organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(Z)-(1,5-Di­methyl-3-oxo-2-phenyl-2,3-di­hydro-1H-pyrazol-4-yl)methyl­­idene]-2-hy­dr­oxy­benzohydrazide

aPakistan Council of Scientific and Industrial Research Laboratories Complex, Karachi 75280, Pakistan, bDepartment of Chemistry, University of Karachi, Karachi 75270, Pakistan, cMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan, and dDepartment of Chemistry, University of Gujrat, Gujrat 50781, Pakistan
*Correspondence e-mail: maslamchemist@hotmail.com, mnachemist@hotmail.com

(Received 23 December 2011; accepted 5 January 2012; online 11 January 2012)

In the title compound, C19H18N4O3, the pyrazole ring is oriented at dihedral angles of 41.12 (7) and 12.25 (10)°, respectively, with respect to the planes of the phenyl and benzene rings. Intra­molecular N—H⋯O and O—H⋯O hydrogen bonds generate seven- and six-membered S(7) and S(6) ring motifs, respectively.

Related literature

For the biological activity of Schiff bases, see: Lau et al. (1999[Lau, K. Y., Mayr, A. & Cheung, K. K. (1999). Inorg. Chim. Acta, 285, 223-332.]); More et al. (2002[More, S. V., Dongarkhadekar, D. V., Chavan, R. N., Jadhav, W. N., Bhusare, S. R. & Pawar, R. P. (2002). J. Indian Chem. Soc. 79, 768-769.]); Safwat et al. (1988[Safwat, H. M., Ragab, F. A., Eid, N. M. & Abdel, G. M. (1988). Egypt. J. Pharm. Sci. 29, 99-110.]); Sharma et al. (1998[Sharma, K. P., Jolly, V. S. & Phatak, P. (1998). J. Ultrascientist Phys. Sci. 10, 263-266.]); Pandeya et al. (1999[Pandeya, S. N., Sriram, D., Nath, G. & de Clercq, E. (1999). Pharm. Acta Helv. 74, 11-17.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18N4O3

  • Mr = 350.37

  • Monoclinic, C 2/c

  • a = 25.2357 (6) Å

  • b = 8.5624 (2) Å

  • c = 16.0329 (4) Å

  • β = 104.048 (1)°

  • V = 3360.75 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.22 × 0.06 × 0.05 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.980, Tmax = 0.995

  • 16063 measured reflections

  • 4174 independent reflections

  • 2653 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.119

  • S = 1.02

  • 4174 reflections

  • 243 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O2 0.95 (2) 1.62 (2) 2.5076 (17) 155 (2)
N4—H4N⋯O1 0.978 (18) 1.763 (18) 2.7140 (16) 163.3 (16)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The Schiff base ligands have importance for elucidating the mechanism of racemization and transamination reactions in biological systems (Lau et al., 1999) and exhibit remarkable biological activities such as antibacterial (More et al., 2002), antifungal (Safwat et al., 1988), anticancer (Sharma et al., 1998) and anti HIV activities (Pandeya et al., 1999). Such applications lead us to report the synthesis and characterization of Schiff base ligand, N'-((1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl) methylene)-2-hydroxybenzohydrazide.

In the crystal structure of title compound, two nitrogen and three carbon atoms of pyrazole ring are sp2 hybridized, whose ring shows an r.m.s. deviation of about 0.1 Å with the maximum deviation of from N1 [0.1256 (12) Å] and C8 [0.1237 (10) Å]. The molecule contains N—H and O—H groups but no classical intermolecular hydrogen bonding has been observed. Only intramolecular hydrogen bonding produces six-membered S(6) and seven-membered S(7) (Bernstein et al., 1995) ring motifs through O—H···O and N—H···O interactions (Table 1 and Fig. 1). The two ring motifs O1/C7/C8/C10/N3/N4/H4N and O2/C11/C12/C13/O3/H3O are inclined at a dihedral angle of 3.46 (4)°. The phenyl ring (C1–C6) is twisted at 41.12 (7) and 41.64 (7)°, respectively, with the pyrazole ring and o-hydroxy benzoyl ring (C12–C17).

Related literature top

For the biological activity of Schiff bases, see: Lau et al. (1999); More et al. (2002); Safwat et al. (1988); Sharma et al. (1998); Pandeya et al. (1999). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazole-4-carbaldehyde (1 mol) and 2-hydroxybenzohydrazide (1 mol) were added in 50 ml ethanol and add 3–4 drops of conc. H2SO4. The mixture was refluxed with stirring for 5 h at 70 °C on water bath. The reaction mixture was kept at room temperature overnight and white crystals were obtained. These were filtered, washed with cooled methanol, dried and recrystallized from methanol.

Refinement top

C-bound H atoms were positioned with idealized geometry with C—H = 0.93 Å for aromatic and C—H = 0.96 Å for methyl group, and were refined using a riding model with Uiso(H) = 1.2Ueq(C) for aromatic or 1.5Ueq(C) for methyl carbon atoms. The N and O-bound H atoms were located in a difference Fourier map and the positional parameters were refined with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O); the refined distances are N—H = 0.978 (18) Å and O—H = 0.95 (2) Å

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% displacement ellipsoids. The hydrogen bonds are shown with dashed lines.
N'-[(Z)-(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H- pyrazol-4-yl)methylidene]-2-hydroxybenzohydrazide top
Crystal data top
C19H18N4O3F(000) = 1472
Mr = 350.37Dx = 1.385 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3642 reflections
a = 25.2357 (6) Åθ = 2.5–25.1°
b = 8.5624 (2) ŵ = 0.10 mm1
c = 16.0329 (4) ÅT = 296 K
β = 104.048 (1)°Needle, colorless
V = 3360.75 (14) Å30.22 × 0.06 × 0.05 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4174 independent reflections
Radiation source: fine-focus sealed tube2653 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 28.3°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 3332
Tmin = 0.980, Tmax = 0.995k = 1111
16063 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.9211P]
where P = (Fo2 + 2Fc2)/3
4174 reflections(Δ/σ)max < 0.001
243 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C19H18N4O3V = 3360.75 (14) Å3
Mr = 350.37Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.2357 (6) ŵ = 0.10 mm1
b = 8.5624 (2) ÅT = 296 K
c = 16.0329 (4) Å0.22 × 0.06 × 0.05 mm
β = 104.048 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4174 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2653 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.995Rint = 0.029
16063 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.16 e Å3
4174 reflectionsΔρmin = 0.19 e Å3
243 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.46453 (5)0.76202 (15)0.40473 (7)0.0576 (3)
O20.64520 (4)0.88611 (14)0.58892 (7)0.0528 (3)
O30.69778 (5)1.07722 (17)0.52182 (8)0.0604 (4)
N10.38948 (5)0.63069 (15)0.42694 (7)0.0411 (3)
N20.37762 (5)0.53986 (16)0.49225 (8)0.0418 (3)
N30.55797 (5)0.72973 (16)0.59800 (8)0.0461 (3)
N40.55879 (5)0.81534 (15)0.52518 (8)0.0400 (3)
C10.35469 (6)0.63351 (18)0.34260 (9)0.0371 (3)
C20.32860 (6)0.49921 (19)0.30573 (10)0.0431 (4)
H20.33570.40370.33390.052*
C30.29185 (6)0.5090 (2)0.22647 (11)0.0490 (4)
H30.27300.42030.20220.059*
C40.28296 (6)0.6486 (2)0.18339 (10)0.0504 (4)
H40.25790.65460.13030.060*
C50.31115 (7)0.7800 (2)0.21888 (11)0.0497 (4)
H50.30610.87360.18860.060*
C60.34670 (6)0.77364 (19)0.29874 (10)0.0440 (4)
H60.36520.86290.32300.053*
C70.44219 (6)0.68619 (19)0.45316 (9)0.0405 (4)
C80.46208 (6)0.63199 (18)0.53974 (9)0.0379 (3)
C90.42086 (6)0.54514 (18)0.56011 (9)0.0391 (4)
C100.51460 (6)0.6533 (2)0.59932 (9)0.0455 (4)
H100.51760.59900.65050.055*
C110.60540 (6)0.89180 (17)0.52552 (9)0.0381 (3)
C120.60884 (6)0.98077 (18)0.44780 (9)0.0384 (4)
C130.65628 (6)1.06824 (19)0.45021 (10)0.0423 (4)
C140.66193 (7)1.1489 (2)0.37797 (11)0.0520 (4)
H140.69331.20750.38020.062*
C150.62176 (8)1.1429 (2)0.30318 (11)0.0545 (4)
H150.62611.19640.25480.065*
C160.57499 (8)1.0581 (2)0.29950 (11)0.0567 (5)
H160.54781.05410.24870.068*
C170.56846 (7)0.9792 (2)0.37078 (10)0.0495 (4)
H170.53640.92350.36780.059*
C180.32105 (7)0.5084 (2)0.49384 (11)0.0549 (5)
H18A0.31830.50030.55240.082*
H18B0.30940.41220.46440.082*
H18C0.29820.59210.46580.082*
C190.42026 (7)0.4633 (2)0.64200 (10)0.0536 (4)
H19A0.39350.38150.63070.080*
H19B0.41130.53650.68180.080*
H19C0.45560.41930.66620.080*
H4N0.5272 (7)0.812 (2)0.4759 (11)0.064*
H3O0.6855 (9)1.012 (2)0.5610 (13)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0432 (6)0.0856 (9)0.0391 (6)0.0239 (6)0.0004 (5)0.0156 (6)
O20.0401 (6)0.0670 (8)0.0431 (6)0.0113 (6)0.0058 (5)0.0095 (5)
O30.0418 (7)0.0787 (9)0.0547 (8)0.0157 (6)0.0001 (6)0.0107 (6)
N10.0359 (7)0.0532 (8)0.0339 (7)0.0077 (6)0.0080 (5)0.0031 (6)
N20.0380 (7)0.0511 (8)0.0388 (7)0.0065 (6)0.0141 (6)0.0016 (6)
N30.0427 (8)0.0572 (9)0.0342 (7)0.0076 (7)0.0010 (6)0.0060 (6)
N40.0358 (7)0.0470 (8)0.0331 (7)0.0045 (6)0.0001 (5)0.0042 (6)
C10.0298 (7)0.0484 (9)0.0334 (7)0.0019 (6)0.0083 (6)0.0051 (7)
C20.0414 (9)0.0445 (9)0.0440 (9)0.0030 (7)0.0117 (7)0.0051 (7)
C30.0409 (9)0.0573 (11)0.0488 (10)0.0091 (8)0.0111 (8)0.0149 (8)
C40.0360 (9)0.0707 (13)0.0406 (9)0.0002 (8)0.0021 (7)0.0055 (8)
C50.0464 (10)0.0539 (11)0.0466 (9)0.0041 (8)0.0073 (8)0.0046 (8)
C60.0422 (9)0.0451 (10)0.0439 (9)0.0052 (7)0.0088 (7)0.0046 (7)
C70.0368 (8)0.0485 (9)0.0346 (8)0.0068 (7)0.0058 (6)0.0012 (7)
C80.0376 (8)0.0437 (9)0.0325 (8)0.0018 (7)0.0084 (6)0.0025 (6)
C90.0407 (8)0.0431 (9)0.0354 (8)0.0003 (7)0.0130 (7)0.0025 (6)
C100.0451 (9)0.0570 (11)0.0322 (8)0.0048 (8)0.0053 (7)0.0058 (7)
C110.0341 (8)0.0388 (8)0.0377 (8)0.0008 (6)0.0014 (6)0.0019 (6)
C120.0361 (8)0.0382 (9)0.0387 (8)0.0016 (6)0.0046 (7)0.0006 (6)
C130.0382 (8)0.0425 (9)0.0439 (9)0.0007 (7)0.0058 (7)0.0001 (7)
C140.0512 (10)0.0506 (11)0.0555 (10)0.0083 (8)0.0157 (8)0.0043 (8)
C150.0652 (12)0.0527 (11)0.0464 (10)0.0001 (9)0.0155 (9)0.0086 (8)
C160.0574 (11)0.0642 (12)0.0414 (10)0.0053 (9)0.0017 (8)0.0081 (8)
C170.0448 (9)0.0551 (11)0.0436 (9)0.0078 (8)0.0011 (7)0.0065 (8)
C180.0400 (9)0.0760 (13)0.0515 (10)0.0125 (9)0.0167 (8)0.0009 (9)
C190.0559 (11)0.0632 (12)0.0440 (9)0.0041 (9)0.0165 (8)0.0081 (8)
Geometric parameters (Å, º) top
O1—C71.2469 (18)C6—H60.9300
O2—C111.2445 (17)C7—C81.434 (2)
O3—C131.3553 (18)C8—C91.381 (2)
O3—H3O0.95 (2)C8—C101.445 (2)
N1—C71.3785 (19)C9—C191.492 (2)
N1—N21.3940 (17)C10—H100.9300
N1—C11.4225 (18)C11—C121.481 (2)
N2—C91.3417 (19)C12—C171.397 (2)
N2—C181.4588 (19)C12—C131.405 (2)
N3—C101.280 (2)C13—C141.385 (2)
N3—N41.3830 (17)C14—C151.370 (2)
N4—C111.3450 (19)C14—H140.9300
N4—H4N0.978 (18)C15—C161.375 (2)
C1—C61.381 (2)C15—H150.9300
C1—C21.384 (2)C16—C171.371 (2)
C2—C31.382 (2)C16—H160.9300
C2—H20.9300C17—H170.9300
C3—C41.372 (2)C18—H18A0.9600
C3—H30.9300C18—H18B0.9600
C4—C51.378 (2)C18—H18C0.9600
C4—H40.9300C19—H19A0.9600
C5—C61.375 (2)C19—H19B0.9600
C5—H50.9300C19—H19C0.9600
C13—O3—H3O102.6 (13)C8—C9—C19129.08 (14)
C7—N1—N2109.30 (12)N3—C10—C8134.81 (14)
C7—N1—C1127.67 (12)N3—C10—H10112.6
N2—N1—C1121.87 (12)C8—C10—H10112.6
C9—N2—N1108.03 (12)O2—C11—N4121.06 (14)
C9—N2—C18126.78 (13)O2—C11—C12120.45 (13)
N1—N2—C18120.37 (13)N4—C11—C12118.47 (13)
C10—N3—N4118.23 (13)C17—C12—C13117.59 (14)
C11—N4—N3116.54 (12)C17—C12—C11124.04 (14)
C11—N4—H4N124.0 (11)C13—C12—C11118.34 (13)
N3—N4—H4N119.4 (11)O3—C13—C14117.70 (14)
C6—C1—C2120.59 (14)O3—C13—C12122.12 (14)
C6—C1—N1118.62 (13)C14—C13—C12120.18 (15)
C2—C1—N1120.77 (14)C15—C14—C13120.58 (16)
C3—C2—C1119.07 (15)C15—C14—H14119.7
C3—C2—H2120.5C13—C14—H14119.7
C1—C2—H2120.5C14—C15—C16120.14 (16)
C4—C3—C2120.46 (15)C14—C15—H15119.9
C4—C3—H3119.8C16—C15—H15119.9
C2—C3—H3119.8C17—C16—C15119.99 (16)
C3—C4—C5119.91 (15)C17—C16—H16120.0
C3—C4—H4120.0C15—C16—H16120.0
C5—C4—H4120.0C16—C17—C12121.51 (16)
C6—C5—C4120.50 (16)C16—C17—H17119.2
C6—C5—H5119.8C12—C17—H17119.2
C4—C5—H5119.8N2—C18—H18A109.5
C5—C6—C1119.35 (15)N2—C18—H18B109.5
C5—C6—H6120.3H18A—C18—H18B109.5
C1—C6—H6120.3N2—C18—H18C109.5
O1—C7—N1122.57 (13)H18A—C18—H18C109.5
O1—C7—C8131.79 (14)H18B—C18—H18C109.5
N1—C7—C8105.59 (13)C9—C19—H19A109.5
C9—C8—C7107.25 (13)C9—C19—H19B109.5
C9—C8—C10122.31 (14)H19A—C19—H19B109.5
C7—C8—C10130.42 (14)C9—C19—H19C109.5
N2—C9—C8109.73 (13)H19A—C19—H19C109.5
N2—C9—C19121.19 (14)H19B—C19—H19C109.5
C7—N1—N2—C93.35 (17)N1—N2—C9—C19178.01 (14)
C1—N1—N2—C9171.97 (13)C18—N2—C9—C1922.9 (2)
C7—N1—N2—C18160.36 (14)C7—C8—C9—N21.00 (18)
C1—N1—N2—C1831.0 (2)C10—C8—C9—N2177.66 (14)
C10—N3—N4—C11178.83 (15)C7—C8—C9—C19179.73 (16)
C7—N1—C1—C652.2 (2)C10—C8—C9—C191.6 (3)
N2—N1—C1—C6141.46 (14)N4—N3—C10—C80.2 (3)
C7—N1—C1—C2128.96 (17)C9—C8—C10—N3177.33 (18)
N2—N1—C1—C237.4 (2)C7—C8—C10—N34.4 (3)
C6—C1—C2—C33.9 (2)N3—N4—C11—O20.7 (2)
N1—C1—C2—C3175.00 (13)N3—N4—C11—C12178.00 (13)
C1—C2—C3—C42.6 (2)O2—C11—C12—C17172.71 (15)
C2—C3—C4—C50.5 (2)N4—C11—C12—C176.0 (2)
C3—C4—C5—C62.4 (2)O2—C11—C12—C135.1 (2)
C4—C5—C6—C11.1 (2)N4—C11—C12—C13176.17 (14)
C2—C1—C6—C52.0 (2)C17—C12—C13—O3179.98 (15)
N1—C1—C6—C5176.85 (14)C11—C12—C13—O32.1 (2)
N2—N1—C7—O1175.00 (15)C17—C12—C13—C140.1 (2)
C1—N1—C7—O17.2 (3)C11—C12—C13—C14177.82 (15)
N2—N1—C7—C82.66 (17)O3—C13—C14—C15179.16 (16)
C1—N1—C7—C8170.43 (14)C12—C13—C14—C150.8 (3)
O1—C7—C8—C9176.30 (18)C13—C14—C15—C160.8 (3)
N1—C7—C8—C91.05 (17)C14—C15—C16—C170.1 (3)
O1—C7—C8—C102.2 (3)C15—C16—C17—C121.0 (3)
N1—C7—C8—C10179.56 (16)C13—C12—C17—C161.0 (3)
N1—N2—C9—C82.65 (17)C11—C12—C17—C16176.83 (16)
C18—N2—C9—C8157.76 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O20.95 (2)1.62 (2)2.5076 (17)155 (2)
N4—H4N···O10.978 (18)1.763 (18)2.7140 (16)163.3 (16)

Experimental details

Crystal data
Chemical formulaC19H18N4O3
Mr350.37
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)25.2357 (6), 8.5624 (2), 16.0329 (4)
β (°) 104.048 (1)
V3)3360.75 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.22 × 0.06 × 0.05
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.980, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
16063, 4174, 2653
Rint0.029
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.119, 1.02
No. of reflections4174
No. of parameters243
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.19

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O20.95 (2)1.62 (2)2.5076 (17)155 (2)
N4—H4N···O10.978 (18)1.763 (18)2.7140 (16)163.3 (16)
 

Acknowledgements

MA expresses his gratitude to the Pakistan Council of Scientific and Industrial Research Laboratories Complex, Karachi, the Department of Chemistry, University of Karachi, and the Department of Chemistry, Govt. College University Lahore, for providing financial support, research facilities and X-ray diffraction facilities, respectively.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLau, K. Y., Mayr, A. & Cheung, K. K. (1999). Inorg. Chim. Acta, 285, 223–332.  Web of Science CSD CrossRef CAS Google Scholar
First citationMore, S. V., Dongarkhadekar, D. V., Chavan, R. N., Jadhav, W. N., Bhusare, S. R. & Pawar, R. P. (2002). J. Indian Chem. Soc. 79, 768–769.  CAS Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & de Clercq, E. (1999). Pharm. Acta Helv. 74, 11–17.  CrossRef PubMed CAS Google Scholar
First citationSafwat, H. M., Ragab, F. A., Eid, N. M. & Abdel, G. M. (1988). Egypt. J. Pharm. Sci. 29, 99–110.  CAS Google Scholar
First citationSharma, K. P., Jolly, V. S. & Phatak, P. (1998). J. Ultrascientist Phys. Sci. 10, 263–266.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds