metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Di­iodidobis(2-phenyl­pyridine-κN)palladium(II)

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 22 December 2011; accepted 23 December 2011; online 7 January 2012)

In the title complex, [PdI2(C11H9N)2], the PdII ion has a distorted trans-I2N2 square-planar coordination geometry defined by two N atoms from two 2-phenyl­pyridine ligands and two I anions. The 2-phenyl­pyridine ligands are not planar, the dihedral angles between the pyridine and benzene rings being 50.1 (2) and 45.7 (2)°. An inter­molecular ππ inter­action between the six-membered rings is present, the ring centroid–centroid distance being 3.898 (4) Å.

Related literature

For a related structure, [PdCl2(C11H9N)2], see: Ha (2011[Ha, K. (2011). Z. Kristallogr. New Cryst. Struct. 226, 501-502.]).

[Scheme 1]

Experimental

Crystal data
  • [PdI2(C11H9N)2]

  • Mr = 670.58

  • Monoclinic, P 21 /c

  • a = 9.9163 (10) Å

  • b = 14.4759 (14) Å

  • c = 14.9917 (15) Å

  • β = 103.663 (2)°

  • V = 2091.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.85 mm−1

  • T = 200 K

  • 0.25 × 0.23 × 0.11 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.511, Tmax = 0.655

  • 15087 measured reflections

  • 5163 independent reflections

  • 2650 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.110

  • S = 0.98

  • 5163 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 2.20 e Å−3

  • Δρmin = −1.15 e Å−3

Table 1
Selected bond lengths (Å)

Pd1—N1 2.027 (5)
Pd1—N2 2.031 (5)
Pd1—I1 2.6178 (8)
Pd1—I2 2.6244 (8)

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title complex, [PdI2(C11H9N)2], crystallized in the monoclinic space group P21/c, whereas the analogous chloro PdII complex [PdCl2(C11H9N)2] crystallized in the triclinic space group P1 (Ha, 2011).

The central PdII ion has a trans-I2N2 square-planar coordination geometry defined by two N atoms from two 2-phenylpyridine ligands and two I- anions (Fig. 1). The Pd—N and Pd—I bond lengths are nearly equivalent, respectively (Table 1). In the crystal, the PdI2N2 unit is nearly planar: the maximum deviation from the least-squares plane is 0.002 (2) Å. The dihedral angles between the PdI2N2 moiety and the pyridine rings are 77.2 (2) and 76.8 (2)°. The 2-phenylpyridine ligands are not planar, the dihedral angles between the pyridine and benzene rings being 50.1 (2)° and 45.7 (2)°. An intermolecular ππ interaction between the six-membered rings is present, the ring centroid-centroid distance being 3.898 (4) Å (Fig. 2).

Related literature top

For a related structure, [PdCl2(C11H9N)2], see: Ha (2011).

Experimental top

To a solution of Na2PdCl4 (0.1494 g, 0.508 mmol) and KI (0.9225 g, 5.557 mmol) in MeOH (50 ml) was added 2-phenylpyridine (0.1828 g, 1.178 mmol) and stirred for 7 h at room temperature. After evaporation of the solvent, the residue was washed with H2O and dried at 50 °C, to give a redbrown powder (0.3430 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3CN solution.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms (C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)). The highest peak (2.20 e Å-3) and the deepest hole (-1.15 e Å-3) in the difference Fourier map are located 1.00 Å and 0.86 Å from the atoms H10 and Pd1, respectively.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title complex, with displacement ellipsoids drawn at the 40% probability level and the atom numbering.
[Figure 2] Fig. 2. A view of the unit-cell contents of the title complex.
trans-Diiodidobis(2-phenylpyridine-κN)palladium(II) top
Crystal data top
[PdI2(C11H9N)2]F(000) = 1264
Mr = 670.58Dx = 2.130 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3071 reflections
a = 9.9163 (10) Åθ = 2.5–27.7°
b = 14.4759 (14) ŵ = 3.85 mm1
c = 14.9917 (15) ÅT = 200 K
β = 103.663 (2)°Plate, red
V = 2091.1 (4) Å30.25 × 0.23 × 0.11 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
5163 independent reflections
Radiation source: fine-focus sealed tube2650 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ϕ and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1213
Tmin = 0.511, Tmax = 0.655k = 1819
15087 measured reflectionsl = 1917
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0329P)2]
where P = (Fo2 + 2Fc2)/3
5163 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 2.20 e Å3
0 restraintsΔρmin = 1.15 e Å3
Crystal data top
[PdI2(C11H9N)2]V = 2091.1 (4) Å3
Mr = 670.58Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.9163 (10) ŵ = 3.85 mm1
b = 14.4759 (14) ÅT = 200 K
c = 14.9917 (15) Å0.25 × 0.23 × 0.11 mm
β = 103.663 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
5163 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2650 reflections with I > 2σ(I)
Tmin = 0.511, Tmax = 0.655Rint = 0.061
15087 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 0.98Δρmax = 2.20 e Å3
5163 reflectionsΔρmin = 1.15 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.75033 (5)0.14770 (3)0.24074 (3)0.02261 (13)
I10.61261 (5)0.14579 (3)0.36973 (3)0.03177 (14)
I20.88936 (5)0.15018 (3)0.11195 (3)0.03134 (14)
N10.6117 (5)0.0560 (3)0.1689 (3)0.0223 (12)
N20.8874 (6)0.2392 (4)0.3151 (4)0.0294 (14)
C10.6530 (7)0.0331 (4)0.1743 (4)0.0282 (16)
H10.74650.04640.20430.034*
C20.5691 (8)0.1047 (5)0.1396 (5)0.0365 (19)
H20.60310.16630.14520.044*
C30.4332 (8)0.0863 (5)0.0959 (5)0.0339 (18)
H30.37080.13490.07200.041*
C40.3903 (7)0.0041 (5)0.0877 (5)0.0325 (18)
H40.29800.01810.05560.039*
C50.4787 (7)0.0753 (4)0.1254 (4)0.0249 (16)
C60.4288 (7)0.1721 (4)0.1201 (4)0.0252 (16)
C70.3044 (7)0.1915 (5)0.1446 (4)0.0281 (16)
H70.25400.14300.16450.034*
C80.2542 (8)0.2810 (5)0.1401 (5)0.0382 (19)
H80.17100.29400.15870.046*
C90.3244 (8)0.3508 (5)0.1090 (5)0.0354 (18)
H90.28900.41200.10560.043*
C100.4459 (7)0.3331 (5)0.0824 (5)0.0319 (18)
H100.49380.38210.06100.038*
C110.4991 (7)0.2430 (5)0.0868 (4)0.0299 (17)
H110.58180.23030.06740.036*
C120.8459 (8)0.3265 (5)0.3126 (5)0.0348 (19)
H120.75360.34060.28050.042*
C130.9289 (8)0.3975 (5)0.3540 (5)0.043 (2)
H130.89560.45920.34960.052*
C141.0588 (8)0.3775 (5)0.4010 (5)0.040 (2)
H141.11770.42550.43100.048*
C151.1072 (8)0.2880 (5)0.4060 (5)0.042 (2)
H151.19900.27420.43930.051*
C161.0189 (8)0.2168 (5)0.3612 (5)0.0321 (18)
C171.0712 (8)0.1208 (5)0.3653 (5)0.0351 (19)
C181.2040 (8)0.1041 (6)0.3535 (5)0.041 (2)
H181.25840.15400.34020.049*
C191.2577 (8)0.0150 (5)0.3609 (5)0.044 (2)
H191.34740.00410.35080.053*
C201.1810 (9)0.0581 (6)0.3831 (5)0.049 (2)
H201.21830.11890.38930.059*
C211.0499 (8)0.0414 (5)0.3962 (5)0.044 (2)
H210.99670.09090.41160.053*
C220.9956 (8)0.0471 (5)0.3871 (5)0.041 (2)
H220.90500.05760.39580.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0173 (3)0.0242 (3)0.0258 (3)0.0034 (2)0.0040 (2)0.0018 (2)
I10.0291 (3)0.0354 (3)0.0328 (3)0.0015 (2)0.0115 (2)0.0018 (2)
I20.0253 (3)0.0370 (3)0.0331 (3)0.0029 (2)0.0095 (2)0.0013 (2)
N10.017 (3)0.027 (3)0.021 (3)0.005 (2)0.001 (2)0.001 (2)
N20.026 (4)0.031 (3)0.029 (3)0.011 (3)0.002 (3)0.001 (3)
C10.029 (4)0.024 (4)0.032 (4)0.002 (3)0.009 (3)0.003 (3)
C20.045 (5)0.021 (4)0.044 (5)0.001 (3)0.011 (4)0.005 (3)
C30.030 (5)0.038 (4)0.032 (4)0.013 (4)0.003 (3)0.002 (3)
C40.030 (5)0.041 (5)0.024 (4)0.002 (4)0.001 (3)0.009 (3)
C50.031 (4)0.025 (4)0.016 (3)0.004 (3)0.002 (3)0.002 (3)
C60.018 (4)0.030 (4)0.025 (4)0.002 (3)0.001 (3)0.005 (3)
C70.026 (4)0.036 (4)0.026 (4)0.006 (3)0.014 (3)0.001 (3)
C80.023 (5)0.046 (5)0.046 (5)0.012 (4)0.010 (3)0.003 (4)
C90.037 (5)0.026 (4)0.042 (4)0.003 (4)0.007 (3)0.004 (4)
C100.030 (5)0.034 (4)0.034 (4)0.005 (3)0.011 (3)0.001 (3)
C110.020 (4)0.038 (4)0.029 (4)0.003 (3)0.002 (3)0.000 (3)
C120.046 (5)0.024 (4)0.035 (4)0.003 (3)0.011 (4)0.002 (3)
C130.044 (6)0.034 (5)0.053 (5)0.010 (4)0.014 (4)0.002 (4)
C140.039 (5)0.036 (5)0.043 (5)0.010 (4)0.005 (4)0.018 (4)
C150.039 (5)0.050 (5)0.034 (4)0.012 (4)0.001 (4)0.002 (4)
C160.036 (5)0.033 (4)0.028 (4)0.010 (3)0.010 (3)0.006 (3)
C170.028 (5)0.045 (5)0.028 (4)0.003 (4)0.000 (3)0.002 (3)
C180.023 (5)0.054 (5)0.042 (5)0.005 (4)0.000 (4)0.005 (4)
C190.032 (5)0.046 (5)0.053 (5)0.004 (4)0.008 (4)0.003 (4)
C200.047 (6)0.047 (5)0.047 (5)0.008 (4)0.002 (4)0.001 (4)
C210.036 (5)0.036 (5)0.059 (5)0.001 (4)0.012 (4)0.012 (4)
C220.024 (5)0.050 (5)0.044 (5)0.002 (4)0.001 (3)0.007 (4)
Geometric parameters (Å, º) top
Pd1—N12.027 (5)C9—H90.9500
Pd1—N22.031 (5)C10—C111.402 (9)
Pd1—I12.6178 (8)C10—H100.9500
Pd1—I22.6244 (8)C11—H110.9500
N1—C11.350 (8)C12—C131.369 (9)
N1—C51.356 (8)C12—H120.9500
N2—C121.328 (8)C13—C141.346 (9)
N2—C161.363 (8)C13—H130.9500
C1—C21.354 (9)C14—C151.378 (10)
C1—H10.9500C14—H140.9500
C2—C31.378 (9)C15—C161.415 (9)
C2—H20.9500C15—H150.9500
C3—C41.372 (9)C16—C171.481 (10)
C3—H30.9500C17—C221.386 (10)
C4—C51.384 (8)C17—C181.390 (10)
C4—H40.9500C18—C191.389 (10)
C5—C61.482 (9)C18—H180.9500
C6—C111.397 (9)C19—C201.389 (10)
C6—C71.397 (9)C19—H190.9500
C7—C81.384 (9)C20—C211.381 (11)
C7—H70.9500C20—H200.9500
C8—C91.370 (10)C21—C221.385 (10)
C8—H80.9500C21—H210.9500
C9—C101.380 (10)C22—H220.9500
N1—Pd1—N2178.8 (2)C9—C10—C11120.2 (7)
N1—Pd1—I188.78 (15)C9—C10—H10119.9
N2—Pd1—I189.99 (17)C11—C10—H10119.9
N1—Pd1—I291.51 (15)C6—C11—C10119.1 (7)
N2—Pd1—I289.71 (17)C6—C11—H11120.5
I1—Pd1—I2179.71 (3)C10—C11—H11120.5
C1—N1—C5118.2 (5)N2—C12—C13123.6 (7)
C1—N1—Pd1115.8 (4)N2—C12—H12118.2
C5—N1—Pd1125.6 (4)C13—C12—H12118.2
C12—N2—C16119.5 (6)C14—C13—C12118.3 (7)
C12—N2—Pd1116.3 (5)C14—C13—H13120.8
C16—N2—Pd1124.0 (5)C12—C13—H13120.8
N1—C1—C2124.0 (6)C13—C14—C15120.6 (7)
N1—C1—H1118.0C13—C14—H14119.7
C2—C1—H1118.0C15—C14—H14119.7
C1—C2—C3118.5 (7)C14—C15—C16119.3 (7)
C1—C2—H2120.7C14—C15—H15120.3
C3—C2—H2120.7C16—C15—H15120.3
C4—C3—C2118.4 (6)N2—C16—C15118.6 (7)
C4—C3—H3120.8N2—C16—C17121.9 (6)
C2—C3—H3120.8C15—C16—C17119.5 (7)
C3—C4—C5121.4 (6)C22—C17—C18118.6 (7)
C3—C4—H4119.3C22—C17—C16121.9 (7)
C5—C4—H4119.3C18—C17—C16119.4 (7)
N1—C5—C4119.6 (6)C19—C18—C17120.5 (8)
N1—C5—C6119.7 (5)C19—C18—H18119.8
C4—C5—C6120.7 (6)C17—C18—H18119.8
C11—C6—C7119.5 (6)C20—C19—C18120.3 (8)
C11—C6—C5121.7 (7)C20—C19—H19119.8
C7—C6—C5118.7 (6)C18—C19—H19119.8
C8—C7—C6120.3 (7)C21—C20—C19119.2 (8)
C8—C7—H7119.8C21—C20—H20120.4
C6—C7—H7119.8C19—C20—H20120.4
C9—C8—C7120.1 (7)C20—C21—C22120.4 (8)
C9—C8—H8119.9C20—C21—H21119.8
C7—C8—H8119.9C22—C21—H21119.8
C8—C9—C10120.6 (7)C21—C22—C17121.0 (8)
C8—C9—H9119.7C21—C22—H22119.5
C10—C9—H9119.7C17—C22—H22119.5
I1—Pd1—N1—C1100.1 (5)C8—C9—C10—C110.1 (11)
I2—Pd1—N1—C179.8 (5)C7—C6—C11—C102.6 (9)
I1—Pd1—N1—C572.3 (5)C5—C6—C11—C10179.2 (6)
I2—Pd1—N1—C5107.7 (5)C9—C10—C11—C61.2 (10)
I1—Pd1—N2—C1278.3 (5)C16—N2—C12—C130.5 (11)
I2—Pd1—N2—C12101.7 (5)Pd1—N2—C12—C13175.6 (6)
I1—Pd1—N2—C16105.8 (6)N2—C12—C13—C141.2 (12)
I2—Pd1—N2—C1674.2 (6)C12—C13—C14—C150.9 (12)
C5—N1—C1—C20.7 (10)C13—C14—C15—C160.0 (12)
Pd1—N1—C1—C2172.3 (6)C12—N2—C16—C150.5 (10)
N1—C1—C2—C30.1 (11)Pd1—N2—C16—C15176.3 (5)
C1—C2—C3—C41.5 (11)C12—N2—C16—C17179.3 (7)
C2—C3—C4—C52.6 (11)Pd1—N2—C16—C173.5 (10)
C1—N1—C5—C40.3 (9)C14—C15—C16—N20.7 (11)
Pd1—N1—C5—C4172.6 (5)C14—C15—C16—C17179.1 (7)
C1—N1—C5—C6178.5 (6)N2—C16—C17—C2247.9 (10)
Pd1—N1—C5—C66.3 (9)C15—C16—C17—C22132.3 (8)
C3—C4—C5—N12.0 (11)N2—C16—C17—C18136.7 (7)
C3—C4—C5—C6176.9 (7)C15—C16—C17—C1843.1 (10)
N1—C5—C6—C1152.8 (9)C22—C17—C18—C191.7 (11)
C4—C5—C6—C11128.4 (7)C16—C17—C18—C19177.3 (7)
N1—C5—C6—C7130.6 (7)C17—C18—C19—C202.0 (12)
C4—C5—C6—C748.2 (9)C18—C19—C20—C211.1 (12)
C11—C6—C7—C83.0 (10)C19—C20—C21—C220.1 (12)
C5—C6—C7—C8179.7 (6)C20—C21—C22—C170.5 (12)
C6—C7—C8—C91.9 (11)C18—C17—C22—C210.5 (11)
C7—C8—C9—C100.5 (11)C16—C17—C22—C21175.9 (7)

Experimental details

Crystal data
Chemical formula[PdI2(C11H9N)2]
Mr670.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)9.9163 (10), 14.4759 (14), 14.9917 (15)
β (°) 103.663 (2)
V3)2091.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.85
Crystal size (mm)0.25 × 0.23 × 0.11
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.511, 0.655
No. of measured, independent and
observed [I > 2σ(I)] reflections
15087, 5163, 2650
Rint0.061
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.110, 0.98
No. of reflections5163
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.20, 1.15

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Pd1—N12.027 (5)Pd1—I12.6178 (8)
Pd1—N22.031 (5)Pd1—I22.6244 (8)
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010–0029626).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHa, K. (2011). Z. Kristallogr. New Cryst. Struct. 226, 501–502.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds