organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o259-o260

3-(4-Chloro­phen­yl)-5-(thio­phen-2-yl)-4,5-di­hydro-1H-pyrazole-1-carbo­thio­amide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 3 December 2011; accepted 20 December 2011; online 7 January 2012)

In the title pyrazoline derivative, C14H12ClN3S2, the thiophene ring is disordered over two orientations with a refined site-occupancy ratio of 0.832 (4):0.168 (4). The pyrazoline ring adopts an envelope conformation with the C atom linking the thiophene ring at the flap. The dihedral angles between the benzene ring and the major and minor components of the thiophene ring are 88.6 (3) and 85.6 (15)°, respectively while the dihedral angle between the disorder components of the ring is 3.1 (16)°. The mean plane of the pyrazoline ring makes dihedral angles of 11.86 (13), 80.1 (3) and 83.0 (15)°, respectively, with the benzene ring, and the major and minor components of the thiophene ring. An intra­molecular N(amide)—H⋯N(pyrazoline) hydrogen bond generates an S(5) ring motif. In the crystal, mol­ecules are linked by weak C—H⋯S and N(amide)—H⋯S inter­actions into a tape along [10[\overline{1}]]. C—H⋯π inter­actions are also observed.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For related structures, see: Fun et al. (2011[Fun, H.-K., Suwunwong, T. & Chantrapromma, S. (2011). Acta Cryst. E67, o701-o702.]); Nonthason et al. (2011[Nonthason, P., Suwunwong, T., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o3501-o3502.]). For background to and applications of pyrazoline derivatives, see: Bai et al. (2007[Bai, G., Li, J., Li, D., Dong, C., Han, X. & Lin, P. (2007). Dyes Pigm. 75, 93-98.]); Gong et al. (2011[Gong, Z.-L., Xie, Y.-S., Zhao, B.-X., Lv, H.-S. & Liu, W.-Y. (2011). J. Fluoresc. 21, 355-364.]); Husain et al. (2008[Husain, K., Abid, M. & Azam, A. (2008). Eur. J. Med. Chem. 43, 393-403.]); Khode et al. (2009[Khode, S., Maddi, V., Aragade, P., Palkar, M., Ronad, P. K., Mamledesai, S., Thippeswamy, A. H. M. & Satyanarayana, D. (2009). Eur. J. Med. Chem. 44, 1682-1688.]); Shoman et al. (2009[Shoman, M. E., Abdel-Aziz, M., Aly, O. M., Farag, H. H. & Morsy, M. A. (2009). Eur. J. Med. Chem. 44, 3068-3076.]); Taj et al. (2011[Taj, T., Kamble, R. R., Gireesh, T. M., Hunnur, R. K. & Margankop, S. B. (2011). Eur. J. Med. Chem. 46, 4366-4373.]). For the stability of the temperature controller, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12ClN3S2

  • Mr = 321.86

  • Monoclinic, P 21 /n

  • a = 6.7784 (3) Å

  • b = 25.2104 (11) Å

  • c = 8.4628 (4) Å

  • β = 90.339 (2)°

  • V = 1446.15 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.55 mm−1

  • T = 100 K

  • 0.56 × 0.09 × 0.08 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.749, Tmax = 0.958

  • 32828 measured reflections

  • 4206 independent reflections

  • 3801 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.138

  • S = 1.10

  • 4206 reflections

  • 211 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the S1A/C1A–C3A/C4 and S1B/C1B–C3B/C4 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯N2 0.90 (4) 2.28 (4) 2.656 (3) 105 (3)
N3—H2N3⋯S2i 0.89 (4) 2.52 (4) 3.400 (3) 170 (3)
C5—H5A⋯S1Aii 1.00 2.86 3.664 (3) 138
C9—H9ACg1iii 0.95 2.79 3.628 (4) 148
C9—H9ACg2iii 0.95 2.77 3.595 (18) 145
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x+1, -y+2, -z+2; (iii) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The synthesis of pyrazoline derivatives which contain 5-membered heterocyclic structure have attracted a lot of interests in many fields, for example as in medicinal chemistry owing to their biological properties such as antiamoebic (Husain et al., 2008), anti-inflammatory (Shoman et al., 2009), analgesic (Khode et al., 2009) and antioxidant (Taj et al., 2011) activities, as well as in fluorescence (Bai et al., 2007; Gong et al., 2011) studies. Our on-going research on biological activities and fluorescent property of pyrazoline derivatives has led us to synthesize the title compound (I) in order to compare its biological activity with the related compounds (Fun et al., 2011; Nonthason et al., 2011).

In the molecule of (I), C14H12ClN3S2, the thiophene ring is disordered over two positions with the refined site-occupancy ratio of 0.832 (4):0.168 (4). The dihedral angles between the benzene and the major and minor components of the thiophene rings are 88.6 (3) and 85.6 (15)° respectively. The pyrazoline ring is in an envelope conformation [pucker atom at C5 with deviation of -0.125 (3) Å] with puckering parameter Q = 0.206 (3) Å and ϕ = 137.6 (7)° (Cremer & Pople, 1975). The dihedral angle between the mean plane through pyrazoline ring and the benzene ring is 11.86 (13)°, whereas these values are 80.1 (3) and 83.0 (15)° between the pyrazoline and the major and minor components of the thiophene ring. The carbothioamide unit lies almost on the same plane with pyrazoline ring as can be indicated by the torsion angles N2–N1–C14–N3 = -3.3 (4)° and C5–N1–C14–S2 = 0.4 (3)°. Intramolecular N3—H1N3···N2 hydrogen bond generate an S(5) ring motif (Bernstein et al., 1995). Bond distances of (I) are in normal range (Allen et al., 1987)

In the crystal packing, (Fig. 2), the molecules are linked by weak C5—H5A···S1A intermolecular interactions (Table 1) into cyclic centrosymmetric R22(8) dimers (Bernstein et al., 1995). These dimers are further linked by N3—H2N3···S2 hydrogen bonds (Table 1) into a tape along the [101] direction (Fig. 2). The crystal is stabilized by N—H···S hydrogen bonds together with weak C—H···S and C—H···π interactions (Table 1).

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformations, see: Cremer & Pople (1975). For related structures, see: Fun et al. (2011); Nonthason et al. (2011). For background to and applications of pyrazoline derivatives, see: Bai et al. (2007); Gong et al. (2011); Husain et al. (2008); Khode et al. (2009); Shoman et al. (2009); Taj et al. (2011). For the stability of the temperature controller, see: Cosier & Glazer (1986).

Experimental top

The title compound was synthesized by dissolving (E)-1-(4-chlorophenyl)-3-(2-thienyl)prop-2-en-1-one (0.25 g, 1.0 mmol) in a solution of KOH (0.06 g, 1.0 mmol) in ethanol (20 ml). An excess thiosemicarbazide (0.14 g, 1.5 mmol) in ethanol (20 ml) was then added, and the reaction mixture was vigorously stirred and refluxed for 4 h. The pale-yellow solid of the title compound obtained after cooling of the reaction was filtered off under vacuum. Pale yellow needle-shaped single crystals of the title compound suitable for X-ray structure determination were recrystalized from CH3OH/CH2Cl2 (1:1 v/v) by slow evaporation of the solvent at room temperature after several days.

Refinement top

Amide H atoms were located in a difference map and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.95 Å for aromatic and 0.99 Å for CH2 atoms. The Uiso values were constrained to be 1.2Ueq of the carrier atoms. The thiophene ring is disordered over two positions with the refined site-occupancy ratio of 0.832 (4):0.168 (4). In the final refinement, distances restraint was used. The highest residual electron density peak is located at 1.35 Å from Cl1 and the deepest hole is located at 0.52 Å from Cl1. The crystal was a pseudo-merohedral twin and the structure was refined with the twin law (-1 0 0 0 -1 0 0 0 1). The BASF was refined to 0.138 (1).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 45% probability displacement ellipsoids and the atom-numbering scheme. Open bond show the minor B component. Intramolecular N—H···N hydrogen bond was shown as dash line.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis. Only the major component was shown. For clarify, only H atoms involved in hydrogen bonds were shown. Hydrogen bonds were shown as dashed lines.
3-(4-Chlorophenyl)-5-(thiophen-2-yl)-4,5-dihydro-1H- pyrazole-1-carbothioamide top
Crystal data top
C14H12ClN3S2F(000) = 664
Mr = 321.86Dx = 1.478 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4206 reflections
a = 6.7784 (3) Åθ = 0.8–30.0°
b = 25.2104 (11) ŵ = 0.55 mm1
c = 8.4628 (4) ÅT = 100 K
β = 90.339 (2)°Needle, pale-yellow
V = 1446.15 (11) Å30.56 × 0.09 × 0.08 mm
Z = 4
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
4206 independent reflections
Radiation source: sealed tube3801 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and ω scansθmax = 30.0°, θmin = 0.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.749, Tmax = 0.958k = 3535
32828 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0644P)2 + 1.9543P]
where P = (Fo2 + 2Fc2)/3
4206 reflections(Δ/σ)max = 0.002
211 parametersΔρmax = 0.33 e Å3
10 restraintsΔρmin = 0.59 e Å3
Crystal data top
C14H12ClN3S2V = 1446.15 (11) Å3
Mr = 321.86Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.7784 (3) ŵ = 0.55 mm1
b = 25.2104 (11) ÅT = 100 K
c = 8.4628 (4) Å0.56 × 0.09 × 0.08 mm
β = 90.339 (2)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
4206 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3801 reflections with I > 2σ(I)
Tmin = 0.749, Tmax = 0.958Rint = 0.047
32828 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04910 restraints
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.33 e Å3
4206 reflectionsΔρmin = 0.59 e Å3
211 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.33129 (11)0.74126 (3)0.43185 (9)0.02922 (17)
S20.81787 (10)1.01564 (3)0.70895 (8)0.02383 (16)
N10.5530 (3)0.93930 (8)0.6751 (3)0.0187 (4)
N20.4447 (3)0.90237 (8)0.5877 (2)0.0182 (4)
C90.0433 (4)0.85079 (10)0.6843 (3)0.0200 (5)
H9A0.06800.87210.77470.024*
N30.7384 (4)0.95592 (10)0.4561 (3)0.0264 (5)
C40.5995 (4)0.91382 (10)0.9528 (3)0.0190 (4)
S1A0.81128 (18)0.93898 (4)1.03729 (11)0.0196 (2)0.832 (4)
C1A0.8584 (10)0.8815 (2)1.1384 (9)0.0242 (10)0.832 (4)
H1AA0.96810.87641.20710.029*0.832 (4)
C2A0.7184 (16)0.8437 (3)1.1078 (12)0.0289 (15)0.832 (4)
H2AA0.72030.80901.15190.035*0.832 (4)
C3A0.5701 (18)0.8623 (3)1.0024 (14)0.0263 (16)0.832 (4)
H3AA0.46100.84130.96920.032*0.832 (4)
S1B0.544 (2)0.8499 (4)0.9965 (18)0.0243 (19)0.168 (4)
C1B0.751 (7)0.8414 (15)1.110 (8)0.038 (14)*0.168 (4)
H1BA0.78800.80891.15880.046*0.168 (4)
C2B0.856 (7)0.8873 (15)1.122 (7)0.041 (9)*0.168 (4)
H2BA0.97260.89121.18320.049*0.168 (4)
C3B0.770 (4)0.9289 (10)1.031 (4)0.041 (9)*0.168 (4)
H3BA0.82400.96361.02500.049*0.168 (4)
C50.4780 (4)0.94575 (10)0.8380 (3)0.0186 (4)
H5A0.47510.98400.86910.022*
C60.2675 (4)0.92375 (11)0.8167 (3)0.0210 (5)
H6A0.22930.90090.90670.025*
H6B0.16980.95270.80470.025*
C70.2870 (3)0.89198 (9)0.6660 (3)0.0170 (4)
C80.1379 (4)0.85466 (9)0.6075 (3)0.0174 (4)
C100.1881 (4)0.81612 (10)0.6300 (3)0.0207 (5)
H10A0.31170.81400.68190.025*
C110.1501 (4)0.78485 (10)0.4997 (3)0.0213 (5)
C120.0296 (4)0.78746 (11)0.4212 (3)0.0238 (5)
H12A0.05370.76550.33210.029*
C130.1730 (4)0.82256 (10)0.4750 (3)0.0219 (5)
H13A0.29570.82490.42170.026*
C140.6989 (4)0.96747 (10)0.6069 (3)0.0205 (5)
H1N30.673 (6)0.9294 (15)0.408 (5)0.030 (9)*
H2N30.851 (6)0.9675 (15)0.416 (4)0.032 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0269 (3)0.0216 (3)0.0391 (4)0.0052 (2)0.0061 (3)0.0048 (3)
S20.0228 (3)0.0227 (3)0.0259 (3)0.0056 (2)0.0034 (2)0.0011 (2)
N10.0178 (9)0.0199 (10)0.0183 (9)0.0026 (7)0.0012 (7)0.0010 (8)
N20.0172 (9)0.0188 (9)0.0186 (9)0.0006 (7)0.0026 (7)0.0008 (7)
C90.0199 (11)0.0196 (11)0.0204 (11)0.0018 (9)0.0006 (8)0.0018 (9)
N30.0265 (11)0.0329 (13)0.0198 (10)0.0107 (10)0.0001 (9)0.0018 (9)
C40.0185 (10)0.0215 (11)0.0171 (10)0.0012 (8)0.0002 (8)0.0041 (9)
S1A0.0192 (4)0.0206 (4)0.0188 (4)0.0009 (4)0.0021 (3)0.0030 (3)
C1A0.029 (2)0.024 (2)0.019 (2)0.0046 (15)0.0052 (13)0.0011 (15)
C2A0.037 (3)0.023 (2)0.027 (3)0.003 (2)0.006 (2)0.0051 (14)
C3A0.028 (3)0.027 (4)0.024 (2)0.009 (3)0.005 (2)0.000 (3)
S1B0.026 (4)0.022 (4)0.025 (3)0.007 (3)0.007 (2)0.000 (3)
C50.0171 (10)0.0196 (11)0.0191 (10)0.0004 (8)0.0004 (8)0.0037 (8)
C60.0185 (11)0.0222 (11)0.0224 (11)0.0010 (9)0.0003 (9)0.0052 (9)
C70.0172 (10)0.0163 (10)0.0174 (10)0.0007 (8)0.0031 (8)0.0001 (8)
C80.0196 (11)0.0150 (10)0.0175 (10)0.0009 (8)0.0020 (8)0.0010 (8)
C100.0182 (10)0.0182 (11)0.0257 (12)0.0002 (9)0.0008 (9)0.0008 (9)
C110.0218 (11)0.0158 (10)0.0263 (12)0.0019 (9)0.0047 (9)0.0003 (9)
C120.0270 (12)0.0211 (12)0.0231 (12)0.0001 (10)0.0027 (10)0.0062 (9)
C130.0219 (11)0.0216 (11)0.0222 (11)0.0004 (10)0.0011 (9)0.0028 (9)
C140.0200 (11)0.0213 (11)0.0201 (11)0.0015 (9)0.0029 (9)0.0045 (9)
Geometric parameters (Å, º) top
Cl1—C111.743 (3)C2A—H2AA0.9500
S2—C141.692 (3)C3A—H3AA0.9500
N1—C141.350 (3)S1B—C1B1.71 (2)
N1—N21.395 (3)C1B—C2B1.363 (18)
N1—C51.481 (3)C1B—H1BA0.9500
N2—C71.288 (3)C2B—C3B1.42 (2)
C9—C101.390 (3)C2B—H2BA0.9500
C9—C81.397 (3)C3B—H3BA0.9500
C9—H9A0.9500C5—C61.541 (3)
N3—C141.338 (3)C5—H5A1.0000
N3—H1N30.90 (4)C6—C71.512 (3)
N3—H2N30.89 (4)C6—H6A0.9900
C4—C3A1.379 (8)C6—H6B0.9900
C4—C3B1.381 (18)C7—C81.465 (3)
C4—C51.503 (3)C8—C131.405 (3)
C4—S1B1.696 (10)C10—C111.381 (4)
C4—S1A1.721 (3)C10—H10A0.9500
S1A—C1A1.713 (6)C11—C121.392 (4)
C1A—C2A1.368 (6)C12—C131.389 (4)
C1A—H1AA0.9500C12—H12A0.9500
C2A—C3A1.421 (12)C13—H13A0.9500
C14—N1—N2120.6 (2)C4—C3B—H3BA123.4
C14—N1—C5126.6 (2)C2B—C3B—H3BA123.4
N2—N1—C5112.60 (19)N1—C5—C4110.7 (2)
C7—N2—N1107.4 (2)N1—C5—C6100.05 (19)
C10—C9—C8120.7 (2)C4—C5—C6112.7 (2)
C10—C9—H9A119.6N1—C5—H5A111.0
C8—C9—H9A119.6C4—C5—H5A111.0
C14—N3—H1N3120 (3)C6—C5—H5A111.0
C14—N3—H2N3118 (3)C7—C6—C5101.7 (2)
H1N3—N3—H2N3119 (4)C7—C6—H6A111.4
C3A—C4—C3B103.6 (13)C5—C6—H6A111.4
C3A—C4—C5128.4 (5)C7—C6—H6B111.4
C3B—C4—C5128.0 (11)C5—C6—H6B111.4
C3B—C4—S1B110.0 (11)H6A—C6—H6B109.3
C5—C4—S1B121.9 (5)N2—C7—C8122.0 (2)
C3A—C4—S1A110.0 (5)N2—C7—C6113.8 (2)
C5—C4—S1A121.56 (18)C8—C7—C6124.2 (2)
S1B—C4—S1A116.4 (5)C9—C8—C13119.0 (2)
C1A—S1A—C492.7 (2)C9—C8—C7119.6 (2)
C2A—C1A—S1A111.6 (4)C13—C8—C7121.4 (2)
C2A—C1A—H1AA124.2C11—C10—C9119.2 (2)
S1A—C1A—H1AA124.2C11—C10—H10A120.4
C1A—C2A—C3A112.1 (5)C9—C10—H10A120.4
C1A—C2A—H2AA124.0C10—C11—C12121.4 (2)
C3A—C2A—H2AA124.0C10—C11—Cl1119.3 (2)
C4—C3A—C2A113.5 (6)C12—C11—Cl1119.3 (2)
C4—C3A—H3AA123.2C13—C12—C11119.1 (2)
C2A—C3A—H3AA123.2C13—C12—H12A120.4
C4—S1B—C1B93.5 (11)C11—C12—H12A120.4
C2B—C1B—S1B111.0 (19)C12—C13—C8120.5 (2)
C2B—C1B—H1BA124.5C12—C13—H13A119.8
S1B—C1B—H1BA124.5C8—C13—H13A119.8
C1B—C2B—C3B112 (2)N3—C14—N1116.4 (2)
C1B—C2B—H2BA124.0N3—C14—S2123.1 (2)
C3B—C2B—H2BA124.0N1—C14—S2120.50 (19)
C4—C3B—C2B113.3 (17)
C14—N1—N2—C7163.4 (2)S1B—C4—C5—N189.2 (7)
C5—N1—N2—C712.0 (3)S1A—C4—C5—N186.6 (2)
C3A—C4—S1A—C1A0.4 (7)C3A—C4—C5—C620.2 (8)
C3B—C4—S1A—C1A9 (13)C3B—C4—C5—C6161.3 (19)
C5—C4—S1A—C1A178.3 (4)S1B—C4—C5—C621.9 (7)
S1B—C4—S1A—C1A2.2 (7)S1A—C4—C5—C6162.34 (18)
C4—S1A—C1A—C2A0.7 (8)N1—C5—C6—C719.1 (2)
S1A—C1A—C2A—C3A0.8 (14)C4—C5—C6—C798.4 (2)
C3B—C4—C3A—C2A1.1 (19)N1—N2—C7—C8179.6 (2)
C5—C4—C3A—C2A177.7 (7)N1—N2—C7—C62.6 (3)
S1B—C4—C3A—C2A165 (11)C5—C6—C7—N214.8 (3)
S1A—C4—C3A—C2A0.0 (12)C5—C6—C7—C8168.2 (2)
C1A—C2A—C3A—C40.5 (16)C10—C9—C8—C130.6 (4)
C3A—C4—S1B—C1B17 (10)C10—C9—C8—C7179.3 (2)
C3B—C4—S1B—C1B3 (3)N2—C7—C8—C9170.3 (2)
C5—C4—S1B—C1B174 (3)C6—C7—C8—C96.4 (4)
S1A—C4—S1B—C1B2 (3)N2—C7—C8—C139.6 (4)
C4—S1B—C1B—C2B3 (6)C6—C7—C8—C13173.7 (2)
S1B—C1B—C2B—C3B3 (8)C8—C9—C10—C110.8 (4)
C3A—C4—C3B—C2B4 (4)C9—C10—C11—C120.3 (4)
C5—C4—C3B—C2B175 (3)C9—C10—C11—Cl1179.84 (19)
S1B—C4—C3B—C2B2 (4)C10—C11—C12—C130.4 (4)
S1A—C4—C3B—C2B168 (16)Cl1—C11—C12—C13179.5 (2)
C1B—C2B—C3B—C40 (7)C11—C12—C13—C80.5 (4)
C14—N1—C5—C486.0 (3)C9—C8—C13—C120.1 (4)
N2—N1—C5—C498.9 (2)C7—C8—C13—C12179.9 (2)
C14—N1—C5—C6154.9 (2)N2—N1—C14—N33.3 (4)
N2—N1—C5—C620.1 (3)C5—N1—C14—N3178.0 (2)
C3A—C4—C5—N190.9 (8)N2—N1—C14—S2175.10 (17)
C3B—C4—C5—N187.6 (19)C5—N1—C14—S20.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the S1A/C1A–C3A/C4 and S1B/C1B–C3B/C4 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N3—H1N3···N20.90 (4)2.28 (4)2.656 (3)105 (3)
N3—H2N3···S2i0.89 (4)2.52 (4)3.400 (3)170 (3)
C5—H5A···S1Aii1.002.863.664 (3)138
C9—H9A···Cg1iii0.952.793.628 (4)148
C9—H9A···Cg2iii0.952.773.595 (18)145
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+2, z+2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC14H12ClN3S2
Mr321.86
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)6.7784 (3), 25.2104 (11), 8.4628 (4)
β (°) 90.339 (2)
V3)1446.15 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.55
Crystal size (mm)0.56 × 0.09 × 0.08
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.749, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
32828, 4206, 3801
Rint0.047
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.138, 1.10
No. of reflections4206
No. of parameters211
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.59

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the S1A/C1A–C3A/C4 and S1B/C1B–C3B/C4 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N3—H1N3···N20.90 (4)2.28 (4)2.656 (3)105 (3)
N3—H2N3···S2i0.89 (4)2.52 (4)3.400 (3)170 (3)
C5—H5A···S1Aii1.002.863.664 (3)138
C9—H9A···Cg1iii0.952.793.628 (4)148
C9—H9A···Cg2iii0.952.773.595 (18)145
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+2, z+2; (iii) x1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

The authors thank the Prince of Songkla University for financial support. The authors also thank the Thailand Research Fund (TRF) for a research grant (RSA5280033) and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBai, G., Li, J., Li, D., Dong, C., Han, X. & Lin, P. (2007). Dyes Pigm. 75, 93–98.  Web of Science CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFun, H.-K., Suwunwong, T. & Chantrapromma, S. (2011). Acta Cryst. E67, o701–o702.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGong, Z.-L., Xie, Y.-S., Zhao, B.-X., Lv, H.-S. & Liu, W.-Y. (2011). J. Fluoresc. 21, 355–364.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHusain, K., Abid, M. & Azam, A. (2008). Eur. J. Med. Chem. 43, 393–403.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhode, S., Maddi, V., Aragade, P., Palkar, M., Ronad, P. K., Mamledesai, S., Thippeswamy, A. H. M. & Satyanarayana, D. (2009). Eur. J. Med. Chem. 44, 1682–1688.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonthason, P., Suwunwong, T., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o3501–o3502.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShoman, M. E., Abdel-Aziz, M., Aly, O. M., Farag, H. H. & Morsy, M. A. (2009). Eur. J. Med. Chem. 44, 3068–3076.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaj, T., Kamble, R. R., Gireesh, T. M., Hunnur, R. K. & Margankop, S. B. (2011). Eur. J. Med. Chem. 46, 4366–4373.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o259-o260
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds