organic compounds
1,1,4,4-Tetra-tert-butyl-1,4-dichloro-2,2,3,3-tetraphenyltetrasilane
aDepartment of Chemistry and Chemical Biology, Graduate School of Engineering, Gunma University, Kiryu, Gunma 376-8515, Japan, and bDepartment of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
*Correspondence e-mail: kyushin@chem-bio.gunma-u.ac.jp
The title compound, C40H56Cl2Si4, was synthesized by the coupling of 1,1-di-tert-butyl-1,2-dichloro-2,2-diphenyldisilane with lithium. The contains one half-molecule, which is completed by an inversion centre. In the molecule, the tetrasilane skeleton adopts a perfect anti conformation and the Si—Si bonds [2.4355 (5) and 2.4328 (7) Å] are longer than the standard Si—Si bond length (2.34 Å). The Si—Si—Si angle [116.09 (2)°] is larger than the tetrahedral bond angle (109.5°). These long bond lengths and the wide angle are favorable for reducing the among the tert-butyl and the phenyl groups. The dihedral angle between the phenyl rings in the is 37.36 (8)°.
Related literature
For details of Wurtz-type reactions for formation of silicon–silicon bonds, see: Burkhard (1949); Gilman & Tomasi (1963); Stolberg (1963); Laguerre et al. (1978); Herman et al. (1985); Watanabe et al. (1988). For related structures of oligosilanes with anti conformations, see: Baumeister et al. (1997); Michl & West (2000); Tsuji et al. (2004); Fukazawa et al. (2006); Haga et al. (2008).
Experimental
Crystal data
|
Data collection: CrystalClear (Rigaku, 2003); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and Yadokari-XG 2009 (Kabuto et al., 2009).
Supporting information
10.1107/S1600536812000669/is5036sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812000669/is5036Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812000669/is5036Isup3.cml
A mixture of 1,1-di-tert-butyl-1,2-dichloro-2,2-diphenyldisilane (0.248 g, 0.627 mmol) and lithium (6.8 mg, 0.98 mmol) in THF (3 ml) was stirred at room temperature for 1 day. Ethanol (ca. 1 ml) was added to the reaction mixture, and the solvent was removed under reduced pressure. The residue was dissolved in chloroform and passed through a short column of silica gel. The filtrate was evaporated, and the residue was separated by
(silica gel, hexane–chloroform (1:1)) to give 1 (0.075 g, 33%) as colorless crystals. Single crystals were obtained from ethanol–THF (ca. 1:1) by slow evaporation.1. Mp: 244–247 °C. 1H NMR (CDCl3): δ 1.01 (s, 36H), 7.45 (t, 8H, J = 7.6 Hz), 7.55 (t, 4H, J = 7.6 Hz), 7.94 (d, 8H, J = 7.6 Hz). 13C NMR (CDCl3): δ 26.1, 29.5, 127.4, 129.1, 134.0, 138.5. 29Si NMR (CDCl3): δ –32.0, 35.3.
All hydrogen atoms were generated at calculated positions and refined as riding atoms, with C—H = 0.95 (phenyl) or 0.98 (methyl) Å and Uiso(H) = 1.2Ueq(phenyl C) or 1.5Ueq(methyl C).
Data collection: CrystalClear (Rigaku, 2003); cell
CrystalClear (Rigaku, 2003); data reduction: CrystalClear (Rigaku, 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and Yadokari-XG 2009 (Kabuto et al., 2009).C40H56Cl2Si4 | F(000) = 772 |
Mr = 720.11 | Dx = 1.202 Mg m−3 |
Monoclinic, P21/n | Melting point = 517–520 K |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 9.6981 (8) Å | Cell parameters from 9597 reflections |
b = 15.3893 (11) Å | θ = 1.3–28.3° |
c = 13.8546 (11) Å | µ = 0.31 mm−1 |
β = 105.7717 (7)° | T = 153 K |
V = 1989.9 (3) Å3 | Prism, colourless |
Z = 2 | 0.30 × 0.10 × 0.10 mm |
Rigaku RAXIS-IV imaging plate diffractometer | 4895 independent reflections |
Radiation source: rotating anode | 4826 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
Detector resolution: 10.00 pixels mm-1 | θmax = 28.3°, θmin = 2.0° |
ω scans | h = −12→12 |
Absorption correction: multi-scan (REQAB; Jacobson, 1998) | k = −20→20 |
Tmin = 0.913, Tmax = 0.970 | l = −18→18 |
12290 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.094 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0373P)2 + 1.7041P] where P = (Fo2 + 2Fc2)/3 |
4895 reflections | (Δ/σ)max < 0.001 |
214 parameters | Δρmax = 0.32 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
C40H56Cl2Si4 | V = 1989.9 (3) Å3 |
Mr = 720.11 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.6981 (8) Å | µ = 0.31 mm−1 |
b = 15.3893 (11) Å | T = 153 K |
c = 13.8546 (11) Å | 0.30 × 0.10 × 0.10 mm |
β = 105.7717 (7)° |
Rigaku RAXIS-IV imaging plate diffractometer | 4895 independent reflections |
Absorption correction: multi-scan (REQAB; Jacobson, 1998) | 4826 reflections with I > 2σ(I) |
Tmin = 0.913, Tmax = 0.970 | Rint = 0.020 |
12290 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.094 | H-atom parameters constrained |
S = 1.10 | Δρmax = 0.32 e Å−3 |
4895 reflections | Δρmin = −0.32 e Å−3 |
214 parameters |
Experimental. IR (KBr): 3080, 3050, 2980, 2950, 2940, 2890, 2850, 1470, 1430, 1390, 1370, 1360, 1180, 1090, 1010, 810, 730, 700 cm–1. MS (EI, 70 eV): m/z 541 (M+–177, 100), 359 (24), 324 (69), 267 (31), 259 (42), 197 (50), 183 (26), 135 (46). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Si1 | 0.31115 (4) | 0.00675 (2) | 0.27448 (3) | 0.01114 (9) | |
Si2 | 0.52023 (4) | −0.00985 (2) | 0.41781 (3) | 0.00975 (9) | |
Cl1 | 0.23186 (4) | 0.12785 (2) | 0.30352 (3) | 0.01879 (9) | |
C1 | 0.37002 (17) | 0.02227 (11) | 0.15322 (11) | 0.0199 (3) | |
C2 | 0.4726 (2) | −0.05206 (14) | 0.14543 (13) | 0.0315 (4) | |
H1 | 0.4230 | −0.1078 | 0.1431 | 0.047* | |
H2 | 0.5563 | −0.0508 | 0.2040 | 0.047* | |
H3 | 0.5036 | −0.0449 | 0.0843 | 0.047* | |
C3 | 0.24115 (19) | 0.02135 (13) | 0.05901 (12) | 0.0274 (4) | |
H4 | 0.2749 | 0.0307 | −0.0007 | 0.041* | |
H5 | 0.1742 | 0.0677 | 0.0640 | 0.041* | |
H6 | 0.1924 | −0.0349 | 0.0539 | 0.041* | |
C4 | 0.4457 (2) | 0.11019 (13) | 0.15219 (13) | 0.0296 (4) | |
H7 | 0.5316 | 0.1129 | 0.2091 | 0.044* | |
H8 | 0.3805 | 0.1575 | 0.1574 | 0.044* | |
H9 | 0.4731 | 0.1160 | 0.0894 | 0.044* | |
C5 | 0.14973 (15) | −0.07002 (9) | 0.25896 (11) | 0.0165 (3) | |
C6 | 0.16775 (19) | −0.15608 (11) | 0.20623 (15) | 0.0306 (4) | |
H10 | 0.2618 | −0.1812 | 0.2386 | 0.046* | |
H11 | 0.1604 | −0.1447 | 0.1354 | 0.046* | |
H12 | 0.0924 | −0.1969 | 0.2113 | 0.046* | |
C7 | 0.13114 (18) | −0.09028 (13) | 0.36307 (13) | 0.0288 (4) | |
H13 | 0.0449 | −0.1256 | 0.3559 | 0.043* | |
H14 | 0.1217 | −0.0358 | 0.3974 | 0.043* | |
H15 | 0.2150 | −0.1223 | 0.4024 | 0.043* | |
C8 | 0.00900 (16) | −0.02761 (11) | 0.19730 (12) | 0.0216 (3) | |
H16 | −0.0712 | −0.0673 | 0.1939 | 0.032* | |
H17 | 0.0158 | −0.0153 | 0.1293 | 0.032* | |
H18 | −0.0069 | 0.0267 | 0.2296 | 0.032* | |
C9 | 0.63923 (14) | 0.08247 (9) | 0.39841 (10) | 0.0129 (3) | |
C10 | 0.60184 (15) | 0.16802 (9) | 0.41542 (11) | 0.0154 (3) | |
H19 | 0.5174 | 0.1780 | 0.4360 | 0.018* | |
C11 | 0.68493 (17) | 0.23859 (10) | 0.40297 (13) | 0.0224 (3) | |
H20 | 0.6580 | 0.2958 | 0.4161 | 0.027* | |
C12 | 0.80733 (18) | 0.22523 (11) | 0.37132 (14) | 0.0283 (4) | |
H21 | 0.8644 | 0.2732 | 0.3625 | 0.034* | |
C13 | 0.84559 (18) | 0.14169 (12) | 0.35275 (14) | 0.0269 (4) | |
H22 | 0.9293 | 0.1325 | 0.3310 | 0.032* | |
C14 | 0.76306 (16) | 0.07092 (10) | 0.36547 (11) | 0.0183 (3) | |
H23 | 0.7907 | 0.0140 | 0.3517 | 0.022* | |
C15 | 0.61049 (15) | −0.11866 (9) | 0.41486 (10) | 0.0125 (3) | |
C16 | 0.75912 (16) | −0.13158 (10) | 0.44964 (12) | 0.0189 (3) | |
H24 | 0.8197 | −0.0833 | 0.4739 | 0.023* | |
C17 | 0.81957 (17) | −0.21366 (11) | 0.44931 (13) | 0.0242 (3) | |
H25 | 0.9206 | −0.2204 | 0.4717 | 0.029* | |
C18 | 0.73361 (19) | −0.28541 (11) | 0.41658 (13) | 0.0247 (3) | |
H26 | 0.7753 | −0.3413 | 0.4168 | 0.030* | |
C19 | 0.58640 (19) | −0.27512 (11) | 0.38349 (13) | 0.0255 (3) | |
H27 | 0.5264 | −0.3241 | 0.3617 | 0.031* | |
C20 | 0.52687 (16) | −0.19285 (10) | 0.38224 (12) | 0.0195 (3) | |
H28 | 0.4258 | −0.1866 | 0.3584 | 0.023* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Si1 | 0.00980 (17) | 0.01148 (18) | 0.01079 (17) | 0.00034 (13) | 0.00048 (13) | −0.00035 (13) |
Si2 | 0.00847 (17) | 0.00997 (17) | 0.01055 (17) | 0.00025 (12) | 0.00215 (13) | −0.00022 (12) |
Cl1 | 0.01666 (17) | 0.01261 (16) | 0.02527 (19) | 0.00270 (12) | 0.00259 (13) | −0.00031 (12) |
C1 | 0.0185 (7) | 0.0299 (8) | 0.0111 (6) | 0.0007 (6) | 0.0036 (5) | 0.0007 (6) |
C2 | 0.0296 (9) | 0.0477 (11) | 0.0194 (8) | 0.0128 (8) | 0.0104 (7) | −0.0017 (7) |
C3 | 0.0251 (8) | 0.0420 (10) | 0.0124 (7) | −0.0017 (7) | 0.0005 (6) | 0.0021 (7) |
C4 | 0.0291 (9) | 0.0424 (10) | 0.0174 (7) | −0.0104 (8) | 0.0064 (6) | 0.0062 (7) |
C5 | 0.0122 (6) | 0.0142 (6) | 0.0187 (7) | −0.0024 (5) | −0.0033 (5) | 0.0010 (5) |
C6 | 0.0233 (8) | 0.0164 (7) | 0.0421 (10) | −0.0018 (6) | −0.0079 (7) | −0.0074 (7) |
C7 | 0.0211 (8) | 0.0375 (10) | 0.0238 (8) | −0.0132 (7) | −0.0011 (6) | 0.0097 (7) |
C8 | 0.0134 (7) | 0.0223 (7) | 0.0246 (8) | −0.0004 (6) | −0.0024 (6) | 0.0012 (6) |
C9 | 0.0115 (6) | 0.0152 (6) | 0.0111 (6) | −0.0019 (5) | 0.0015 (5) | 0.0014 (5) |
C10 | 0.0136 (6) | 0.0152 (6) | 0.0158 (6) | 0.0001 (5) | 0.0015 (5) | 0.0011 (5) |
C11 | 0.0200 (7) | 0.0154 (7) | 0.0276 (8) | −0.0031 (6) | −0.0007 (6) | 0.0031 (6) |
C12 | 0.0208 (8) | 0.0245 (8) | 0.0385 (10) | −0.0106 (6) | 0.0064 (7) | 0.0077 (7) |
C13 | 0.0175 (7) | 0.0319 (9) | 0.0344 (9) | −0.0043 (7) | 0.0123 (7) | 0.0045 (7) |
C14 | 0.0159 (6) | 0.0198 (7) | 0.0210 (7) | −0.0004 (5) | 0.0081 (5) | 0.0007 (5) |
C15 | 0.0131 (6) | 0.0131 (6) | 0.0116 (6) | 0.0027 (5) | 0.0037 (5) | 0.0003 (5) |
C16 | 0.0146 (7) | 0.0167 (7) | 0.0242 (7) | 0.0011 (5) | 0.0033 (5) | 0.0001 (6) |
C17 | 0.0153 (7) | 0.0240 (8) | 0.0328 (9) | 0.0089 (6) | 0.0057 (6) | 0.0044 (6) |
C18 | 0.0277 (8) | 0.0176 (7) | 0.0298 (8) | 0.0100 (6) | 0.0095 (7) | −0.0009 (6) |
C19 | 0.0255 (8) | 0.0161 (7) | 0.0318 (9) | −0.0001 (6) | 0.0027 (7) | −0.0076 (6) |
C20 | 0.0150 (6) | 0.0172 (7) | 0.0235 (7) | 0.0018 (5) | 0.0001 (5) | −0.0041 (6) |
Si1—C5 | 1.9261 (15) | C7—H15 | 0.9800 |
Si1—C1 | 1.9306 (15) | C8—H16 | 0.9800 |
Si1—Cl1 | 2.0963 (5) | C8—H17 | 0.9800 |
Si1—Si2 | 2.4355 (5) | C8—H18 | 0.9800 |
Si2—C15 | 1.8951 (14) | C9—C10 | 1.402 (2) |
Si2—C9 | 1.8950 (14) | C9—C14 | 1.4072 (19) |
Si2—Si2i | 2.4328 (7) | C10—C11 | 1.391 (2) |
C1—C3 | 1.542 (2) | C10—H19 | 0.9500 |
C1—C2 | 1.538 (2) | C11—C12 | 1.388 (2) |
C1—C4 | 1.541 (2) | C11—H20 | 0.9500 |
C2—H1 | 0.9800 | C12—C13 | 1.381 (3) |
C2—H2 | 0.9800 | C12—H21 | 0.9500 |
C2—H3 | 0.9800 | C13—C14 | 1.391 (2) |
C3—H4 | 0.9800 | C13—H22 | 0.9500 |
C3—H5 | 0.9800 | C14—H23 | 0.9500 |
C3—H6 | 0.9800 | C15—C20 | 1.402 (2) |
C4—H7 | 0.9800 | C15—C16 | 1.4043 (19) |
C4—H8 | 0.9800 | C16—C17 | 1.393 (2) |
C4—H9 | 0.9800 | C16—H24 | 0.9500 |
C5—C7 | 1.533 (2) | C17—C18 | 1.384 (2) |
C5—C6 | 1.545 (2) | C17—H25 | 0.9500 |
C5—C8 | 1.544 (2) | C18—C19 | 1.385 (2) |
C6—H10 | 0.9800 | C18—H26 | 0.9500 |
C6—H11 | 0.9800 | C19—C20 | 1.390 (2) |
C6—H12 | 0.9800 | C19—H27 | 0.9500 |
C7—H13 | 0.9800 | C20—H28 | 0.9500 |
C7—H14 | 0.9800 | ||
C5—Si1—C1 | 113.73 (7) | C5—C7—H13 | 109.5 |
C5—Si1—Cl1 | 103.73 (5) | C5—C7—H14 | 109.5 |
C1—Si1—Cl1 | 105.53 (5) | H13—C7—H14 | 109.5 |
C5—Si1—Si2 | 119.87 (5) | C5—C7—H15 | 109.5 |
C1—Si1—Si2 | 110.17 (5) | H13—C7—H15 | 109.5 |
Cl1—Si1—Si2 | 101.79 (2) | H14—C7—H15 | 109.5 |
C15—Si2—C9 | 110.90 (6) | C5—C8—H16 | 109.5 |
C15—Si2—Si2i | 108.86 (5) | C5—C8—H17 | 109.5 |
C9—Si2—Si2i | 107.38 (5) | H16—C8—H17 | 109.5 |
C15—Si2—Si1 | 111.23 (5) | C5—C8—H18 | 109.5 |
C9—Si2—Si1 | 102.12 (4) | H16—C8—H18 | 109.5 |
Si2i—Si2—Si1 | 116.09 (2) | H17—C8—H18 | 109.5 |
C3—C1—C2 | 108.93 (14) | C10—C9—C14 | 117.10 (13) |
C3—C1—C4 | 106.18 (14) | C10—C9—Si2 | 119.00 (10) |
C2—C1—C4 | 109.48 (14) | C14—C9—Si2 | 123.89 (11) |
C3—C1—Si1 | 111.84 (11) | C11—C10—C9 | 121.82 (14) |
C2—C1—Si1 | 108.59 (11) | C11—C10—H19 | 119.1 |
C4—C1—Si1 | 111.77 (11) | C9—C10—H19 | 119.1 |
C1—C2—H1 | 109.5 | C12—C11—C10 | 119.85 (15) |
C1—C2—H2 | 109.5 | C12—C11—H20 | 120.1 |
H1—C2—H2 | 109.5 | C10—C11—H20 | 120.1 |
C1—C2—H3 | 109.5 | C13—C12—C11 | 119.52 (15) |
H1—C2—H3 | 109.5 | C13—C12—H21 | 120.2 |
H2—C2—H3 | 109.5 | C11—C12—H21 | 120.2 |
C1—C3—H4 | 109.5 | C12—C13—C14 | 120.81 (15) |
C1—C3—H5 | 109.5 | C12—C13—H22 | 119.6 |
H4—C3—H5 | 109.5 | C14—C13—H22 | 119.6 |
C1—C3—H6 | 109.5 | C13—C14—C9 | 120.89 (15) |
H4—C3—H6 | 109.5 | C13—C14—H23 | 119.6 |
H5—C3—H6 | 109.5 | C9—C14—H23 | 119.6 |
C1—C4—H7 | 109.5 | C20—C15—C16 | 116.43 (13) |
C1—C4—H8 | 109.5 | C20—C15—Si2 | 119.76 (10) |
H7—C4—H8 | 109.5 | C16—C15—Si2 | 123.69 (11) |
C1—C4—H9 | 109.5 | C17—C16—C15 | 121.39 (14) |
H7—C4—H9 | 109.5 | C17—C16—H24 | 119.3 |
H8—C4—H9 | 109.5 | C15—C16—H24 | 119.3 |
C7—C5—C6 | 109.13 (14) | C18—C17—C16 | 120.54 (14) |
C7—C5—C8 | 107.10 (13) | C18—C17—H25 | 119.7 |
C6—C5—C8 | 107.30 (12) | C16—C17—H25 | 119.7 |
C7—C5—Si1 | 108.63 (10) | C19—C18—C17 | 119.50 (14) |
C6—C5—Si1 | 112.68 (11) | C19—C18—H26 | 120.2 |
C8—C5—Si1 | 111.83 (10) | C17—C18—H26 | 120.2 |
C5—C6—H10 | 109.5 | C18—C19—C20 | 119.71 (15) |
C5—C6—H11 | 109.5 | C18—C19—H27 | 120.1 |
H10—C6—H11 | 109.5 | C20—C19—H27 | 120.1 |
C5—C6—H12 | 109.5 | C19—C20—C15 | 122.41 (14) |
H10—C6—H12 | 109.5 | C19—C20—H28 | 118.8 |
H11—C6—H12 | 109.5 | C15—C20—H28 | 118.8 |
C5—Si1—Si2—C15 | 63.66 (7) | Si2i—Si2—C9—C10 | −50.23 (12) |
C1—Si1—Si2—C15 | −71.20 (7) | Si1—Si2—C9—C10 | 72.35 (11) |
Cl1—Si1—Si2—C15 | 177.20 (5) | C15—Si2—C9—C14 | 12.38 (14) |
C5—Si1—Si2—C9 | −177.99 (7) | Si2i—Si2—C9—C14 | 131.21 (11) |
C1—Si1—Si2—C9 | 47.15 (7) | Si1—Si2—C9—C14 | −106.21 (12) |
Cl1—Si1—Si2—C9 | −64.44 (5) | C14—C9—C10—C11 | −1.6 (2) |
C5—Si1—Si2—Si2i | −61.54 (6) | Si2—C9—C10—C11 | 179.71 (12) |
C1—Si1—Si2—Si2i | 163.60 (6) | C9—C10—C11—C12 | 1.1 (2) |
Cl1—Si1—Si2—Si2i | 52.00 (3) | C10—C11—C12—C13 | −0.2 (3) |
C5—Si1—C1—C3 | 34.92 (14) | C11—C12—C13—C14 | −0.1 (3) |
Cl1—Si1—C1—C3 | −78.12 (12) | C12—C13—C14—C9 | −0.6 (3) |
Si2—Si1—C1—C3 | 172.74 (11) | C10—C9—C14—C13 | 1.4 (2) |
C5—Si1—C1—C2 | −85.31 (13) | Si2—C9—C14—C13 | 179.96 (13) |
Cl1—Si1—C1—C2 | 161.66 (11) | C9—Si2—C15—C20 | −150.92 (11) |
Si2—Si1—C1—C2 | 52.51 (12) | Si2i—Si2—C15—C20 | 91.15 (12) |
C5—Si1—C1—C4 | 153.81 (11) | Si1—Si2—C15—C20 | −38.00 (13) |
Cl1—Si1—C1—C4 | 40.78 (12) | C9—Si2—C15—C16 | 33.11 (14) |
Si2—Si1—C1—C4 | −68.36 (12) | Si2i—Si2—C15—C16 | −84.82 (12) |
C1—Si1—C5—C7 | 169.63 (11) | Si1—Si2—C15—C16 | 146.04 (11) |
Cl1—Si1—C5—C7 | −76.26 (11) | C20—C15—C16—C17 | 1.4 (2) |
Si2—Si1—C5—C7 | 36.25 (13) | Si2—C15—C16—C17 | 177.51 (12) |
C1—Si1—C5—C6 | 48.58 (13) | C15—C16—C17—C18 | −1.5 (3) |
Cl1—Si1—C5—C6 | 162.69 (10) | C16—C17—C18—C19 | 0.3 (3) |
Si2—Si1—C5—C6 | −84.80 (12) | C17—C18—C19—C20 | 0.9 (3) |
C1—Si1—C5—C8 | −72.38 (12) | C18—C19—C20—C15 | −0.9 (3) |
Cl1—Si1—C5—C8 | 41.73 (11) | C16—C15—C20—C19 | −0.2 (2) |
Si2—Si1—C5—C8 | 154.24 (9) | Si2—C15—C20—C19 | −176.46 (13) |
C15—Si2—C9—C10 | −169.06 (10) |
Symmetry code: (i) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C40H56Cl2Si4 |
Mr | 720.11 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 153 |
a, b, c (Å) | 9.6981 (8), 15.3893 (11), 13.8546 (11) |
β (°) | 105.7717 (7) |
V (Å3) | 1989.9 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.31 |
Crystal size (mm) | 0.30 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Rigaku RAXIS-IV imaging plate diffractometer |
Absorption correction | Multi-scan (REQAB; Jacobson, 1998) |
Tmin, Tmax | 0.913, 0.970 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12290, 4895, 4826 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.094, 1.10 |
No. of reflections | 4895 |
No. of parameters | 214 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.32, −0.32 |
Computer programs: CrystalClear (Rigaku, 2003), SIR2004 (Burla et al., 2005), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and Yadokari-XG 2009 (Kabuto et al., 2009).
Acknowledgements
This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and the Japan Society for the Promotion of Science. This work was also supported by the Element Innovation Project of Gunma University.
References
Baumeister, U., Schenzel, K., Zink, R. & Hassler, K. (1997). J. Organomet. Chem. 543, 117–124. CSD CrossRef CAS Web of Science Google Scholar
Burkhard, C. A. (1949). J. Am. Chem. Soc. 71, 963–964. CrossRef CAS Web of Science Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Fukazawa, A., Tsuji, H. & Tamao, K. (2006). J. Am. Chem. Soc. 128, 6800–6801. Web of Science CSD CrossRef PubMed CAS Google Scholar
Gilman, H. & Tomasi, R. A. (1963). J. Org. Chem. 28, 1651–1653. CrossRef CAS Web of Science Google Scholar
Haga, R., Burschka, C. & Tacke, R. (2008). Organometallics, 27, 4395–4400. Web of Science CSD CrossRef CAS Google Scholar
Herman, A., Dreczewski, B. & Wojnowski, W. (1985). Chem. Phys. 98, 475–481. CrossRef CAS Web of Science Google Scholar
Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan. Google Scholar
Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Jpn, 51, 218–224. CrossRef Google Scholar
Laguerre, M., Dunogues, J. & Calas, R. (1978). J. Chem. Soc. Chem. Commun. p. 272. CrossRef Google Scholar
Michl, J. & West, R. (2000). Acc. Chem. Res. 33, 821–823. Web of Science CrossRef PubMed CAS Google Scholar
Rigaku (2003). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stolberg, U. G. (1963). Angew. Chem. Int. Ed. Engl. 2, 150–151. Google Scholar
Tsuji, H., Fukazawa, A., Yamaguchi, S., Toshimitsu, A. & Tamao, K. (2004). Organometallics, 23, 3375–3377. Web of Science CSD CrossRef CAS Google Scholar
Watanabe, H., Akutsu, Y., Shinohara, A., Shinohara, S., Yamaguchi, Y., Ohta, A., Onozuka, M. & Nagai, Y. (1988). Chem. Lett. pp. 1883–1886. CrossRef Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Wurtz-type reactions are the most general method of forming silicon–silicon bonds. Monochlorinated silanes such as chlorotrimethylsilane give disilanes by Wurtz-type reactions. When chlorosilanes containing two chlorine atoms are subjected to the Wurtz-type reactions, the reactions proceed successively to give polymerization and/or cyclization products as shown in Fig. 1. For example, the reaction of dichlorodimethylsilane with sodium gives poly(dimethylsilylene) (Burkhard, 1949), while the reaction of dichlorodimethylsilane with lithium in the presence of a catalytic amount of triphenylsilyllithium (Gilman et al., 1963) gives dodecamethylcyclohexasilane. Also, the reaction of dichlorodimethylsilane with sodium–potassium alloy (Stolberg, 1963) or lithium (Laguerre et al., 1978) gives dodecamethylcyclohexasilane. Similarly, the Wurtz-type reactions of 1,2-dichlorodisilanes have been reported to give polysilanes or cyclic oligosilanes, depending on reaction conditions (Herman et al., 1985; Watanabe et al., 1988).
If the Wurtz-type reactions of 1,2-dichlorodisilanes could be stopped at the stage of dimerization, it would be a convenient synthetic method for 1,4-dichlorotetrasilanes. To realise this method, one chlorosilyl moiety of 1,2-dichlorodisilane must be reactive in the Wurtz-type reaction, and the other must be less reactive. In this case, the reactive chlorosilyl moieties are coupled preferentially to afford 1,4-dichlorotetrasilane which does not react further as shown in Fig. 2. We report herein the synthesis of 1,4-dichlorotetrasilane by using 1,1-di-tert-butyl-1,2-dichloro-2,2-diphenyldisilane. In this compound, the chlorodiphenylsilyl moiety is expected to be more reactive than the di-tert-butylchlorosilyl moiety. We also report the X-ray crystal analysis of the resulting 1,4-dichlorotetrasilane.
The reaction of 1,1-di-tert-butyl-1,2-dichloro-2,2-diphenyldisilane with lithium (1.6 eq.) in tetrahydrofuran (THF) gave 1,1,4,4-tetra-tert-butyl-1,4-dichloro-2,2,3,3-tetraphenyltetrasilane 1 in 33% yield (Fig. 3). In this reaction, 2,2,3,3-tetra-tert-butyl-1,4-dichloro-1,1,4,4-tetraphenyltetrasilane 2 was not formed, indicating that the more reactive chlorodiphenylsilyl moieties are coupled predominantly. Unfortunately, the structure of 1 could not be determined by spectral data because compounds 1 and 2 are expected to show similar spectra. To distinguish these structures, we carried out the X-ray crystal analysis of 1.
The molecular structure of 1 is shown in Fig. 4. The tetrasilane skeleton of 1 adopts a perfect anti structure with an Si1—Si2—Si2i—Si1i [symmetry code: (i) –x + 1, –y, –z + 1] torsion angle of 180.0° (Michl & West, 2000). The perfect or nearly perfect anti structures have rarely been reported in a few oligosilanes (Baumeister et al., 1997; Tsuji et al., 2004; Fukazawa et al., 2006; Haga et al., 2008). The silicon–silicon bonds [2.4355 (5) and 2.4328 (7) Å] are longer than the standard silicon–silicon bond (2.34 Å). The Si1—Si2—Si2i bond angle [116.09 (2)°] is larger than the tetrahedral bond angle (109.5°). The long silicon–silicon bonds and the wide silicon–silicon–silicon bond angle are favorable for reducing the steric hindrance among the tert-butyl and phenyl groups. Four phenyl groups have almost perpendicular orientation to the tetrasilane plane to avoid the steric hindrance with the terminal tert-butyl groups.