organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o317-o318

(E)-1-(Furan-2-yl)-3-(2,4,5-trimeth­­oxy­phen­yl)prop-2-en-1-one

aCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, bExcellence Center, Mae Fah Luang University, Thasud, Muang, Chaing Rai 57100, Thailand, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 21 December 2011; accepted 1 January 2012; online 11 January 2012)

In the title chalcone derivative, C16H16O5, the dihedral angle between the furan and benzene rings is 2.06 (17)°. The two meth­oxy groups at the ortho and para positions are essentially coplanar with the benzene ring [C—O—C—C angles = −1.0 (5) and 178.5 (3)°], whereas the third one at the meta position is slightly twisted [C—O—C—C = 9.6 (5)°]. In the crystal, weak C—H⋯O inter­actions link the mol­ecules into a sheet parallel to ([\overline{1}]02). An inter­molecular ππ inter­action between the furan and benzene rings is present [centroid–centroid distance = 3.772 (2) Å]. A short C⋯C contact [3.173 (5) Å] is also observed between neighbouring furan rings.

Related literature

For background to and applications of chalcones, see: Cheng et al. (2008[Cheng, J.-H., Hung, C.-F., Yang, S.-C., Wang, J.-P., Won, S.-J. & Lin, C.-N. (2008). Bioorg. Med. Chem. 16, 7270-7276.]); Jung et al. (2008[Jung, Y. J., Son, K. I., Oh, Y. E. & Noh, D. Y. (2008). Polyhedron, 27, 861-867.]); Lee et al. (2006[Lee, S. H., Seo, G. S., Kim, J. Y., Jin, X. Y., Kim, H.-D. & Sohn, D. H. (2006). Eur. J. Pharmacol. 532, 178-186.]); Liu et al. (2011[Liu, X.-F., Zheng, C.-J., Sun, L.-P., Liu, X.-K. & Piao, H.-R. (2011). Eur. J. Med. Chem. 46, 3469-3473.]); Nerya et al. (2004[Nerya, O., Musa, R., Khatib, S., Tamir, S. & Vaya, J. (2004). Phytochemistry, 65, 1389-1395.]); Suwunwong et al. (2011[Suwunwong, T., Chantrapromma, S. & Fun, H. K. (2011). Chem. Pap. 65, 890-897.]); Tewtrakul et al. (2003[Tewtrakul, S., Subhadhirasakul, S., Puripattanavong, J. & Panphadung, T. (2003). Songklanakarin J. Sci. Technol. 25, 503-508.]). For related structures, see: Fun et al. (2010a[Fun, H.-K., Suwunwong, T., Chantrapromma, S. & Karalai, C. (2010a). Acta Cryst. E66, o2559-o2560.],b[Fun, H.-K., Suwunwong, T., Chantrapromma, S. & Karalai, C. (2010b). Acta Cryst. E66, o3070-o3071.], 2011[Fun, H.-K., Chantrapromma, S. & Suwunwong, T. (2011). Acta Cryst. E67, o2789-o2790.]). For the stability of the temperature controller, see: Cosier & Glazer, (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16O5

  • Mr = 288.29

  • Monoclinic, P 21 /c

  • a = 8.338 (2) Å

  • b = 8.610 (2) Å

  • c = 18.923 (5) Å

  • β = 94.467 (4)°

  • V = 1354.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.28 × 0.21 × 0.09 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.991

  • 8001 measured reflections

  • 2647 independent reflections

  • 1663 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.175

  • S = 1.08

  • 2647 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14B⋯O2i 0.96 2.47 3.363 (5) 154
C15—H15C⋯O1ii 0.96 2.43 3.365 (4) 165
Symmetry codes: (i) x, y+1, z; (ii) [x-1, -y+{\script{5\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcones and heteroaryl chalcones have been reported to possess a wide range of biological activities such as antibacterial (Liu et al., 2011), anti-inflammatory (Lee et al., 2006), anti-oxidant (Cheng et al., 2008), HIV-1 protease inhibitory (Tewtrakul et al., 2003) as well as anti-tyrosinase activities (Nerya et al., 2004), including fluorescent property (Jung et al., 2008; Suwunwong et al., 2011). The title heteroaryl chalcones (I) was synthesized to study for its fluorescence property and tyrosinase inhibitory activity and also to compare its property with the previously published related compounds (Suwunwong et al., 2011). Our experiment shows that (I) exhibits fluorescence property (Suwunwong et al., 2011) and tyrosinase inhibitory activity with the IC50 value of 0.143±0.002 mg.ml-1. Herein the crystal structure of (I) is reported.

The molecule of (I) in Fig. 1 exists in an E configuration with respect to the C6C7 double bond [1.335 (5) Å]. The molecule is planar with the dihedral angle between the furan and the benzene rings being 2.06 (17)°. The middle prop-2-en-1-one unit (O2/C5–C7) is also planar with the r.m.s. 0.0013 (2) and the torsion angle O1–C5–C6–C7 = -0.4 (5)°. The mean plane through this unit makes dihedral angles of 4.1 (2)° and 3.6 (2)° with the furan and the benzene rings, respectively. The two methoxy groups at ortho (at atom 9) and para (at atom C11) positions of 2,4,5-trimethoxyphenyl unit are essentially co-planar with the attached benzene ring with torsion angles C14–O3–C9–C10 = -1.0 (5)° and C15–O4–C11–C12 = 178.5 (3)°, whereas the third one at meta (at atom C12) position is slightly twisted with the torsion angle of C16–O5–C12–C13 = 9.6 (5)°. These angle values also indicated that the methyl group at para position points toward the one at ortho but point away from the one at meta positions due to the sterric effect. The bond distances have normal values (Allen et al., 1987) and are comparable with closely related structures (Fun et al., 2010a,b, 2011).

In the crystal packing (Fig. 2), weak C14—H14B···O2i and C15—H15C···O1ii interactions (Table 1) link the molecules into sheets parallel to the (1 0 2) plane and these sheets are stacked along the a axis by ππ interactions with Cg1···Cg2iii = 3.772 (2) Å [symmetry code: (iii) 1-x, 2-y, 1-z]; Cg1 and Cg2 are the centroids of C1–C4/O2 furan and C8–C13 benzene rings, respectively. A C1···C1iv[3.173 (5) Å; symmetry code: (iv) 2-x, 1-y, 1-z] short contact is also observed.

Related literature top

For background to and applications of chalcones, see: Cheng et al. (2008); Jung et al. (2008); Lee et al. (2006); Liu et al. (2011); Nerya et al. (2004); Suwunwong et al. (2011); Tewtrakul et al. (2003). For related structures, see: Fun et al. (2010a,b, 2011). For the stability of the temperature controller, see: Cosier & Glazer, (1986). For standard bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by the condensation of the solution of 2-furyl methylketone (2 mmol, 0.22 g) in ethanol (15 ml) with the solution of 2,4,5-trimethoxybenzaldehyde (2 mmol, 0.40 g) in ethanol (15 ml) in the presence of 20% NaOH (aq) 5 ml at 278 K for 4 hr. The resulting solid which was obtained was collected by filtration, washed with distilled water and dried in air. Yellow slab-shaped single crystals of the title compound suitable for X-ray structure determination were recrystalized from acetone:ethanol (1:1 v/v) by the slow evaporation of the solvent at room temperature after several days (m.p. 356–357 K).

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å for aromatic and CH, and 0.96 Å for CH3 atoms. The Uiso(H) values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.83 Å from C10 and the deepest hole is located at 0.89 Å from C4.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound viewd along the b axis, showing molecular sheets parallel to the (1 0 2) plane. Hydrogen bonds are shown as dashed lines.
(E)-1-(Furan-2-yl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one top
Crystal data top
C16H16O5F(000) = 608
Mr = 288.29Dx = 1.414 Mg m3
Monoclinic, P21/cMelting point = 356–357 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.338 (2) ÅCell parameters from 2647 reflections
b = 8.610 (2) Åθ = 2.2–26.0°
c = 18.923 (5) ŵ = 0.11 mm1
β = 94.467 (4)°T = 100 K
V = 1354.4 (6) Å3Plate, yellow
Z = 40.28 × 0.21 × 0.09 mm
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
2647 independent reflections
Radiation source: sealed tube1663 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
ϕ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 810
Tmin = 0.971, Tmax = 0.991k = 107
8001 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0653P)2 + 1.5283P]
where P = (Fo2 + 2Fc2)/3
2647 reflections(Δ/σ)max = 0.001
193 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C16H16O5V = 1354.4 (6) Å3
Mr = 288.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.338 (2) ŵ = 0.11 mm1
b = 8.610 (2) ÅT = 100 K
c = 18.923 (5) Å0.28 × 0.21 × 0.09 mm
β = 94.467 (4)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
2647 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1663 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.991Rint = 0.068
8001 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 1.08Δρmax = 0.33 e Å3
2647 reflectionsΔρmin = 0.40 e Å3
193 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8947 (3)1.0580 (3)0.56583 (11)0.0221 (6)
O20.8198 (3)0.6581 (3)0.53014 (11)0.0219 (6)
O30.5846 (3)1.3849 (3)0.41496 (11)0.0234 (6)
O40.1930 (3)1.2112 (3)0.22782 (11)0.0203 (6)
O50.2463 (3)0.9265 (3)0.26329 (11)0.0211 (6)
C10.8927 (5)0.5329 (4)0.56403 (17)0.0249 (9)
H1A0.86730.42970.55390.030*
C21.0063 (4)0.5797 (4)0.61407 (17)0.0244 (9)
H2A1.07170.51670.64400.029*
C31.0061 (4)0.7441 (4)0.61196 (17)0.0218 (8)
H3A1.07190.80980.64040.026*
C40.8920 (4)0.7884 (4)0.56070 (15)0.0177 (7)
C50.8371 (4)0.9414 (4)0.53558 (15)0.0181 (8)
C60.7141 (4)0.9497 (4)0.47546 (15)0.0177 (8)
H6A0.67430.85900.45390.021*
C70.6597 (4)1.0876 (4)0.45188 (16)0.0174 (8)
H7A0.70391.17400.47560.021*
C80.5399 (4)1.1191 (4)0.39374 (15)0.0157 (7)
C90.5031 (4)1.2735 (4)0.37474 (16)0.0172 (8)
C100.3898 (4)1.3086 (4)0.31901 (15)0.0162 (7)
H10A0.36911.41150.30650.019*
C110.3084 (4)1.1903 (4)0.28248 (15)0.0145 (7)
C120.3391 (4)1.0334 (4)0.30161 (15)0.0152 (7)
C130.4544 (4)1.0014 (4)0.35535 (15)0.0155 (7)
H13A0.47690.89820.36680.019*
C140.5532 (5)1.5429 (4)0.39800 (19)0.0317 (10)
H14B0.62021.60800.42910.048*
H14C0.44211.56560.40360.048*
H14D0.57591.56210.34980.048*
C150.1539 (4)1.3692 (4)0.20725 (16)0.0190 (8)
H15C0.07631.36870.16700.029*
H15D0.24951.42160.19510.029*
H15A0.10981.42210.24600.029*
C160.2548 (5)0.7704 (4)0.28869 (17)0.0234 (8)
H16D0.17170.70970.26400.035*
H16A0.24060.76940.33850.035*
H16B0.35800.72720.28060.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0219 (15)0.0236 (14)0.0194 (11)0.0015 (11)0.0062 (10)0.0033 (10)
O20.0214 (15)0.0215 (14)0.0214 (11)0.0010 (11)0.0076 (10)0.0023 (10)
O30.0271 (16)0.0136 (13)0.0269 (12)0.0014 (11)0.0148 (11)0.0006 (10)
O40.0225 (15)0.0167 (13)0.0198 (11)0.0022 (11)0.0106 (10)0.0018 (9)
O50.0236 (15)0.0138 (13)0.0239 (11)0.0038 (11)0.0105 (10)0.0012 (9)
C10.029 (2)0.0191 (19)0.0261 (17)0.0075 (18)0.0009 (16)0.0063 (15)
C20.020 (2)0.033 (2)0.0205 (16)0.0054 (17)0.0015 (15)0.0070 (15)
C30.016 (2)0.030 (2)0.0187 (15)0.0001 (16)0.0019 (14)0.0027 (14)
C40.0135 (19)0.0238 (19)0.0153 (14)0.0026 (16)0.0016 (13)0.0002 (14)
C50.015 (2)0.024 (2)0.0155 (15)0.0011 (16)0.0012 (13)0.0006 (14)
C60.014 (2)0.0200 (19)0.0183 (15)0.0021 (15)0.0049 (13)0.0002 (13)
C70.0129 (19)0.0218 (19)0.0174 (15)0.0026 (14)0.0011 (13)0.0004 (13)
C80.0157 (19)0.0169 (18)0.0140 (14)0.0004 (15)0.0018 (13)0.0002 (13)
C90.0143 (19)0.0176 (18)0.0189 (15)0.0029 (15)0.0032 (14)0.0008 (13)
C100.0144 (19)0.0155 (18)0.0184 (15)0.0016 (15)0.0000 (13)0.0022 (13)
C110.0096 (18)0.0189 (18)0.0146 (14)0.0037 (14)0.0017 (13)0.0016 (13)
C120.0115 (18)0.0181 (18)0.0155 (14)0.0002 (15)0.0023 (13)0.0017 (13)
C130.0132 (19)0.0161 (18)0.0166 (15)0.0008 (14)0.0035 (13)0.0006 (12)
C140.044 (3)0.0117 (19)0.036 (2)0.0027 (19)0.0158 (18)0.0021 (16)
C150.019 (2)0.0172 (18)0.0196 (15)0.0027 (15)0.0046 (14)0.0063 (13)
C160.029 (2)0.0140 (19)0.0259 (17)0.0021 (16)0.0058 (15)0.0004 (14)
Geometric parameters (Å, º) top
O1—C51.234 (4)C7—C81.453 (5)
O2—C11.372 (4)C7—H7A0.9300
O2—C41.379 (4)C8—C91.405 (5)
O3—C91.371 (4)C8—C131.408 (4)
O3—C141.418 (4)C9—C101.393 (5)
O4—C111.369 (4)C10—C111.379 (5)
O4—C151.445 (4)C10—H10A0.9300
O5—C121.373 (4)C11—C121.416 (5)
O5—C161.427 (4)C12—C131.372 (4)
C1—C21.347 (5)C13—H13A0.9300
C1—H1A0.9300C14—H14B0.9600
C2—C31.416 (5)C14—H14C0.9600
C2—H2A0.9300C14—H14D0.9600
C3—C41.359 (5)C15—H15C0.9600
C3—H3A0.9300C15—H15D0.9600
C4—C51.462 (5)C15—H15A0.9600
C5—C61.473 (4)C16—H16D0.9600
C6—C71.335 (5)C16—H16A0.9600
C6—H6A0.9300C16—H16B0.9600
C1—O2—C4106.3 (3)C11—C10—C9119.9 (3)
C9—O3—C14118.1 (3)C11—C10—H10A120.1
C11—O4—C15117.3 (3)C9—C10—H10A120.1
C12—O5—C16116.2 (3)O4—C11—C10124.8 (3)
C2—C1—O2110.8 (3)O4—C11—C12114.9 (3)
C2—C1—H1A124.6C10—C11—C12120.2 (3)
O2—C1—H1A124.6C13—C12—O5126.2 (3)
C1—C2—C3106.3 (3)C13—C12—C11118.9 (3)
C1—C2—H2A126.9O5—C12—C11114.9 (3)
C3—C2—H2A126.9C12—C13—C8122.3 (3)
C4—C3—C2107.4 (3)C12—C13—H13A118.8
C4—C3—H3A126.3C8—C13—H13A118.8
C2—C3—H3A126.3O3—C14—H14B109.5
C3—C4—O2109.2 (3)O3—C14—H14C109.5
C3—C4—C5132.0 (3)H14B—C14—H14C109.5
O2—C4—C5118.8 (3)O3—C14—H14D109.5
O1—C5—C4118.8 (3)H14B—C14—H14D109.5
O1—C5—C6122.7 (3)H14C—C14—H14D109.5
C4—C5—C6118.5 (3)O4—C15—H15C109.5
C7—C6—C5120.0 (3)O4—C15—H15D109.5
C7—C6—H6A120.0H15C—C15—H15D109.5
C5—C6—H6A120.0O4—C15—H15A109.5
C6—C7—C8128.0 (3)H15C—C15—H15A109.5
C6—C7—H7A116.0H15D—C15—H15A109.5
C8—C7—H7A116.0O5—C16—H16D109.5
C9—C8—C13117.2 (3)O5—C16—H16A109.5
C9—C8—C7119.6 (3)H16D—C16—H16A109.5
C13—C8—C7123.1 (3)O5—C16—H16B109.5
O3—C9—C10123.1 (3)H16D—C16—H16B109.5
O3—C9—C8115.5 (3)H16A—C16—H16B109.5
C10—C9—C8121.4 (3)
C4—O2—C1—C20.1 (4)C7—C8—C9—O31.1 (4)
O2—C1—C2—C30.1 (4)C13—C8—C9—C101.6 (5)
C1—C2—C3—C40.1 (4)C7—C8—C9—C10179.5 (3)
C2—C3—C4—O20.0 (4)O3—C9—C10—C11177.7 (3)
C2—C3—C4—C5179.1 (3)C8—C9—C10—C111.6 (5)
C1—O2—C4—C30.0 (3)C15—O4—C11—C100.1 (4)
C1—O2—C4—C5179.3 (3)C15—O4—C11—C12178.5 (3)
C3—C4—C5—O13.5 (5)C9—C10—C11—O4178.8 (3)
O2—C4—C5—O1175.6 (3)C9—C10—C11—C120.3 (4)
C3—C4—C5—C6177.0 (3)C16—O5—C12—C139.6 (5)
O2—C4—C5—C63.9 (4)C16—O5—C12—C11170.0 (3)
O1—C5—C6—C70.4 (5)O4—C11—C12—C13179.2 (3)
C4—C5—C6—C7179.1 (3)C10—C11—C12—C132.1 (4)
C5—C6—C7—C8179.9 (3)O4—C11—C12—O51.1 (4)
C6—C7—C8—C9177.3 (3)C10—C11—C12—O5177.6 (3)
C6—C7—C8—C134.0 (5)O5—C12—C13—C8177.5 (3)
C14—O3—C9—C101.0 (5)C11—C12—C13—C82.1 (5)
C14—O3—C9—C8179.6 (3)C9—C8—C13—C120.2 (5)
C13—C8—C9—O3177.7 (3)C7—C8—C13—C12178.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···O2i0.962.473.363 (5)154
C15—H15C···O1ii0.962.433.365 (4)165
Symmetry codes: (i) x, y+1, z; (ii) x1, y+5/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H16O5
Mr288.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.338 (2), 8.610 (2), 18.923 (5)
β (°) 94.467 (4)
V3)1354.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.28 × 0.21 × 0.09
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.971, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
8001, 2647, 1663
Rint0.068
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.175, 1.08
No. of reflections2647
No. of parameters193
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.40

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···O2i0.962.473.363 (5)154
C15—H15C···O1ii0.962.433.365 (4)165
Symmetry codes: (i) x, y+1, z; (ii) x1, y+5/2, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§Additional correspondence author, e-mail: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank the Thailand Research Fund (grant No. RSA5280033) and the Prince of Songkla University for financial support. TS thanks the Graduate School, Prince of Songkla University, for partial financial support. The authors also thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, J.-H., Hung, C.-F., Yang, S.-C., Wang, J.-P., Won, S.-J. & Lin, C.-N. (2008). Bioorg. Med. Chem. 16, 7270–7276.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Chantrapromma, S. & Suwunwong, T. (2011). Acta Cryst. E67, o2789–o2790.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Suwunwong, T., Chantrapromma, S. & Karalai, C. (2010a). Acta Cryst. E66, o2559–o2560.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Suwunwong, T., Chantrapromma, S. & Karalai, C. (2010b). Acta Cryst. E66, o3070–o3071.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJung, Y. J., Son, K. I., Oh, Y. E. & Noh, D. Y. (2008). Polyhedron, 27, 861–867.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, S. H., Seo, G. S., Kim, J. Y., Jin, X. Y., Kim, H.-D. & Sohn, D. H. (2006). Eur. J. Pharmacol. 532, 178–186.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, X.-F., Zheng, C.-J., Sun, L.-P., Liu, X.-K. & Piao, H.-R. (2011). Eur. J. Med. Chem. 46, 3469–3473.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNerya, O., Musa, R., Khatib, S., Tamir, S. & Vaya, J. (2004). Phytochemistry, 65, 1389–1395.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuwunwong, T., Chantrapromma, S. & Fun, H. K. (2011). Chem. Pap. 65, 890–897.  Web of Science CSD CrossRef CAS Google Scholar
First citationTewtrakul, S., Subhadhirasakul, S., Puripattanavong, J. & Panphadung, T. (2003). Songklanakarin J. Sci. Technol. 25, 503–508.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o317-o318
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds