metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m108-m109

Bis{2-[3-(hy­dr­oxy­imino-κN)butan-2-yl­­idene]-N-methyl­hydrazinecarbo­thio­amide-κ2N2,S}nickel(II) dichloride

aSchool of Chemical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia, bFaculty of Science, Sabha University, Libya, cDepartment of Chemistry, International University of Africa, Sudan, and dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: sgteoh@usm.my

(Received 30 November 2011; accepted 23 December 2011; online 7 January 2012)

The asymmetric unit of the title compound, [Ni(C6H12N4OS)2]Cl2, contains two independent NiII complex cations and four chloride anions. Each NiII ion is six-coordinated in a distorted octa­hedral geometry by four N atoms from the two imine and two oxime groups and two S atoms from the thione group. In the crystal, the cations and anions are linked through N—H⋯Cl and O—H⋯Cl hydrogen bonds into infinite chains propagating along [10[\overline{1}]]. Weak inter­molecular C—H⋯O and C—H⋯Cl hydrogen bonds are also observed.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Abduelftah et al. (2012a[Abduelftah, H. S., Ali, A. Q., Eltayeb, N. E., Teoh, S. G. & Fun, H.-K. (2012a). Acta Cryst. E68, m183-m184.],b[Abduelftah, H. S., Ali, A. Q., Eltayeb, N. E., Teoh, S. G. & Fun, H.-K. (2012b). Acta Cryst. E68, o184.]); Choi et al. (2008[Choi, K.-Y., Yang, S.-M., Lee, K.-C., Ryu, H., Lee, C.-H., Seo, J. & Suh, M. (2008). Transition Met. Chem. 33, 99-105.]). For the biological activity, pharmacological properties and analytical applications of thio­semicarbazones and their metal complexes, see: Cowley et al. (2002[Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Labisbal, E. & Sousa, A. (2002). J. Am. Chem. Soc. 124, 5270-5271.]); Ming (2003[Ming, L.-J. (2003). Med. Res. Rev. 23, 697-762.]); Lobana et al. (2004[Lobana, T. S., Rekha & Butcher, R. J. (2004). Transition Met. Chem. 29, 291-295.], 2007[Lobana, T. S., Rekha, Pannu, A. P. S., Hundal, G., Butcher, R. J. & Castineiras, A. (2007). Polyhedron, 26, 2621-2628.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C6H12N4OS)2]Cl2

  • Mr = 506.12

  • Monoclinic, P 21 /c

  • a = 8.9484 (1) Å

  • b = 13.8043 (2) Å

  • c = 35.4643 (5) Å

  • β = 95.780 (1)°

  • V = 4358.5 (1) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.35 mm−1

  • T = 100 K

  • 0.43 × 0.16 × 0.06 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.595, Tmax = 0.925

  • 53587 measured reflections

  • 13546 independent reflections

  • 9309 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.093

  • S = 1.03

  • 13546 reflections

  • 547 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.77 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2B—H2OB⋯Cl4 0.80 (3) 2.21 (3) 2.9622 (18) 158 (3)
N8B—H8NB⋯Cl1i 0.84 (3) 2.44 (3) 3.215 (2) 153 (2)
N8A—H8NA⋯Cl2ii 0.81 (3) 2.37 (3) 3.132 (2) 158 (3)
N4B—H4NB⋯Cl4iii 0.84 (3) 2.39 (2) 3.169 (2) 155 (2)
N4A—H4NA⋯Cl3i 0.83 (3) 2.46 (3) 3.217 (2) 153 (2)
O1B—H1OB⋯Cl3 0.80 (3) 2.22 (3) 3.0018 (19) 164 (3)
O2A—H2OA⋯Cl1iv 0.82 (3) 2.22 (3) 3.0172 (18) 165 (3)
O1A—H1OA⋯Cl2iv 0.78 (3) 2.19 (3) 2.9435 (18) 163 (3)
N7A—H7NA⋯Cl2ii 0.87 (3) 2.35 (3) 3.153 (2) 155 (2)
N3B—H3NB⋯Cl4iii 0.88 (3) 2.33 (3) 3.150 (2) 154 (2)
N7B—H7NB⋯Cl1i 0.84 (3) 2.31 (2) 3.1023 (19) 160 (2)
N3A—H3NA⋯Cl3i 0.85 (3) 2.27 (2) 3.0774 (19) 160 (2)
C12A—H12B⋯O2Bv 0.98 2.43 3.328 (3) 153
C6B—H6BB⋯Cl2iii 0.98 2.70 3.598 (3) 153
C6B—H6BC⋯O1A 0.98 2.55 3.277 (3) 131
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z; (iii) -x+1, -y+1, -z; (iv) x, y-1, z; (v) x+1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Thiosemicarbazones and their metal complexes have attracted significant attention because of their wide-ranging biological and pharmacological properties, analytical applications, specific structures, and chemical properties (Cowley et al., 2002; Ming, 2003; Lobana et al., 2007; Lobana et al., 2004). Recently, we reported the crystal structure of bis{N-ethyl-2-[2-(hydroxyimino-κN)butan-2-ylidene] hydrazinecarbothioamide-κ2N2,S}nickel(II) dichloride (Abduelftah et al., 2012a). In this paper we report the crystal structure of bis{N-methyl-2-[2-(hydroxyimino-κN)butan-2-ylidene] hydrazinecarbothioamide-κ2N2,S}nickel(II) dichloride.

The asymmetric unit of the title compound (Fig. 1), [Ni(C6H12N4OS)2]Cl2, contains two Ni(II) complexes and four chloride anions. Each Ni(II) ion is six-coordinated in a distorted octahedral geometry by four N atoms from the two imine and two oxime groups and two S atoms from the thione group. The bond distances around Ni(II) ions in molecule A, B and the related Ni(II) complex (Abduelftah et al., 2012a) as follows: Ni1—N1 [2.1226 (17), 2.1062 (18), 2.1247 (14) Å], Ni1—N2 [2.0063 (18), 2.0167 (18), 2.0120 (12) Å], Ni1—N5 [2.1185 (19), 2.1242 (17), 2.1258 (13) Å], Ni1—N6 [2.0040 (18), 2.0101 (18), 2.0086 (12) Å], Ni1—S1 [2.4191 (6), 2.4279 (6), 2.4089 (5) Å] and Ni1—S2 [2.4140 (6), 2.4129 (6), 2.4126 (5) Å]. Bond lengths and angles observed in the structure are normal (Allen et al., 1987). In molecule A, the Ni(II) ion is a meeting-point of four five-membered rings, namely: A (Ni1A/S1A/N2A/N3A/C9A), B (Ni1A/S2A/N6A/N7A/C3A), C (Ni1A/N1A/N2A/C1A/C9A) and D (Ni1A/N5A/N6A/C7A/C8A). The dihedral angles between these four rings as follows: A/B = 84.64 (6)°, A/C = 6.16 (8)°, A/D = 88.00 (7)°, B/C = 89.47 (8)°, B/D = 3.48 (7)° and C/D = 86.08 (9)°. In molecule B, the Ni(II) ion is a meeting-point of four five-membered rings, namely: E (Ni1B/S1B/N6B/N7B/C9B), F (Ni1B/S2B/N2B/N3B/C3B), G (Ni1B/N1B/N2B/C1B/C2B) and H(Ni1B/N5B/N6B/C7B/C8B). The dihedral angles between these four rings as follows: E/F = 85.84 (6)°, E/G = 86.77 (7)°, E/H = 6.20 (8)°, F/G = 2.09 (7)°, F/H = 88.81 (8)° and G/H = 87.78 (9)°. In the crystal, molecules are linked through intermolecular N—H···Cl and O—H···Cl hydrogen bonds (Table 1) into infinite chains propagating in [101] (Fig. 2). C—H···O and C—H···Cl hydrogen bonds are also observed.

Related literature top

For bond-length data, see: Allen et al. (1987). For related structures, see: Abduelftah et al. (2012a,b); Choi et al. (2008). For the biological activity, pharmacological properties and analytical applications of thiosemicarbazones and their metal complexes, see: Cowley et al. (2002); Ming (2003); Lobana et al. (2004, 2007).

Experimental top

To a solution of the ligand (0.2021 g; Abduelftah et al., 2012b) in EtOH (20 ml) was added a solution of (NiCl2.6H2O) (0.2377 g) in EtOH (20 ml). The mixture was boiled under reflux for 2 h with stirring. The mixture was filtered and left to cool accompanied by slow evaporation of the solvent at room temperature. The brown crystals were grown in DMF–acetone (1:4) mixture by slow evaporation at room temperature for 2 weeks (yield 45%; m.p. 513.9 K).

Refinement top

N- and O-bound H atoms were located in a difference Fourier map and were refined freely. H atoms of the methyl groups were positioned geometrically (C—H = 0.98 Å) and refined using a riding model, with Uiso(H) = 1.5Ueq(C). The highest residual electron density peak is located 1.11 Å from Ni1A and the deepest hole is located 0.70 Å from Ni1B.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the a axis. Hydrogen bonds are shown as dashed lines.
Bis{2-[3-(hydroxyimino-κN)butan-2-ylidene]-N- methylhydrazinecarbothioamide-κ2N2,S}nickel(II) dichloride top
Crystal data top
[Ni(C6H12N4OS)2]Cl2F(000) = 2096
Mr = 506.12Dx = 1.543 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9957 reflections
a = 8.9484 (1) Åθ = 2.3–30.4°
b = 13.8043 (2) ŵ = 1.35 mm1
c = 35.4643 (5) ÅT = 100 K
β = 95.780 (1)°Plate, brown
V = 4358.5 (1) Å30.43 × 0.16 × 0.06 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
13546 independent reflections
Radiation source: fine-focus sealed tube9309 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ϕ and ω scansθmax = 30.9°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1212
Tmin = 0.595, Tmax = 0.925k = 1519
53587 measured reflectionsl = 3251
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.032P)2 + 1.9473P]
where P = (Fo2 + 2Fc2)/3
13546 reflections(Δ/σ)max = 0.001
547 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.77 e Å3
Crystal data top
[Ni(C6H12N4OS)2]Cl2V = 4358.5 (1) Å3
Mr = 506.12Z = 8
Monoclinic, P21/cMo Kα radiation
a = 8.9484 (1) ŵ = 1.35 mm1
b = 13.8043 (2) ÅT = 100 K
c = 35.4643 (5) Å0.43 × 0.16 × 0.06 mm
β = 95.780 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
13546 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
9309 reflections with I > 2σ(I)
Tmin = 0.595, Tmax = 0.925Rint = 0.055
53587 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.60 e Å3
13546 reflectionsΔρmin = 0.77 e Å3
547 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni1A0.93571 (3)0.02340 (2)0.135210 (8)0.01214 (7)
S1A1.14597 (6)0.06246 (4)0.180994 (16)0.01747 (12)
S2A0.92335 (6)0.18150 (4)0.105972 (16)0.01773 (12)
O1A0.65049 (18)0.06156 (12)0.08341 (5)0.0171 (3)
O2A0.94387 (19)0.19028 (12)0.16956 (5)0.0216 (4)
N1A0.71047 (19)0.01030 (13)0.11489 (5)0.0128 (4)
N2A0.81803 (19)0.05963 (13)0.17836 (5)0.0131 (4)
N3A0.8887 (2)0.09436 (13)0.21176 (5)0.0140 (4)
N4A1.1023 (2)0.11042 (15)0.25155 (6)0.0182 (4)
N5A0.97820 (19)0.12704 (13)0.14133 (5)0.0159 (4)
N6A1.05400 (19)0.00886 (13)0.09181 (5)0.0141 (4)
N7A1.0824 (2)0.06073 (14)0.06613 (6)0.0169 (4)
N8A1.0399 (2)0.20880 (15)0.04065 (6)0.0202 (4)
C1A0.6122 (2)0.01093 (16)0.13770 (6)0.0141 (4)
C2A0.6728 (2)0.05926 (15)0.17329 (6)0.0137 (4)
C3A1.0422 (2)0.08939 (15)0.21673 (6)0.0138 (4)
C4A0.4489 (2)0.01454 (19)0.13136 (7)0.0220 (5)
H4AA0.43490.06800.11320.033*
H4AB0.39170.04200.12130.033*
H4AC0.41310.03420.15540.033*
C5A0.5717 (2)0.09987 (17)0.20013 (6)0.0193 (5)
H5AA0.62430.15120.21530.029*
H5AB0.54250.04840.21700.029*
H5AC0.48170.12670.18580.029*
C6A1.2634 (2)0.11115 (18)0.26292 (7)0.0227 (5)
H6AA1.28170.13040.28960.034*
H6AB1.31240.15730.24710.034*
H6AC1.30440.04620.25970.034*
C7A1.0628 (2)0.16390 (17)0.11782 (6)0.0184 (5)
C8A1.1041 (2)0.09592 (17)0.08818 (6)0.0170 (5)
C9A1.0192 (2)0.14997 (16)0.06907 (6)0.0163 (5)
C10A1.1189 (3)0.26575 (19)0.11891 (8)0.0317 (6)
H10A1.07840.30060.13970.048*
H10B1.22890.26570.12290.048*
H10C1.08630.29780.09480.048*
C11A1.1935 (3)0.12730 (19)0.05683 (7)0.0255 (6)
H11A1.27510.08110.05450.038*
H11B1.12800.12960.03300.038*
H11C1.23570.19180.06250.038*
C12A0.9922 (3)0.30916 (18)0.03797 (7)0.0283 (6)
H12A0.97800.32860.01130.043*
H12B1.06900.35020.05160.043*
H12C0.89720.31650.04920.043*
Ni1B0.45084 (3)0.42366 (2)0.128901 (8)0.01295 (7)
S1B0.66334 (6)0.38150 (4)0.173946 (16)0.01794 (12)
S2B0.43668 (6)0.26579 (4)0.099552 (16)0.01829 (12)
O1B0.4669 (2)0.63521 (13)0.16411 (5)0.0226 (4)
O2B0.16117 (18)0.50443 (12)0.07736 (5)0.0206 (4)
N1B0.49734 (19)0.57262 (13)0.13547 (5)0.0159 (4)
N2B0.56170 (19)0.45676 (13)0.08383 (5)0.0139 (4)
N3B0.5824 (2)0.38836 (14)0.05714 (6)0.0173 (4)
N4B0.5596 (2)0.23501 (14)0.03515 (6)0.0191 (4)
N5B0.22468 (19)0.45904 (13)0.10994 (5)0.0150 (4)
N6B0.33650 (19)0.38842 (13)0.17291 (5)0.0131 (4)
N7B0.4084 (2)0.35576 (13)0.20647 (5)0.0142 (4)
N8B0.6243 (2)0.33922 (14)0.24541 (6)0.0179 (4)
C1B0.5796 (2)0.60989 (16)0.11130 (6)0.0170 (5)
C2B0.6153 (2)0.54335 (17)0.08077 (6)0.0175 (5)
C3B0.5300 (2)0.29632 (16)0.06207 (6)0.0160 (5)
C4B0.6354 (3)0.71179 (18)0.11254 (8)0.0295 (6)
H4BA0.60470.74410.13510.044*
H4BB0.59290.74630.08980.044*
H4BC0.74530.71190.11350.044*
C5B0.7050 (3)0.57521 (18)0.04949 (7)0.0238 (5)
H5BA0.64100.57460.02540.036*
H5BB0.78970.53090.04790.036*
H5BC0.74290.64100.05470.036*
C6B0.5288 (3)0.13162 (17)0.03615 (7)0.0250 (5)
H6BA0.58380.09840.01740.038*
H6BB0.42090.12050.03030.038*
H6BC0.56120.10630.06150.038*
C7B0.1283 (2)0.43598 (16)0.13289 (6)0.0155 (5)
C8B0.1917 (2)0.38909 (15)0.16863 (6)0.0141 (4)
C9B0.5619 (2)0.35872 (15)0.21064 (6)0.0138 (4)
C10B0.0360 (2)0.45858 (18)0.12681 (7)0.0217 (5)
H10D0.05450.50480.10590.033*
H10E0.06860.48690.15000.033*
H10F0.09240.39890.12060.033*
C11B0.0934 (2)0.35021 (17)0.19646 (7)0.0203 (5)
H11D0.13710.29040.20760.030*
H11E0.00650.33650.18360.030*
H11F0.08480.39810.21650.030*
C12B0.7865 (2)0.33501 (17)0.25571 (7)0.0208 (5)
H12D0.80670.31530.28230.031*
H12E0.83040.39900.25230.031*
H12F0.83120.28790.23950.031*
Cl10.67158 (6)0.85286 (4)0.210434 (16)0.02176 (13)
Cl20.82262 (7)0.92879 (6)0.017017 (17)0.03213 (16)
Cl30.19959 (7)0.59593 (4)0.206586 (16)0.02273 (13)
Cl40.33146 (6)0.62294 (5)0.026723 (16)0.02414 (13)
H2OB0.226 (3)0.527 (2)0.0662 (8)0.036 (9)*
H8NB0.567 (3)0.3322 (19)0.2626 (8)0.027 (8)*
H8NA1.085 (3)0.1876 (19)0.0239 (7)0.021 (8)*
H4NB0.602 (3)0.2559 (18)0.0166 (7)0.022 (7)*
H4NA1.045 (3)0.1157 (18)0.2683 (7)0.018 (7)*
H1OB0.399 (3)0.613 (2)0.1746 (9)0.044 (10)*
H2OA0.875 (3)0.168 (2)0.1805 (9)0.044 (10)*
H1OA0.711 (3)0.060 (2)0.0689 (9)0.043 (10)*
H7NA1.109 (3)0.0436 (19)0.0442 (8)0.028 (8)*
H3NB0.618 (3)0.4044 (19)0.0357 (8)0.029 (8)*
H7NB0.364 (3)0.3531 (17)0.2261 (7)0.015 (7)*
H3NA0.842 (3)0.0964 (17)0.2313 (7)0.015 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni1A0.01211 (12)0.01390 (15)0.01070 (14)0.00079 (11)0.00253 (10)0.00175 (11)
S1A0.0123 (2)0.0244 (3)0.0158 (3)0.0009 (2)0.0017 (2)0.0053 (2)
S2A0.0214 (3)0.0159 (3)0.0170 (3)0.0009 (2)0.0071 (2)0.0001 (2)
O1A0.0192 (8)0.0195 (9)0.0128 (8)0.0046 (7)0.0022 (7)0.0046 (7)
O2A0.0249 (9)0.0197 (9)0.0205 (9)0.0041 (7)0.0045 (8)0.0033 (7)
N1A0.0157 (8)0.0125 (9)0.0101 (9)0.0003 (7)0.0012 (7)0.0013 (7)
N2A0.0144 (8)0.0143 (9)0.0106 (9)0.0019 (7)0.0012 (7)0.0007 (7)
N3A0.0148 (8)0.0188 (10)0.0087 (9)0.0001 (7)0.0031 (7)0.0025 (8)
N4A0.0184 (9)0.0231 (11)0.0127 (10)0.0005 (8)0.0007 (8)0.0031 (8)
N5A0.0173 (8)0.0168 (10)0.0130 (9)0.0009 (7)0.0013 (7)0.0012 (8)
N6A0.0142 (8)0.0160 (10)0.0121 (9)0.0002 (7)0.0006 (7)0.0013 (8)
N7A0.0209 (9)0.0197 (11)0.0110 (9)0.0019 (8)0.0060 (8)0.0001 (8)
N8A0.0259 (10)0.0225 (11)0.0128 (10)0.0009 (9)0.0058 (9)0.0003 (9)
C1A0.0129 (9)0.0142 (11)0.0152 (11)0.0001 (8)0.0023 (8)0.0013 (9)
C2A0.0159 (9)0.0137 (11)0.0123 (10)0.0004 (8)0.0042 (8)0.0009 (9)
C3A0.0170 (10)0.0098 (10)0.0144 (11)0.0014 (8)0.0008 (8)0.0004 (9)
C4A0.0133 (10)0.0343 (15)0.0190 (12)0.0052 (10)0.0048 (9)0.0074 (11)
C5A0.0185 (10)0.0195 (12)0.0206 (12)0.0012 (9)0.0058 (9)0.0041 (10)
C6A0.0199 (11)0.0226 (13)0.0235 (13)0.0002 (10)0.0077 (10)0.0021 (10)
C7A0.0192 (10)0.0180 (12)0.0171 (11)0.0049 (9)0.0032 (9)0.0035 (9)
C8A0.0152 (10)0.0220 (12)0.0133 (11)0.0028 (9)0.0011 (8)0.0040 (9)
C9A0.0155 (10)0.0193 (12)0.0138 (11)0.0046 (9)0.0006 (9)0.0008 (9)
C10A0.0403 (15)0.0244 (14)0.0312 (15)0.0159 (12)0.0070 (12)0.0010 (12)
C11A0.0225 (11)0.0346 (15)0.0199 (13)0.0077 (11)0.0052 (10)0.0083 (11)
C12A0.0398 (14)0.0239 (14)0.0214 (13)0.0010 (11)0.0034 (12)0.0060 (11)
Ni1B0.01284 (12)0.01463 (15)0.01155 (14)0.00063 (11)0.00200 (10)0.00137 (11)
S1B0.0129 (2)0.0254 (3)0.0157 (3)0.0001 (2)0.0021 (2)0.0053 (2)
S2B0.0224 (3)0.0158 (3)0.0177 (3)0.0018 (2)0.0073 (2)0.0004 (2)
O1B0.0266 (9)0.0219 (10)0.0200 (9)0.0024 (7)0.0058 (8)0.0070 (7)
O2B0.0184 (8)0.0239 (9)0.0187 (9)0.0032 (7)0.0016 (7)0.0104 (7)
N1B0.0159 (8)0.0156 (10)0.0156 (9)0.0009 (7)0.0010 (7)0.0021 (8)
N2B0.0146 (8)0.0131 (9)0.0142 (9)0.0009 (7)0.0021 (7)0.0015 (7)
N3B0.0246 (10)0.0159 (10)0.0127 (10)0.0022 (8)0.0081 (8)0.0001 (8)
N4B0.0268 (10)0.0179 (11)0.0135 (10)0.0018 (8)0.0058 (9)0.0008 (8)
N5B0.0181 (9)0.0132 (9)0.0132 (9)0.0006 (7)0.0002 (7)0.0018 (8)
N6B0.0152 (8)0.0134 (9)0.0107 (9)0.0017 (7)0.0015 (7)0.0000 (7)
N7B0.0137 (8)0.0188 (10)0.0103 (9)0.0007 (7)0.0021 (7)0.0031 (8)
N8B0.0189 (9)0.0204 (11)0.0142 (10)0.0001 (8)0.0008 (8)0.0021 (8)
C1B0.0177 (10)0.0162 (12)0.0167 (11)0.0043 (9)0.0003 (9)0.0022 (9)
C2B0.0157 (10)0.0197 (12)0.0172 (11)0.0010 (9)0.0016 (9)0.0034 (9)
C3B0.0169 (10)0.0178 (12)0.0133 (11)0.0021 (9)0.0013 (9)0.0019 (9)
C4B0.0359 (14)0.0200 (13)0.0342 (15)0.0107 (11)0.0108 (12)0.0031 (12)
C5B0.0264 (12)0.0223 (13)0.0235 (13)0.0056 (10)0.0065 (10)0.0060 (11)
C6B0.0334 (13)0.0154 (12)0.0264 (14)0.0000 (10)0.0034 (11)0.0046 (10)
C7B0.0157 (10)0.0152 (11)0.0156 (11)0.0002 (8)0.0013 (9)0.0005 (9)
C8B0.0145 (9)0.0124 (11)0.0157 (11)0.0012 (8)0.0033 (8)0.0009 (9)
C9B0.0144 (9)0.0111 (11)0.0162 (11)0.0009 (8)0.0019 (8)0.0011 (9)
C10B0.0147 (10)0.0289 (14)0.0217 (12)0.0017 (9)0.0022 (9)0.0073 (11)
C11B0.0176 (10)0.0230 (13)0.0211 (12)0.0006 (9)0.0062 (9)0.0058 (10)
C12B0.0186 (10)0.0225 (13)0.0201 (12)0.0004 (9)0.0040 (9)0.0031 (10)
Cl10.0310 (3)0.0195 (3)0.0160 (3)0.0022 (2)0.0084 (2)0.0006 (2)
Cl20.0221 (3)0.0597 (5)0.0152 (3)0.0021 (3)0.0054 (2)0.0100 (3)
Cl30.0329 (3)0.0210 (3)0.0158 (3)0.0038 (2)0.0094 (2)0.0003 (2)
Cl40.0276 (3)0.0287 (3)0.0171 (3)0.0043 (2)0.0068 (2)0.0075 (2)
Geometric parameters (Å, º) top
Ni1A—N6A2.0040 (18)Ni1B—N6B2.0101 (18)
Ni1A—N2A2.0063 (18)Ni1B—N2B2.0167 (18)
Ni1A—N5A2.1185 (19)Ni1B—N1B2.1062 (18)
Ni1A—N1A2.1226 (17)Ni1B—N5B2.1242 (17)
Ni1A—S2A2.4140 (6)Ni1B—S2B2.4129 (6)
Ni1A—S1A2.4191 (6)Ni1B—S1B2.4279 (6)
S1A—C3A1.686 (2)S1B—C9B1.689 (2)
S2A—C9A1.692 (2)S2B—C3B1.693 (2)
O1A—N1A1.384 (2)O1B—N1B1.381 (2)
O1A—H1OA0.78 (3)O1B—H1OB0.80 (3)
O2A—N5A1.386 (2)O2B—N5B1.385 (2)
O2A—H2OA0.82 (3)O2B—H2OB0.80 (3)
N1A—C1A1.287 (3)N1B—C1B1.292 (3)
N2A—C2A1.294 (3)N2B—C2B1.296 (3)
N2A—N3A1.372 (2)N2B—N3B1.363 (3)
N3A—C3A1.368 (3)N3B—C3B1.372 (3)
N3A—H3NA0.85 (2)N3B—H3NB0.88 (3)
N4A—C3A1.329 (3)N4B—C3B1.322 (3)
N4A—C6A1.457 (3)N4B—C6B1.455 (3)
N4A—H4NA0.82 (2)N4B—H4NB0.84 (3)
N5A—C7A1.286 (3)N5B—C7B1.284 (3)
N6A—C8A1.293 (3)N6B—C8B1.290 (2)
N6A—N7A1.365 (3)N6B—N7B1.371 (2)
N7A—C9A1.364 (3)N7B—C9B1.367 (3)
N7A—H7NA0.87 (3)N7B—H7NB0.84 (2)
N8A—C9A1.322 (3)N8B—C9B1.329 (3)
N8A—C12A1.450 (3)N8B—C12B1.462 (3)
N8A—H8NA0.80 (3)N8B—H8NB0.84 (3)
C1A—C2A1.481 (3)C1B—C2B1.479 (3)
C1A—C4A1.498 (3)C1B—C4B1.492 (3)
C2A—C5A1.487 (3)C2B—C5B1.500 (3)
C4A—H4AA0.9800C4B—H4BA0.9800
C4A—H4AB0.9800C4B—H4BB0.9800
C4A—H4AC0.9800C4B—H4BC0.9800
C5A—H5AA0.9800C5B—H5BA0.9800
C5A—H5AB0.9800C5B—H5BB0.9800
C5A—H5AC0.9800C5B—H5BC0.9800
C6A—H6AA0.9800C6B—H6BA0.9800
C6A—H6AB0.9800C6B—H6BB0.9800
C6A—H6AC0.9800C6B—H6BC0.9800
C7A—C8A1.483 (3)C7B—C8B1.484 (3)
C7A—C10A1.492 (3)C7B—C10B1.497 (3)
C8A—C11A1.498 (3)C8B—C11B1.487 (3)
C10A—H10A0.9800C10B—H10D0.9800
C10A—H10B0.9800C10B—H10E0.9800
C10A—H10C0.9800C10B—H10F0.9800
C11A—H11A0.9800C11B—H11D0.9800
C11A—H11B0.9800C11B—H11E0.9800
C11A—H11C0.9800C11B—H11F0.9800
C12A—H12A0.9800C12B—H12D0.9800
C12A—H12B0.9800C12B—H12E0.9800
C12A—H12C0.9800C12B—H12F0.9800
N6A—Ni1A—N2A178.40 (7)N6B—Ni1B—N2B178.45 (7)
N6A—Ni1A—N5A75.97 (7)N6B—Ni1B—N1B105.11 (7)
N2A—Ni1A—N5A105.60 (7)N2B—Ni1B—N1B76.05 (7)
N6A—Ni1A—N1A104.33 (7)N6B—Ni1B—N5B76.01 (7)
N2A—Ni1A—N1A76.12 (7)N2B—Ni1B—N5B103.07 (7)
N5A—Ni1A—N1A88.53 (7)N1B—Ni1B—N5B88.96 (7)
N6A—Ni1A—S2A82.87 (5)N6B—Ni1B—S2B96.18 (5)
N2A—Ni1A—S2A95.59 (5)N2B—Ni1B—S2B82.61 (5)
N5A—Ni1A—S2A158.47 (5)N1B—Ni1B—S2B158.54 (6)
N1A—Ni1A—S2A92.95 (5)N5B—Ni1B—S2B93.68 (5)
N6A—Ni1A—S1A97.46 (5)N6B—Ni1B—S1B81.80 (5)
N2A—Ni1A—S1A82.24 (5)N2B—Ni1B—S1B99.24 (5)
N5A—Ni1A—S1A91.74 (5)N1B—Ni1B—S1B91.62 (5)
N1A—Ni1A—S1A157.59 (5)N5B—Ni1B—S1B157.14 (5)
S2A—Ni1A—S1A94.92 (2)S2B—Ni1B—S1B94.07 (2)
C3A—S1A—Ni1A95.94 (7)C9B—S1B—Ni1B96.06 (7)
C9A—S2A—Ni1A95.44 (8)C3B—S2B—Ni1B96.04 (8)
N1A—O1A—H1OA106 (2)N1B—O1B—H1OB109 (2)
N5A—O2A—H2OA110 (2)N5B—O2B—H2OB110 (2)
C1A—N1A—O1A112.92 (17)C1B—N1B—O1B113.99 (18)
C1A—N1A—Ni1A114.98 (13)C1B—N1B—Ni1B115.78 (15)
O1A—N1A—Ni1A131.60 (13)O1B—N1B—Ni1B129.84 (14)
C2A—N2A—N3A119.38 (18)C2B—N2B—N3B120.23 (19)
C2A—N2A—Ni1A119.35 (14)C2B—N2B—Ni1B119.39 (16)
N3A—N2A—Ni1A120.92 (13)N3B—N2B—Ni1B120.37 (14)
C3A—N3A—N2A117.59 (18)N2B—N3B—C3B118.77 (19)
C3A—N3A—H3NA117.9 (15)N2B—N3B—H3NB120.8 (17)
N2A—N3A—H3NA119.8 (16)C3B—N3B—H3NB120.0 (17)
C3A—N4A—C6A123.8 (2)C3B—N4B—C6B123.9 (2)
C3A—N4A—H4NA117.7 (17)C3B—N4B—H4NB118.9 (18)
C6A—N4A—H4NA118.0 (17)C6B—N4B—H4NB117.2 (18)
C7A—N5A—O2A114.01 (19)C7B—N5B—O2B113.29 (17)
C7A—N5A—Ni1A115.64 (16)C7B—N5B—Ni1B114.95 (14)
O2A—N5A—Ni1A129.86 (14)O2B—N5B—Ni1B131.75 (14)
C8A—N6A—N7A119.86 (19)C8B—N6B—N7B118.85 (19)
C8A—N6A—Ni1A119.86 (16)C8B—N6B—Ni1B119.42 (14)
N7A—N6A—Ni1A120.29 (14)N7B—N6B—Ni1B121.50 (13)
C9A—N7A—N6A118.54 (19)C9B—N7B—N6B117.55 (19)
C9A—N7A—H7NA117.8 (17)C9B—N7B—H7NB117.8 (16)
N6A—N7A—H7NA119.5 (17)N6B—N7B—H7NB121.2 (16)
C9A—N8A—C12A125.0 (2)C9B—N8B—C12B123.6 (2)
C9A—N8A—H8NA117.2 (19)C9B—N8B—H8NB117.8 (18)
C12A—N8A—H8NA117.7 (19)C12B—N8B—H8NB118.5 (18)
N1A—C1A—C2A115.04 (18)N1B—C1B—C2B114.7 (2)
N1A—C1A—C4A124.76 (19)N1B—C1B—C4B124.6 (2)
C2A—C1A—C4A120.10 (19)C2B—C1B—C4B120.7 (2)
N2A—C2A—C1A113.36 (19)N2B—C2B—C1B113.7 (2)
N2A—C2A—C5A125.23 (19)N2B—C2B—C5B124.2 (2)
C1A—C2A—C5A121.38 (18)C1B—C2B—C5B122.0 (2)
N4A—C3A—N3A114.6 (2)N4B—C3B—N3B113.9 (2)
N4A—C3A—S1A122.98 (17)N4B—C3B—S2B123.93 (18)
N3A—C3A—S1A122.39 (16)N3B—C3B—S2B122.19 (17)
C1A—C4A—H4AA109.5C1B—C4B—H4BA109.5
C1A—C4A—H4AB109.5C1B—C4B—H4BB109.5
H4AA—C4A—H4AB109.5H4BA—C4B—H4BB109.5
C1A—C4A—H4AC109.5C1B—C4B—H4BC109.5
H4AA—C4A—H4AC109.5H4BA—C4B—H4BC109.5
H4AB—C4A—H4AC109.5H4BB—C4B—H4BC109.5
C2A—C5A—H5AA109.5C2B—C5B—H5BA109.5
C2A—C5A—H5AB109.5C2B—C5B—H5BB109.5
H5AA—C5A—H5AB109.5H5BA—C5B—H5BB109.5
C2A—C5A—H5AC109.5C2B—C5B—H5BC109.5
H5AA—C5A—H5AC109.5H5BA—C5B—H5BC109.5
H5AB—C5A—H5AC109.5H5BB—C5B—H5BC109.5
N4A—C6A—H6AA109.5N4B—C6B—H6BA109.5
N4A—C6A—H6AB109.5N4B—C6B—H6BB109.5
H6AA—C6A—H6AB109.5H6BA—C6B—H6BB109.5
N4A—C6A—H6AC109.5N4B—C6B—H6BC109.5
H6AA—C6A—H6AC109.5H6BA—C6B—H6BC109.5
H6AB—C6A—H6AC109.5H6BB—C6B—H6BC109.5
N5A—C7A—C8A114.4 (2)N5B—C7B—C8B115.20 (18)
N5A—C7A—C10A125.1 (2)N5B—C7B—C10B124.72 (19)
C8A—C7A—C10A120.5 (2)C8B—C7B—C10B120.0 (2)
N6A—C8A—C7A113.8 (2)N6B—C8B—C7B113.37 (19)
N6A—C8A—C11A124.0 (2)N6B—C8B—C11B125.03 (19)
C7A—C8A—C11A122.2 (2)C7B—C8B—C11B121.58 (18)
N8A—C9A—N7A113.9 (2)N8B—C9B—N7B114.7 (2)
N8A—C9A—S2A123.54 (19)N8B—C9B—S1B122.99 (17)
N7A—C9A—S2A122.55 (17)N7B—C9B—S1B122.28 (16)
C7A—C10A—H10A109.5C7B—C10B—H10D109.5
C7A—C10A—H10B109.5C7B—C10B—H10E109.5
H10A—C10A—H10B109.5H10D—C10B—H10E109.5
C7A—C10A—H10C109.5C7B—C10B—H10F109.5
H10A—C10A—H10C109.5H10D—C10B—H10F109.5
H10B—C10A—H10C109.5H10E—C10B—H10F109.5
C8A—C11A—H11A109.5C8B—C11B—H11D109.5
C8A—C11A—H11B109.5C8B—C11B—H11E109.5
H11A—C11A—H11B109.5H11D—C11B—H11E109.5
C8A—C11A—H11C109.5C8B—C11B—H11F109.5
H11A—C11A—H11C109.5H11D—C11B—H11F109.5
H11B—C11A—H11C109.5H11E—C11B—H11F109.5
N8A—C12A—H12A109.5N8B—C12B—H12D109.5
N8A—C12A—H12B109.5N8B—C12B—H12E109.5
H12A—C12A—H12B109.5H12D—C12B—H12E109.5
N8A—C12A—H12C109.5N8B—C12B—H12F109.5
H12A—C12A—H12C109.5H12D—C12B—H12F109.5
H12B—C12A—H12C109.5H12E—C12B—H12F109.5
N6A—Ni1A—S1A—C3A179.79 (9)N6B—Ni1B—S1B—C9B2.90 (9)
N2A—Ni1A—S1A—C3A1.37 (9)N2B—Ni1B—S1B—C9B178.27 (9)
N5A—Ni1A—S1A—C3A104.13 (9)N1B—Ni1B—S1B—C9B102.14 (9)
N1A—Ni1A—S1A—C3A13.77 (16)N5B—Ni1B—S1B—C9B10.96 (16)
S2A—Ni1A—S1A—C3A96.36 (8)S2B—Ni1B—S1B—C9B98.57 (8)
N6A—Ni1A—S2A—C9A1.65 (8)N6B—Ni1B—S2B—C3B178.92 (8)
N2A—Ni1A—S2A—C9A178.76 (8)N2B—Ni1B—S2B—C3B0.10 (8)
N5A—Ni1A—S2A—C9A8.95 (15)N1B—Ni1B—S2B—C3B6.08 (15)
N1A—Ni1A—S2A—C9A102.43 (8)N5B—Ni1B—S2B—C3B102.62 (9)
S1A—Ni1A—S2A—C9A98.57 (7)S1B—Ni1B—S2B—C3B98.90 (7)
N6A—Ni1A—N1A—C1A175.78 (15)N6B—Ni1B—N1B—C1B175.68 (15)
N2A—Ni1A—N1A—C1A2.64 (15)N2B—Ni1B—N1B—C1B5.38 (15)
N5A—Ni1A—N1A—C1A109.10 (16)N5B—Ni1B—N1B—C1B109.12 (15)
S2A—Ni1A—N1A—C1A92.39 (15)S2B—Ni1B—N1B—C1B11.7 (2)
S1A—Ni1A—N1A—C1A18.1 (2)S1B—Ni1B—N1B—C1B93.74 (15)
N6A—Ni1A—N1A—O1A13.10 (19)N6B—Ni1B—N1B—O1B3.42 (17)
N2A—Ni1A—N1A—O1A168.48 (19)N2B—Ni1B—N1B—O1B177.64 (17)
N5A—Ni1A—N1A—O1A62.02 (18)N5B—Ni1B—N1B—O1B78.62 (16)
S2A—Ni1A—N1A—O1A96.49 (17)S2B—Ni1B—N1B—O1B176.05 (10)
S1A—Ni1A—N1A—O1A153.03 (12)S1B—Ni1B—N1B—O1B78.52 (16)
N5A—Ni1A—N2A—C2A93.13 (17)N1B—Ni1B—N2B—C2B4.35 (15)
N1A—Ni1A—N2A—C2A8.66 (16)N5B—Ni1B—N2B—C2B89.95 (16)
S2A—Ni1A—N2A—C2A83.00 (17)S2B—Ni1B—N2B—C2B177.97 (16)
S1A—Ni1A—N2A—C2A177.22 (17)S1B—Ni1B—N2B—C2B85.03 (15)
N5A—Ni1A—N2A—N3A93.72 (16)N1B—Ni1B—N2B—N3B176.73 (16)
N1A—Ni1A—N2A—N3A178.19 (17)N5B—Ni1B—N2B—N3B91.13 (15)
S2A—Ni1A—N2A—N3A90.14 (15)S2B—Ni1B—N2B—N3B0.95 (14)
S1A—Ni1A—N2A—N3A4.08 (14)S1B—Ni1B—N2B—N3B93.89 (14)
C2A—N2A—N3A—C3A177.05 (19)C2B—N2B—N3B—C3B177.19 (19)
Ni1A—N2A—N3A—C3A9.8 (3)Ni1B—N2B—N3B—C3B1.7 (2)
N6A—Ni1A—N5A—C7A4.63 (15)N6B—Ni1B—N5B—C7B4.63 (16)
N2A—Ni1A—N5A—C7A175.05 (14)N2B—Ni1B—N5B—C7B174.09 (16)
N1A—Ni1A—N5A—C7A109.80 (15)N1B—Ni1B—N5B—C7B110.49 (16)
S2A—Ni1A—N5A—C7A15.5 (2)S2B—Ni1B—N5B—C7B90.83 (16)
S1A—Ni1A—N5A—C7A92.62 (15)S1B—Ni1B—N5B—C7B18.8 (3)
N6A—Ni1A—N5A—O2A175.98 (17)N6B—Ni1B—N5B—O2B174.03 (19)
N2A—Ni1A—N5A—O2A3.70 (17)N2B—Ni1B—N5B—O2B7.25 (19)
N1A—Ni1A—N5A—O2A78.85 (16)N1B—Ni1B—N5B—O2B68.17 (18)
S2A—Ni1A—N5A—O2A173.18 (10)S2B—Ni1B—N5B—O2B90.51 (17)
S1A—Ni1A—N5A—O2A78.73 (16)S1B—Ni1B—N5B—O2B159.88 (12)
N5A—Ni1A—N6A—C8A2.90 (15)N1B—Ni1B—N6B—C8B94.30 (17)
N1A—Ni1A—N6A—C8A87.68 (16)N5B—Ni1B—N6B—C8B9.27 (16)
S2A—Ni1A—N6A—C8A178.91 (15)S2B—Ni1B—N6B—C8B82.99 (17)
S1A—Ni1A—N6A—C8A87.03 (15)S1B—Ni1B—N6B—C8B176.23 (17)
N5A—Ni1A—N6A—N7A177.33 (15)N1B—Ni1B—N6B—N7B91.29 (16)
N1A—Ni1A—N6A—N7A92.56 (15)N5B—Ni1B—N6B—N7B176.32 (17)
S2A—Ni1A—N6A—N7A1.32 (13)S2B—Ni1B—N6B—N7B91.42 (15)
S1A—Ni1A—N6A—N7A92.73 (14)S1B—Ni1B—N6B—N7B1.82 (15)
C8A—N6A—N7A—C9A175.32 (18)C8B—N6B—N7B—C9B178.0 (2)
Ni1A—N6A—N7A—C9A4.9 (2)Ni1B—N6B—N7B—C9B7.5 (3)
O1A—N1A—C1A—C2A175.53 (17)O1B—N1B—C1B—C2B179.08 (16)
Ni1A—N1A—C1A—C2A2.7 (2)Ni1B—N1B—C1B—C2B5.6 (2)
O1A—N1A—C1A—C4A1.0 (3)O1B—N1B—C1B—C4B1.7 (3)
Ni1A—N1A—C1A—C4A173.82 (18)Ni1B—N1B—C1B—C4B175.19 (18)
N3A—N2A—C2A—C1A174.24 (18)N3B—N2B—C2B—C1B178.26 (17)
Ni1A—N2A—C2A—C1A12.5 (3)Ni1B—N2B—C2B—C1B2.8 (2)
N3A—N2A—C2A—C5A4.2 (3)N3B—N2B—C2B—C5B1.6 (3)
Ni1A—N2A—C2A—C5A169.09 (17)Ni1B—N2B—C2B—C5B177.35 (16)
N1A—C1A—C2A—N2A9.7 (3)N1B—C1B—C2B—N2B2.0 (3)
C4A—C1A—C2A—N2A167.0 (2)C4B—C1B—C2B—N2B178.7 (2)
N1A—C1A—C2A—C5A171.9 (2)N1B—C1B—C2B—C5B177.83 (19)
C4A—C1A—C2A—C5A11.4 (3)C4B—C1B—C2B—C5B1.4 (3)
C6A—N4A—C3A—N3A179.0 (2)C6B—N4B—C3B—N3B173.59 (19)
C6A—N4A—C3A—S1A1.0 (3)C6B—N4B—C3B—S2B6.2 (3)
N2A—N3A—C3A—N4A170.38 (18)N2B—N3B—C3B—N4B178.15 (17)
N2A—N3A—C3A—S1A11.6 (3)N2B—N3B—C3B—S2B1.6 (3)
Ni1A—S1A—C3A—N4A175.01 (18)Ni1B—S2B—C3B—N4B179.02 (17)
Ni1A—S1A—C3A—N3A7.16 (19)Ni1B—S2B—C3B—N3B0.75 (18)
O2A—N5A—C7A—C8A178.21 (16)O2B—N5B—C7B—C8B178.69 (17)
Ni1A—N5A—C7A—C8A5.5 (2)Ni1B—N5B—C7B—C8B0.2 (2)
O2A—N5A—C7A—C10A1.5 (3)O2B—N5B—C7B—C10B2.6 (3)
Ni1A—N5A—C7A—C10A174.28 (18)Ni1B—N5B—C7B—C10B176.34 (18)
N7A—N6A—C8A—C7A179.23 (17)N7B—N6B—C8B—C7B173.64 (18)
Ni1A—N6A—C8A—C7A1.0 (2)Ni1B—N6B—C8B—C7B11.8 (3)
N7A—N6A—C8A—C11A0.2 (3)N7B—N6B—C8B—C11B4.7 (3)
Ni1A—N6A—C8A—C11A179.97 (16)Ni1B—N6B—C8B—C11B169.89 (17)
N5A—C7A—C8A—N6A3.1 (3)N5B—C7B—C8B—N6B7.2 (3)
C10A—C7A—C8A—N6A176.7 (2)C10B—C7B—C8B—N6B169.1 (2)
N5A—C7A—C8A—C11A175.93 (19)N5B—C7B—C8B—C11B174.4 (2)
C10A—C7A—C8A—C11A4.3 (3)C10B—C7B—C8B—C11B9.3 (3)
C12A—N8A—C9A—N7A176.1 (2)C12B—N8B—C9B—N7B177.7 (2)
C12A—N8A—C9A—S2A3.8 (3)C12B—N8B—C9B—S1B0.2 (3)
N6A—N7A—C9A—N8A173.05 (17)N6B—N7B—C9B—N8B170.95 (18)
N6A—N7A—C9A—S2A7.0 (3)N6B—N7B—C9B—S1B11.1 (3)
Ni1A—S2A—C9A—N8A175.09 (17)Ni1B—S1B—C9B—N8B174.03 (18)
Ni1A—S2A—C9A—N7A4.99 (18)Ni1B—S1B—C9B—N7B8.21 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2B—H2OB···Cl40.80 (3)2.21 (3)2.9622 (18)158 (3)
N8B—H8NB···Cl1i0.84 (3)2.44 (3)3.215 (2)153 (2)
N8A—H8NA···Cl2ii0.81 (3)2.37 (3)3.132 (2)158 (3)
N4B—H4NB···Cl4iii0.84 (3)2.39 (2)3.169 (2)155 (2)
N4A—H4NA···Cl3i0.83 (3)2.46 (3)3.217 (2)153 (2)
O1B—H1OB···Cl30.80 (3)2.22 (3)3.0018 (19)164 (3)
O2A—H2OA···Cl1iv0.82 (3)2.22 (3)3.0172 (18)165 (3)
O1A—H1OA···Cl2iv0.78 (3)2.19 (3)2.9435 (18)163 (3)
N7A—H7NA···Cl2ii0.87 (3)2.35 (3)3.153 (2)155 (2)
N3B—H3NB···Cl4iii0.88 (3)2.33 (3)3.150 (2)154 (2)
N7B—H7NB···Cl1i0.84 (3)2.31 (2)3.1023 (19)160 (2)
N3A—H3NA···Cl3i0.85 (3)2.27 (2)3.0774 (19)160 (2)
C12A—H12B···O2Bv0.982.433.328 (3)153
C6B—H6BB···Cl2iii0.982.703.598 (3)153
C6B—H6BC···O1A0.982.553.277 (3)131
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+2, y+1, z; (iii) x+1, y+1, z; (iv) x, y1, z; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ni(C6H12N4OS)2]Cl2
Mr506.12
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.9484 (1), 13.8043 (2), 35.4643 (5)
β (°) 95.780 (1)
V3)4358.5 (1)
Z8
Radiation typeMo Kα
µ (mm1)1.35
Crystal size (mm)0.43 × 0.16 × 0.06
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.595, 0.925
No. of measured, independent and
observed [I > 2σ(I)] reflections
53587, 13546, 9309
Rint0.055
(sin θ/λ)max1)0.723
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.093, 1.03
No. of reflections13546
No. of parameters547
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.60, 0.77

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2B—H2OB···Cl40.80 (3)2.21 (3)2.9622 (18)158 (3)
N8B—H8NB···Cl1i0.84 (3)2.44 (3)3.215 (2)153 (2)
N8A—H8NA···Cl2ii0.81 (3)2.37 (3)3.132 (2)158 (3)
N4B—H4NB···Cl4iii0.84 (3)2.39 (2)3.169 (2)155 (2)
N4A—H4NA···Cl3i0.83 (3)2.46 (3)3.217 (2)153 (2)
O1B—H1OB···Cl30.80 (3)2.22 (3)3.0018 (19)164 (3)
O2A—H2OA···Cl1iv0.82 (3)2.22 (3)3.0172 (18)165 (3)
O1A—H1OA···Cl2iv0.78 (3)2.19 (3)2.9435 (18)163 (3)
N7A—H7NA···Cl2ii0.87 (3)2.35 (3)3.153 (2)155 (2)
N3B—H3NB···Cl4iii0.88 (3)2.33 (3)3.150 (2)154 (2)
N7B—H7NB···Cl1i0.84 (3)2.31 (2)3.1023 (19)160 (2)
N3A—H3NA···Cl3i0.85 (3)2.27 (2)3.0774 (19)160 (2)
C12A—H12B···O2Bv0.982.433.328 (3)153
C6B—H6BB···Cl2iii0.982.703.598 (3)153
C6B—H6BC···O1A0.982.553.277 (3)131
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+2, y+1, z; (iii) x+1, y+1, z; (iv) x, y1, z; (v) x+1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: E-9395-2011.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia for the RU research grant (1001/PKIMIA/815067). NEE thanks Universiti Sains Malaysia for a post-doctoral fellowship and the Inter­national University of Africa (Sudan) for providing research leave. HAF and AQA each thank the Ministry of Higher Education and the University of Sabha (Libya) for a scholarship.

References

First citationAbduelftah, H. S., Ali, A. Q., Eltayeb, N. E., Teoh, S. G. & Fun, H.-K. (2012a). Acta Cryst. E68, m183–m184.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAbduelftah, H. S., Ali, A. Q., Eltayeb, N. E., Teoh, S. G. & Fun, H.-K. (2012b). Acta Cryst. E68, o184.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, K.-Y., Yang, S.-M., Lee, K.-C., Ryu, H., Lee, C.-H., Seo, J. & Suh, M. (2008). Transition Met. Chem. 33, 99–105.  Web of Science CSD CrossRef CAS Google Scholar
First citationCowley, A. R., Dilworth, J. R., Donnelly, P. S., Labisbal, E. & Sousa, A. (2002). J. Am. Chem. Soc. 124, 5270–5271.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLobana, T. S., Rekha & Butcher, R. J. (2004). Transition Met. Chem. 29, 291–295.  Google Scholar
First citationLobana, T. S., Rekha, Pannu, A. P. S., Hundal, G., Butcher, R. J. & Castineiras, A. (2007). Polyhedron, 26, 2621–2628.  Web of Science CSD CrossRef CAS Google Scholar
First citationMing, L.-J. (2003). Med. Res. Rev. 23, 697–762.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m108-m109
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds