | 0.01828 (16) | 0.01997 (15) | 0.02279 (17) | −0.00410 (12) | −0.00100 (14) | −0.00314 (15) |
N1 | 0.019 (2) | 0.012 (2) | 0.020 (2) | 0.0002 (16) | −0.0024 (17) | −0.0020 (17) |
N3 | 0.022 (2) | 0.0113 (19) | 0.014 (2) | 0.0012 (16) | −0.0021 (17) | −0.0004 (17) |
C14 | 0.023 (3) | 0.019 (3) | 0.021 (3) | 0.003 (2) | −0.003 (2) | −0.002 (2) |
C9 | 0.030 (3) | 0.018 (3) | 0.017 (3) | −0.003 (2) | −0.001 (2) | 0.000 (2) |
C3 | 0.016 (2) | 0.017 (2) | 0.017 (3) | −0.0009 (19) | −0.002 (2) | 0.001 (2) |
C1 | 0.019 (3) | 0.013 (2) | 0.014 (3) | −0.0019 (19) | −0.0007 (19) | 0.0012 (19) |
C4 | 0.020 (2) | 0.019 (2) | 0.014 (3) | 0.0032 (19) | 0.002 (2) | 0.000 (2) |
C13 | 0.021 (3) | 0.011 (2) | 0.014 (3) | 0.0038 (18) | −0.006 (2) | 0.0051 (19) |
C11 | 0.019 (2) | 0.013 (2) | 0.017 (3) | 0.0060 (18) | 0.004 (2) | −0.001 (2) |
C2 | 0.015 (2) | 0.015 (2) | 0.014 (3) | 0.0024 (18) | 0.003 (2) | 0.0008 (19) |
C12 | 0.018 (3) | 0.014 (2) | 0.019 (3) | −0.0025 (19) | 0.001 (2) | 0.001 (2) |
C10 | 0.024 (3) | 0.010 (2) | 0.012 (2) | −0.0031 (18) | −0.001 (2) | −0.0004 (18) |
N2 | 0.024 (2) | 0.0103 (19) | 0.021 (3) | 0.0011 (16) | −0.0028 (18) | −0.0033 (17) |
C18 | 0.022 (3) | 0.018 (2) | 0.027 (3) | 0.0016 (19) | −0.001 (2) | −0.001 (2) |
C5 | 0.028 (3) | 0.019 (3) | 0.034 (3) | −0.003 (2) | −0.008 (2) | 0.005 (2) |
C16 | 0.020 (3) | 0.037 (3) | 0.033 (4) | −0.008 (2) | −0.002 (3) | 0.001 (3) |
N4 | 0.017 (2) | 0.0127 (18) | 0.014 (2) | 0.0015 (15) | −0.0053 (17) | −0.0043 (17) |
C17 | 0.017 (3) | 0.034 (3) | 0.038 (4) | −0.001 (2) | 0.002 (3) | 0.002 (3) |
C15 | 0.023 (3) | 0.031 (3) | 0.031 (3) | −0.006 (2) | −0.010 (2) | 0.000 (2) |
C8 | 0.045 (4) | 0.024 (3) | 0.026 (3) | −0.006 (2) | −0.009 (3) | 0.007 (2) |
C7 | 0.047 (4) | 0.030 (3) | 0.026 (4) | 0.003 (3) | −0.015 (3) | 0.009 (3) |
C6 | 0.044 (4) | 0.030 (3) | 0.030 (4) | −0.013 (2) | −0.020 (3) | 0.004 (3) |
I3—C11 | 2.075 (5) | C13—C10 | 1.467 (7) |
I2—C3 | 2.051 (5) | C11—C12 | 1.350 (7) |
I1—C2 | 2.058 (5) | C12—N4 | 1.360 (6) |
I4—C12 | 2.058 (5) | C10—N4 | 1.345 (6) |
N1—C1 | 1.323 (6) | N2—H2 | 0.8600 |
N1—C2 | 1.374 (6) | C18—C17 | 1.382 (7) |
N3—C10 | 1.343 (6) | C18—H18 | 0.9300 |
N3—C11 | 1.379 (6) | C5—C6 | 1.370 (8) |
C14—C15 | 1.376 (8) | C5—H5 | 0.9302 |
C14—C13 | 1.388 (7) | C16—C17 | 1.374 (8) |
C14—H14 | 0.9301 | C16—C15 | 1.388 (9) |
C9—C4 | 1.381 (7) | C16—H16 | 0.9299 |
C9—C8 | 1.391 (8) | N4—H4 | 0.8600 |
C9—H9 | 0.9301 | C17—H17 | 0.9300 |
C3—C2 | 1.360 (7) | C15—H15 | 0.9299 |
C3—N2 | 1.366 (6) | C8—C7 | 1.367 (8) |
C1—N2 | 1.363 (6) | C8—H8 | 0.9301 |
C1—C4 | 1.472 (7) | C7—C6 | 1.385 (8) |
C4—C5 | 1.383 (7) | C7—H7 | 0.9299 |
C13—C18 | 1.393 (7) | C6—H6 | 0.9299 |
C1—N1—C2 | 105.9 (4) | N4—C10—C13 | 124.7 (4) |
C10—N3—C11 | 104.1 (4) | C1—N2—C3 | 107.4 (4) |
C15—C14—C13 | 120.8 (5) | C1—N2—H2 | 126.0 |
C15—C14—H14 | 119.8 | C3—N2—H2 | 126.6 |
C13—C14—H14 | 119.3 | C17—C18—C13 | 120.0 (5) |
C4—C9—C8 | 120.1 (5) | C17—C18—H18 | 120.3 |
C4—C9—H9 | 119.9 | C13—C18—H18 | 119.8 |
C8—C9—H9 | 120.0 | C6—C5—C4 | 119.8 (5) |
C2—C3—N2 | 106.2 (4) | C6—C5—H5 | 120.3 |
C2—C3—I2 | 129.5 (4) | C4—C5—H5 | 120.0 |
N2—C3—I2 | 124.3 (3) | C17—C16—C15 | 119.2 (5) |
N1—C1—N2 | 110.6 (4) | C17—C16—H16 | 120.2 |
N1—C1—C4 | 124.5 (4) | C15—C16—H16 | 120.6 |
N2—C1—C4 | 124.9 (4) | C10—N4—C12 | 108.6 (4) |
C9—C4—C5 | 119.8 (5) | C10—N4—H4 | 126.0 |
C9—C4—C1 | 121.4 (4) | C12—N4—H4 | 125.4 |
C5—C4—C1 | 118.9 (4) | C16—C17—C18 | 121.0 (5) |
C14—C13—C18 | 118.7 (5) | C16—C17—H17 | 119.8 |
C14—C13—C10 | 119.9 (4) | C18—C17—H17 | 119.2 |
C18—C13—C10 | 121.4 (4) | C14—C15—C16 | 120.2 (5) |
C12—C11—N3 | 111.2 (4) | C14—C15—H15 | 120.0 |
C12—C11—I3 | 129.8 (4) | C16—C15—H15 | 119.7 |
N3—C11—I3 | 118.9 (3) | C7—C8—C9 | 119.8 (5) |
C3—C2—N1 | 109.9 (4) | C7—C8—H8 | 120.4 |
C3—C2—I1 | 127.4 (4) | C9—C8—H8 | 119.9 |
N1—C2—I1 | 122.6 (3) | C8—C7—C6 | 119.9 (5) |
C11—C12—N4 | 105.4 (4) | C8—C7—H7 | 119.4 |
C11—C12—I4 | 132.2 (4) | C6—C7—H7 | 120.6 |
N4—C12—I4 | 122.3 (3) | C5—C6—C7 | 120.6 (5) |
N3—C10—N4 | 110.7 (4) | C5—C6—H6 | 119.9 |
N3—C10—C13 | 124.6 (4) | C7—C6—H6 | 119.4 |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···N3i | 0.86 | 2.01 | 2.845 (5) | 165 |
N4—H4···N1 | 0.86 | 2.02 | 2.848 (6) | 162 |
Symmetry code: (i) x, y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C9H6I2N2 |
Mr | 395.96 |
Crystal system, space group | Orthorhombic, Aba2 |
Temperature (K) | 150 |
a, b, c (Å) | 31.0150 (6), 17.5010 (5), 8.0461 (9) |
V (Å3) | 4367.4 (5) |
Z | 16 |
Radiation type | Mo Kα |
µ (mm−1) | 5.72 |
Crystal size (mm) | 0.45 × 0.16 × 0.07 |
Data collection | |
Diffractometer | Bruker–Nonius KappaCCD area-detector diffractometer |
Absorption correction | Gaussian (Coppens, 1970) |
Tmin, Tmax | 0.256, 0.675 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 20468, 4914, 4499 |
Rint | 0.058 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.051, 1.04 |
No. of reflections | 4914 |
No. of parameters | 235 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.63, −0.63 |
Absolute structure | Flack (1983), 2233 Friedel pairs |
Absolute structure parameter | 0.01 (3) |
Computer programs: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···N3i | 0.86 | 2.01 | 2.845 (5) | 164.7 |
N4—H4···N1 | 0.86 | 2.02 | 2.848 (6) | 161.7 |
Symmetry code: (i) x, y+1/2, z+1/2. |
Acknowledgements
The authors thank the Czech Science Foundation (Project P207/12/0223) for the financial support of this work.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1–19. CrossRef Web of Science Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard. Google Scholar
Delest, B., Nshimyumukiza, P., Fasbender, O., Tinant, B., Marchand-Brynaert, J., Darro, F. & Robiette, R. (2008). J. Org. Chem. 73, 6816–6823. CrossRef PubMed CAS Google Scholar
Dou, S. & Weiss, A. (1992). Z. Naturforsch. Teil A, 47, 177–181. CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Garden, S. J., Torres, J. C., de Souza Melo, S. C., Lima, A. S., Pinto, A. C. & Lima, E. L. S. (2001). Tetrahedron Lett. 42, 2089–2092. Web of Science CrossRef CAS Google Scholar
Haruki, E., Izumita, S. & Imoto, E. (1965). Nippon Kagaku Zasshi, 86, 942–946. CrossRef CAS Google Scholar
Hooft, R. W. (1998). COLLECT. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Ishihara, M. & Togo, H. (2006). Synlett, pp. 227–230. Google Scholar
Ito, T. & Uedaira, S. (2004). Jpn. Kokai Tokkyo Koho, JP 2004123550. Google Scholar
Kim, G., Kang, S., Ryu, Y., Keum, G. & Seo, M. J. (1999). Synth. Commun. 29, 507–512. CrossRef CAS Google Scholar
Mukai, T. & Nishikawa, K. (2010a). Anal. Sci. X-ray Struct. Anal. Online, 26, 31–32. CAS Google Scholar
Mukai, T. & Nishikawa, K. (2010b). Solid State Sci. 12, 783–788. CrossRef CAS Google Scholar
Nagatomo, S., Takeda, S., Tamura, H. & Nakamura, N. (1995). Bull. Chem. Soc. Jpn, 68, 2783–2789. CrossRef CAS Google Scholar
Noland, W. E., Cole, K. P. & Britton, D. (2003). Acta Cryst. E59, o458–o460. CrossRef IUCr Journals Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Panday, N., Canac, Y. & Vasella, A. (2000). Helv. Chim. Acta, 83, 58–79. CrossRef CAS Google Scholar
Phillips, J. G., Fadnis, L. & Williams, D. R. (1997). Tetrahedron Lett. 38, 7835–7838. CrossRef CAS Google Scholar
Poverlein, C., Jacobi, N., Mayer, P. & Lindel, T. (2007). Synthesis, pp. 3620–3626. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Terinek, M. & Vasella, A. (2003). Helv. Chim. Acta, 86, 3482–3509. CrossRef CAS Google Scholar
Zhang, J., Zhang, Y., Schnatter, W. F. K. & Herndon, J. W. (2006). Organometallics, 25, 1279–1284. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Halogenated derivatives of heterocycles are important starting compounds for building new heterocyclic chiral ligands via cross-coupling reactions. In recent times 4,5-diiodoimidazole and its derivatives were used for the preparation of various disubstituted 4,5-dicarbaimidazoles (Zhang et al., 2006; Ito & Uedaira, 2004; Kim et al., 1999; Haruki et al., 1965). To the best of our knowledge, there are a couple of structures of dihalogenated imidazoles determined by X-ray diffraction methods, but the 4,5-diido-1H-imidazole structure as the most versatile and simpliest member of the series is missing. Compound I (Scheme 1) was separated as a byproduct from a reaction described by Ishihara (Ishihara & Togo, 2006) but is usually prepared by the method of Garden (Garden et al., 2001). The title compound crystallizes (Fig. 1) in an orthorhombic space group with two independent molecules in the unit cell (Fig. 2). Both molecules reveal similar structural behavior showing two planar conjugated rings – phenyl and imidazolyl. The interplanar angles between imidazolyl and phenyl planes are 16.35 (3)° and 17.48 (6)°, respectively. The formation of infinite chains is provided by the connection of both types of molecules via N–H···N hydrogen bridges. The linear chains interact via the iodine atoms at neighbouring imidazole moieties. In contrast to typical C–I bond lenghts of ca. 2.095 Å (Allen et al., 1987) which is the same for monoiodoimidazoles, the C–I separations in diiodoimidazoles significantly differ between ca. 2.05 and 2.09 Å (Panday et al., 2000; Terinek & Vasella, 2003). This phenomenon is also seen in one of the molecules of I, where the C11–I3 bond length is 2.075 (5) Å and the C12–I4 bond located next to the N–H function is shortened to 2.058 (5) Å. On the other hand, in the first molecule both C–I bond lenghts (2.051 (5) and 2.058 (5) Å) are almost identical and thus comparable to the same parameters found in compounds containing the 4,5-diidoimidazolium ion (Mukai & Nishikawa, 2010a,b). Only one iodine atom I1 is located in the same plane defined by the imidazole ring, while the others show deviations of 0.07-0.148 Å. Bond lenghts between the atoms forming the imidazole rings are comparable to literature values (Allen et al., 1987) except of C1–N2 which is elongated by 0.02 Å and C10–N3 which is slightly shortened.