metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m183-m184

Bis{N-ethyl-2-[3-(hy­dr­oxy­imino-κN)butan-2-yl­­idene]hydrazinecarbo­thio­amide-κ2N2,S}nickel(II) dichloride

aSchool of Chemical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia, bFaculty of Science, Sabha University, Libya, cDepartment of Chemistry, International University of Africa, Sudan, and dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: sgteoh@usm.my

(Received 29 November 2011; accepted 23 December 2011; online 21 January 2012)

In the title complex, [Ni(C7H14N4OS)2]Cl2, the NiII ion is six-coordinated in a distorted octa­hedral geometry by four N atoms from the two imine and two oxime groups, and two S atoms from the thione groups. Two chloride ions complete the asymmetric unit. In the crystal, mol­ecules are linked through N—H⋯Cl and O—H⋯Cl hydrogen bonds into an infinite chain propagating along [101].

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For a related structure, see: Choi et al. (2008[Choi, K.-Y., Yang, S.-M., Lee, K.-C., Ryu, H., Lee, C. H., Seo, J. & Suh, M. (2008). Transition Met. Chem. 33, 99-105.]). For the biological activity, pharmacological properties and analytical applications of thio­semicarbazones and their metal complexes, see: Cowley et al. (2002[Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Labisbal, E. & Sousa, A. (2002). J. Am. Chem. Soc. 124, 5270-5271.]); Ming (2003[Ming, L.-J. (2003). Med. Res. Rev. 23, 697-762.]); Lobana et al. (2004[Lobana, T. S., Rekha & Butcher, R. J. (2004). Transition Met. Chem. 29, 291-295.], 2007[Lobana, T. S., Rekha, Pannu, A. P. S., Hundal, G., Butcher, R. J. & Castineiras, A. (2007). Polyhedron, 26, 2621-2628.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C7H14N4OS)2]Cl2

  • Mr = 534.17

  • Monoclinic, P 21 /c

  • a = 18.4990 (11) Å

  • b = 14.2097 (9) Å

  • c = 9.2422 (6) Å

  • β = 98.542 (1)°

  • V = 2402.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.23 mm−1

  • T = 293 K

  • 0.42 × 0.20 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]) Tmin = 0.625, Tmax = 0.869

  • 30693 measured reflections

  • 8190 independent reflections

  • 6071 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.089

  • S = 1.03

  • 8190 reflections

  • 292 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—N1 2.1247 (14)
Ni1—N2 2.0120 (12)
Ni1—N5 2.1258 (13)
Ni1—N6 2.0086 (12)
Ni1—S1 2.4089 (5)
Ni1—S2 2.4126 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H1N4⋯Cl1i 0.730 (19) 2.47 (2) 3.1689 (17) 161 (2)
O2—H1O2⋯Cl1 0.84 (3) 2.20 (3) 3.0062 (14) 161 (2)
N7—H1N7⋯Cl2ii 0.87 (2) 2.34 (2) 3.1488 (16) 153.9 (17)
N3—H1N3⋯Cl1i 0.76 (2) 2.50 (2) 3.2015 (16) 154 (2)
O1—H1O1⋯Cl2 0.79 (3) 2.20 (3) 2.9396 (16) 157 (2)
N8—H1N8⋯Cl2ii 0.85 (2) 2.349 (19) 3.1567 (19) 159 (2)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Thiosemicarbazones and their metal complexes have attracted significant attention because of their wide-ranging biological and pharmacological properties, analytical applications, specific structures, and chemical properties (Cowley et al., 2002; Ming, 2003; Lobana et al., 2007; Lobana et al., 2004). In this paper we report the crystal structure of bis{N-ethyl-2-[2-(hydroxyimino-κN)butan-2-ylidene]hydrazinecarbothioamide-κ2N2,S}nickle(II)dichloride.

In the mononuclear title complex (Fig. 1), [Ni(C7H14N4OS)2]Cl2, the nickel(II) ion is six-coordinated in a distorted octahedral geometry by four N atoms from two imine groups and two oxime groups and two S atoms from two thione groups. The Ni—N and Ni—S bond distances (Table 1) and the bond angles around Ni1 are in agreement with the values found for related Ni(II) complex (Choi et al., 2008). Bond lengths and angles observed in the structure are normal (Allen et al., 1987). Ni1 is a meeting-point of four five-membered rings, namely: A (Ni1/S1/N2/N3/C9), B ((Ni1/S2/N6/N7/C12), C ((Ni1/N1/N2/C1/C2) and D ((Ni1/N5/N6/C5/C6).The dihedral angles between these four rings as follows: A/B = 87.11 (5)°, A/C = 4.37 (6)°, A/D = 88.83 (6)°, B/C = 88.55 (6)°, B/D = 4.26 (6)° and C/D = 86.88 (7)°. In the crystal, molecules are linked through intermolecular N4—H1N4···Cl1, O2—H1O2···Cl1, N7—H1N7···Cl2, N3—H1N3···Cl1, O1—H1O1···Cl2 and N8—H1N8···Cl2 hydrogen bonds (Table 2) into infinite chains propagating along [101] (Fig. 2).

Related literature top

For bond-length data, see: Allen et al. (1987). For a related structure, see: Choi et al. (2008). For the biological activity, pharmacological properties and analytical applications of thiosemicarbazones and their metal complexes, see: Cowley et al. (2002); Ming (2003); Lobana et al. (2004, 2007).

Experimental top

The ligand was prepared by the mixing of 2,3-butanedione monoxime (1.01 g) dissolved in 20 ml of EtOH with 4-ethyl-3-thiosemicarbazide (1.19 g) dissolved in 20 ml of EtOH and a few drops of acetic acid. The mixture was boiled under reflux with stirring for 3 h. The mixture was filtered and left to cool and evaporate the solvent at room temperature and the resulting white solid formed was collected by suction filtration and washed with cold EtOH (yield 66%, m.p. 475.2 - 477.2 K). To a solution of the ligand (0.2021 g) in EtOH (20 ml) was added a solution of (NiCl2.6H2O) (0.2377 g) in EtOH (20 ml). The mixture was boiled under reflux for 2 h with stirring. The mixture was filtered and left to cool accompanied by slow evaporation of the solvent at room temperature. The brown crystals were grown in DMF-acetone (1:4) mixture by slow evaporation at room temperature for 2 weeks (yield 45%, m.p. 513.9 K).

Refinement top

N- and-O bound H atoms were located in a difference Fourier map and were refined freely. The remaining H atoms were positioned geometrically and refined using a riding model, with C—H = 0.96 or 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene groups and 1.5Ueq(C) for methyl groups. The highest residual electron density peak is located 0.83 Å from Cl1 and the deepest hole is located 0.68 Å from Cl1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the a axis. Hydrogen bonds are shown as dashed lines.
Bis{N-ethyl-2-[3-(hydroxyimino-κN)butan-2- ylidene]hydrazinecarbothioamide-κ2N2,S}nickel(II) dichloride top
Crystal data top
[Ni(C7H14N4OS)2]Cl2F(000) = 1112
Mr = 534.17Dx = 1.477 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7955 reflections
a = 18.4990 (11) Åθ = 2.7–31.5°
b = 14.2097 (9) ŵ = 1.23 mm1
c = 9.2422 (6) ÅT = 293 K
β = 98.542 (1)°Block, purple
V = 2402.5 (3) Å30.42 × 0.20 × 0.12 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
8190 independent reflections
Radiation source: fine-focus sealed tube6071 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 31.8°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2724
Tmin = 0.625, Tmax = 0.869k = 2119
30693 measured reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0413P)2 + 0.4822P]
where P = (Fo2 + 2Fc2)/3
8190 reflections(Δ/σ)max = 0.001
292 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Ni(C7H14N4OS)2]Cl2V = 2402.5 (3) Å3
Mr = 534.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.4990 (11) ŵ = 1.23 mm1
b = 14.2097 (9) ÅT = 293 K
c = 9.2422 (6) Å0.42 × 0.20 × 0.12 mm
β = 98.542 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
8190 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
6071 reflections with I > 2σ(I)
Tmin = 0.625, Tmax = 0.869Rint = 0.030
30693 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.66 e Å3
8190 reflectionsΔρmin = 0.36 e Å3
292 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.254705 (10)0.544056 (14)0.720936 (19)0.03000 (6)
S10.19095 (2)0.69236 (3)0.69747 (5)0.04214 (10)
S20.33886 (2)0.59247 (4)0.55926 (4)0.04259 (11)
O10.32326 (8)0.33683 (10)0.76904 (16)0.0528 (3)
O20.15128 (7)0.47332 (11)0.94881 (14)0.0493 (3)
N10.27241 (7)0.39758 (10)0.69614 (14)0.0355 (3)
N20.17389 (7)0.50408 (10)0.56264 (13)0.0318 (3)
N30.12478 (8)0.56856 (10)0.50132 (15)0.0376 (3)
N40.07395 (8)0.71317 (11)0.49656 (17)0.0422 (3)
N50.21534 (7)0.51429 (10)0.92075 (14)0.0345 (3)
N60.33784 (7)0.58110 (9)0.87569 (13)0.0322 (3)
N70.40248 (8)0.61137 (11)0.83749 (15)0.0405 (3)
N80.47653 (9)0.63277 (13)0.66593 (19)0.0510 (4)
C10.17121 (8)0.41842 (12)0.51582 (16)0.0351 (3)
C20.22784 (9)0.35631 (12)0.59529 (17)0.0373 (3)
C30.11569 (11)0.38175 (14)0.39472 (19)0.0484 (4)
H3A0.10580.42880.31990.073*
H3B0.07140.36680.43240.073*
H3C0.13430.32610.35420.073*
C40.23136 (14)0.25422 (14)0.5599 (3)0.0642 (6)
H4A0.26500.22330.63400.096*
H4B0.24770.24680.46670.096*
H4C0.18370.22680.55630.096*
C50.32848 (9)0.58058 (12)1.01105 (16)0.0363 (3)
C60.25807 (9)0.53975 (12)1.03697 (16)0.0360 (3)
C70.38261 (11)0.61688 (17)1.13467 (19)0.0564 (5)
H7A0.40710.67081.10260.085*
H7B0.41780.56871.16620.085*
H7C0.35770.63441.21460.085*
C80.24030 (12)0.52761 (18)1.18843 (19)0.0585 (6)
H8A0.19390.49681.18410.088*
H8B0.23820.58821.23370.088*
H8C0.27750.49011.24480.088*
C90.12641 (8)0.65727 (11)0.55863 (16)0.0336 (3)
C100.06787 (12)0.81258 (14)0.5282 (2)0.0518 (5)
H10A0.11300.84440.51640.062*
H10B0.05960.82080.62860.062*
C110.00570 (14)0.85451 (17)0.4263 (3)0.0682 (6)
H11A0.00350.92100.44380.102*
H11B0.03930.82570.44290.102*
H11C0.01300.84370.32700.102*
C120.41003 (9)0.61232 (12)0.69315 (17)0.0365 (3)
C130.49817 (12)0.64029 (17)0.5214 (2)0.0592 (5)
H13A0.47890.69800.47470.071*
H13B0.47830.58780.46120.071*
C140.58014 (14)0.64005 (19)0.5352 (3)0.0805 (8)
H14A0.59440.64310.43950.121*
H14B0.59900.58330.58310.121*
H14C0.59940.69350.59160.121*
Cl10.03036 (3)0.42615 (5)0.70489 (5)0.06167 (15)
Cl20.43204 (3)0.39179 (4)1.01970 (8)0.07468 (19)
H1N40.0469 (11)0.6925 (15)0.440 (2)0.043 (6)*
H1O20.1237 (14)0.4674 (16)0.869 (3)0.063 (7)*
H1N70.4416 (12)0.6072 (15)0.903 (2)0.050 (6)*
H1N30.0897 (12)0.5517 (14)0.456 (2)0.046 (6)*
H1O10.3480 (13)0.3666 (16)0.829 (3)0.055 (7)*
H1N80.5085 (13)0.6376 (15)0.742 (2)0.055 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02577 (10)0.03547 (11)0.02620 (9)0.00196 (8)0.00457 (6)0.00166 (7)
S10.0396 (2)0.0390 (2)0.0418 (2)0.00331 (17)0.01353 (16)0.00551 (16)
S20.0354 (2)0.0605 (3)0.03009 (18)0.00913 (19)0.00085 (14)0.00010 (17)
O10.0535 (8)0.0468 (8)0.0519 (7)0.0120 (6)0.0134 (6)0.0010 (6)
O20.0352 (7)0.0699 (9)0.0409 (6)0.0168 (6)0.0004 (5)0.0024 (6)
N10.0325 (7)0.0383 (7)0.0339 (6)0.0037 (5)0.0007 (5)0.0004 (5)
N20.0265 (6)0.0375 (7)0.0294 (5)0.0032 (5)0.0027 (4)0.0015 (5)
N30.0293 (7)0.0418 (8)0.0367 (7)0.0015 (6)0.0116 (5)0.0021 (5)
N40.0345 (8)0.0467 (8)0.0407 (7)0.0033 (6)0.0094 (6)0.0010 (6)
N50.0284 (6)0.0406 (7)0.0329 (6)0.0031 (5)0.0014 (5)0.0009 (5)
N60.0267 (6)0.0373 (7)0.0301 (6)0.0021 (5)0.0042 (4)0.0001 (5)
N70.0287 (7)0.0552 (9)0.0345 (6)0.0070 (6)0.0062 (5)0.0000 (6)
N80.0317 (8)0.0696 (11)0.0509 (9)0.0086 (7)0.0035 (6)0.0000 (8)
C10.0299 (8)0.0434 (9)0.0310 (7)0.0063 (6)0.0010 (5)0.0059 (6)
C20.0375 (8)0.0375 (8)0.0363 (7)0.0027 (7)0.0037 (6)0.0039 (6)
C30.0464 (10)0.0529 (11)0.0416 (8)0.0103 (8)0.0073 (7)0.0127 (8)
C40.0733 (15)0.0421 (11)0.0715 (14)0.0015 (10)0.0082 (11)0.0138 (10)
C50.0341 (8)0.0420 (9)0.0293 (6)0.0019 (7)0.0070 (6)0.0018 (6)
C60.0366 (8)0.0408 (8)0.0287 (6)0.0006 (7)0.0017 (6)0.0004 (6)
C70.0516 (11)0.0787 (14)0.0341 (8)0.0182 (10)0.0090 (7)0.0095 (9)
C80.0573 (12)0.0867 (16)0.0300 (8)0.0173 (11)0.0020 (7)0.0016 (9)
C90.0272 (7)0.0411 (8)0.0306 (6)0.0015 (6)0.0018 (5)0.0019 (6)
C100.0532 (11)0.0482 (11)0.0497 (10)0.0130 (9)0.0064 (8)0.0007 (8)
C110.0692 (15)0.0600 (13)0.0677 (13)0.0232 (11)0.0153 (11)0.0093 (11)
C120.0301 (8)0.0401 (8)0.0379 (7)0.0024 (6)0.0001 (6)0.0004 (6)
C130.0509 (12)0.0671 (13)0.0637 (12)0.0074 (10)0.0218 (10)0.0040 (10)
C140.0590 (15)0.0699 (16)0.122 (2)0.0031 (12)0.0435 (15)0.0051 (15)
Cl10.0405 (3)0.0975 (4)0.0438 (2)0.0219 (3)0.00425 (18)0.0083 (2)
Cl20.0534 (3)0.0625 (3)0.0937 (4)0.0016 (3)0.0363 (3)0.0016 (3)
Geometric parameters (Å, º) top
Ni1—N12.1247 (14)C1—C31.496 (2)
Ni1—N22.0120 (12)C2—C41.491 (3)
Ni1—N52.1258 (13)C3—H3A0.9600
Ni1—N62.0086 (12)C3—H3B0.9600
Ni1—S12.4089 (5)C3—H3C0.9600
Ni1—S22.4126 (5)C4—H4A0.9600
S1—C91.6927 (15)C4—H4B0.9600
S2—C121.6912 (16)C4—H4C0.9600
O1—N11.3769 (18)C5—C61.478 (2)
O1—H1O10.79 (2)C5—C71.495 (2)
O2—N51.3791 (18)C6—C81.495 (2)
O2—H1O20.83 (2)C7—H7A0.9600
N1—C21.290 (2)C7—H7B0.9600
N2—C11.290 (2)C7—H7C0.9600
N2—N31.3538 (19)C8—H8A0.9600
N3—C91.366 (2)C8—H8B0.9600
N3—H1N30.76 (2)C8—H8C0.9600
N4—C91.318 (2)C10—C111.497 (3)
N4—C101.450 (3)C10—H10A0.9700
N4—H1N40.73 (2)C10—H10B0.9700
N5—C61.2873 (19)C11—H11A0.9600
N6—C51.288 (2)C11—H11B0.9600
N6—N71.3656 (19)C11—H11C0.9600
N7—C121.362 (2)C13—C141.503 (3)
N7—H1N70.87 (2)C13—H13A0.9700
N8—C121.324 (2)C13—H13B0.9700
N8—C131.454 (3)C14—H14A0.9600
N8—H1N80.85 (2)C14—H14B0.9600
C1—C21.479 (2)C14—H14C0.9600
N6—Ni1—N2177.98 (5)C2—C4—H4A109.5
N6—Ni1—N1102.68 (5)C2—C4—H4B109.5
N2—Ni1—N175.81 (5)H4A—C4—H4B109.5
N6—Ni1—N576.02 (5)C2—C4—H4C109.5
N2—Ni1—N5105.19 (5)H4A—C4—H4C109.5
N1—Ni1—N588.68 (5)H4B—C4—H4C109.5
N6—Ni1—S198.49 (4)N6—C5—C6114.12 (13)
N2—Ni1—S183.14 (4)N6—C5—C7124.67 (16)
N1—Ni1—S1158.21 (4)C6—C5—C7121.21 (14)
N5—Ni1—S191.49 (4)N5—C6—C5114.95 (13)
N6—Ni1—S282.53 (4)N5—C6—C8123.77 (16)
N2—Ni1—S296.22 (4)C5—C6—C8121.26 (14)
N1—Ni1—S295.08 (4)C5—C7—H7A109.5
N5—Ni1—S2158.53 (4)C5—C7—H7B109.5
S1—Ni1—S292.701 (19)H7A—C7—H7B109.5
C9—S1—Ni195.24 (6)C5—C7—H7C109.5
C12—S2—Ni195.63 (6)H7A—C7—H7C109.5
N1—O1—H1O1107.0 (17)H7B—C7—H7C109.5
N5—O2—H1O2107.9 (17)C6—C8—H8A109.5
C2—N1—O1112.67 (14)C6—C8—H8B109.5
C2—N1—Ni1115.53 (11)H8A—C8—H8B109.5
O1—N1—Ni1131.80 (10)C6—C8—H8C109.5
C1—N2—N3120.53 (13)H8A—C8—H8C109.5
C1—N2—Ni1119.84 (11)H8B—C8—H8C109.5
N3—N2—Ni1119.56 (10)N4—C9—N3114.52 (14)
N2—N3—C9119.17 (12)N4—C9—S1122.91 (13)
N2—N3—H1N3118.9 (16)N3—C9—S1122.57 (12)
C9—N3—H1N3118.3 (16)N4—C10—C11109.65 (17)
C9—N4—C10125.00 (15)N4—C10—H10A109.7
C9—N4—H1N4116.9 (17)C11—C10—H10A109.7
C10—N4—H1N4118.1 (17)N4—C10—H10B109.7
C6—N5—O2113.58 (13)C11—C10—H10B109.7
C6—N5—Ni1114.95 (11)H10A—C10—H10B108.2
O2—N5—Ni1131.47 (10)C10—C11—H11A109.5
C5—N6—N7120.14 (13)C10—C11—H11B109.5
C5—N6—Ni1119.40 (11)H11A—C11—H11B109.5
N7—N6—Ni1120.38 (9)C10—C11—H11C109.5
C12—N7—N6118.52 (13)H11A—C11—H11C109.5
C12—N7—H1N7118.8 (14)H11B—C11—H11C109.5
N6—N7—H1N7118.0 (14)N8—C12—N7114.94 (15)
C12—N8—C13125.52 (17)N8—C12—S2122.81 (13)
C12—N8—H1N8114.4 (15)N7—C12—S2122.22 (12)
C13—N8—H1N8119.9 (15)N8—C13—C14109.5 (2)
N2—C1—C2114.04 (13)N8—C13—H13A109.8
N2—C1—C3124.57 (15)C14—C13—H13A109.8
C2—C1—C3121.38 (15)N8—C13—H13B109.8
N1—C2—C1114.65 (14)C14—C13—H13B109.8
N1—C2—C4123.84 (17)H13A—C13—H13B108.2
C1—C2—C4121.51 (15)C13—C14—H14A109.5
C1—C3—H3A109.5C13—C14—H14B109.5
C1—C3—H3B109.5H14A—C14—H14B109.5
H3A—C3—H3B109.5C13—C14—H14C109.5
C1—C3—H3C109.5H14A—C14—H14C109.5
H3A—C3—H3C109.5H14B—C14—H14C109.5
H3B—C3—H3C109.5
N6—Ni1—S1—C9176.16 (7)N1—Ni1—N6—N791.00 (12)
N2—Ni1—S1—C92.63 (6)N5—Ni1—N6—N7176.39 (13)
N1—Ni1—S1—C917.59 (12)S1—Ni1—N6—N794.19 (12)
N5—Ni1—S1—C9107.75 (6)S2—Ni1—N6—N72.56 (11)
S2—Ni1—S1—C993.31 (6)C5—N6—N7—C12179.00 (16)
N6—Ni1—S2—C125.33 (7)Ni1—N6—N7—C122.5 (2)
N2—Ni1—S2—C12173.07 (7)N3—N2—C1—C2179.18 (14)
N1—Ni1—S2—C1296.83 (7)Ni1—N2—C1—C24.00 (18)
N5—Ni1—S2—C122.54 (13)N3—N2—C1—C30.5 (2)
S1—Ni1—S2—C12103.55 (6)Ni1—N2—C1—C3177.35 (13)
N6—Ni1—N1—C2176.40 (12)O1—N1—C2—C1178.83 (13)
N2—Ni1—N1—C22.22 (11)Ni1—N1—C2—C10.92 (18)
N5—Ni1—N1—C2108.25 (12)O1—N1—C2—C40.7 (3)
S1—Ni1—N1—C217.54 (19)Ni1—N1—C2—C4179.55 (16)
S2—Ni1—N1—C292.93 (12)N2—C1—C2—N11.9 (2)
N6—Ni1—N1—O13.91 (15)C3—C1—C2—N1179.44 (15)
N2—Ni1—N1—O1177.48 (15)N2—C1—C2—C4177.68 (18)
N5—Ni1—N1—O171.44 (15)C3—C1—C2—C41.0 (3)
S1—Ni1—N1—O1162.15 (10)N7—N6—C5—C6175.83 (14)
S2—Ni1—N1—O187.38 (14)Ni1—N6—C5—C67.6 (2)
N1—Ni1—N2—C13.45 (12)N7—N6—C5—C73.9 (3)
N5—Ni1—N2—C188.10 (12)Ni1—N6—C5—C7172.64 (15)
S1—Ni1—N2—C1177.77 (12)O2—N5—C6—C5177.75 (14)
S2—Ni1—N2—C190.24 (12)Ni1—N5—C6—C53.03 (19)
N1—Ni1—N2—N3179.70 (12)O2—N5—C6—C80.7 (2)
N5—Ni1—N2—N395.05 (12)Ni1—N5—C6—C8178.50 (15)
S1—Ni1—N2—N35.37 (11)N6—C5—C6—N52.7 (2)
S2—Ni1—N2—N386.61 (11)C7—C5—C6—N5177.58 (17)
C1—N2—N3—C9176.31 (14)N6—C5—C6—C8175.84 (17)
Ni1—N2—N3—C96.9 (2)C7—C5—C6—C83.9 (3)
N6—Ni1—N5—C65.21 (12)C10—N4—C9—N3173.91 (17)
N2—Ni1—N5—C6176.46 (12)C10—N4—C9—S15.8 (3)
N1—Ni1—N5—C6108.63 (12)N2—N3—C9—N4176.40 (14)
S1—Ni1—N5—C693.17 (12)N2—N3—C9—S13.9 (2)
S2—Ni1—N5—C68.1 (2)Ni1—S1—C9—N4179.39 (14)
N6—Ni1—N5—O2175.74 (15)Ni1—S1—C9—N30.27 (14)
N2—Ni1—N5—O22.59 (15)C9—N4—C10—C11174.47 (19)
N1—Ni1—N5—O272.32 (14)C13—N8—C12—N7178.54 (19)
S1—Ni1—N5—O285.88 (14)C13—N8—C12—S20.6 (3)
S2—Ni1—N5—O2172.89 (10)N6—N7—C12—N8173.06 (16)
N1—Ni1—N6—C592.46 (13)N6—N7—C12—S28.9 (2)
N5—Ni1—N6—C57.07 (12)Ni1—S2—C12—N8173.07 (15)
S1—Ni1—N6—C582.35 (13)Ni1—S2—C12—N79.10 (15)
S2—Ni1—N6—C5173.99 (13)C12—N8—C13—C14165.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1N4···Cl1i0.730 (19)2.47 (2)3.1689 (17)161 (2)
O2—H1O2···Cl10.84 (3)2.20 (3)3.0062 (14)161 (2)
N7—H1N7···Cl2ii0.87 (2)2.34 (2)3.1488 (16)153.9 (17)
N3—H1N3···Cl1i0.76 (2)2.50 (2)3.2015 (16)154 (2)
O1—H1O1···Cl20.79 (3)2.20 (3)2.9396 (16)157 (2)
N8—H1N8···Cl2ii0.85 (2)2.349 (19)3.1567 (19)159 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Ni(C7H14N4OS)2]Cl2
Mr534.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)18.4990 (11), 14.2097 (9), 9.2422 (6)
β (°) 98.542 (1)
V3)2402.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.23
Crystal size (mm)0.42 × 0.20 × 0.12
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.625, 0.869
No. of measured, independent and
observed [I > 2σ(I)] reflections
30693, 8190, 6071
Rint0.030
(sin θ/λ)max1)0.742
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.089, 1.03
No. of reflections8190
No. of parameters292
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.66, 0.36

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Ni1—N12.1247 (14)Ni1—N62.0086 (12)
Ni1—N22.0120 (12)Ni1—S12.4089 (5)
Ni1—N52.1258 (13)Ni1—S22.4126 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1N4···Cl1i0.730 (19)2.47 (2)3.1689 (17)161 (2)
O2—H1O2···Cl10.84 (3)2.20 (3)3.0062 (14)161 (2)
N7—H1N7···Cl2ii0.87 (2)2.34 (2)3.1488 (16)153.9 (17)
N3—H1N3···Cl1i0.76 (2)2.50 (2)3.2015 (16)154 (2)
O1—H1O1···Cl20.79 (3)2.20 (3)2.9396 (16)157 (2)
N8—H1N8···Cl2ii0.85 (2)2.349 (19)3.1567 (19)159 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+2.
 

Footnotes

Thomson Reuters ResearcherID: E-9395-2011

§Thomson Reuters ResearcherID: A-3561-2009

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia for the RU research grant (1001/PKIMIA/815067). NEE thanks Universiti Sains Malaysia for a post-doctoral fellowship and the Inter­national University of Africa (Sudan) for providing research leave. HAF and AQA each thank the Ministry of Higher Education and the University of Sabha (Libya) for a scholarship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationChoi, K.-Y., Yang, S.-M., Lee, K.-C., Ryu, H., Lee, C. H., Seo, J. & Suh, M. (2008). Transition Met. Chem. 33, 99–105.  Web of Science CSD CrossRef CAS Google Scholar
First citationCowley, A. R., Dilworth, J. R., Donnelly, P. S., Labisbal, E. & Sousa, A. (2002). J. Am. Chem. Soc. 124, 5270–5271.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLobana, T. S., Rekha & Butcher, R. J. (2004). Transition Met. Chem. 29, 291–295.  Google Scholar
First citationLobana, T. S., Rekha, Pannu, A. P. S., Hundal, G., Butcher, R. J. & Castineiras, A. (2007). Polyhedron, 26, 2621–2628.  Web of Science CSD CrossRef CAS Google Scholar
First citationMing, L.-J. (2003). Med. Res. Rev. 23, 697–762.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m183-m184
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds