metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m156-m157

Butyl­bis­­(di­methyl­glyoximato-κ2N,N′)(pyridine-κN)cobalt(III)

aDQIAQF/INQUIMAE, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, p. 3, EHA1428 Buenos Aires, Argentina, and bFaculty of Science and Technology, Purbanchal University, Biratnagar, Nepal
*Correspondence e-mail: skumarchem01@gmail.com

(Received 27 December 2011; accepted 9 January 2012; online 14 January 2012)

In the title compound, [Co(C4H9)(C4H7N2O2)2(C5H5N)], which was prepared as a model complex of vitamin B12, the CoIII atom is coordinated by a butyl group, a pyridine and two N,N′-bidentate dimethyl­glyoximate ligands in a distorted octa­hedral geometry. The bis-chelating dimethyl­glyoximate ligands, which occupy equatorial sites, are linked by strong intra­molecular O—H⋯O hydrogen bonds.

Related literature

For general background to organocobaloximes, see: Schrauzer & Kohnle (1964[Schrauzer, G. N. & Kohnle, J. (1964). Chem. Ber. 97, 3056-3063.]); Schrauzer (1968[Schrauzer, G. N. (1968). Inorg. Synth. 11, 61-70.], 1976[Schrauzer, G. N. (1976). Angew. Chem., Int. Ed. Engl. 15, 417-426.]). For applications of cobaloximes, see: Rockenbaur et al. (1982[Rockenbaur, A., Eyor, M., Kwielinsci, M. & Tyrlik, S. (1982). Inorg. Chim. Acta, 58, 237-242.]); Giese (1986[Giese, B. (1986). Radicals in Organic Synthesis: Formation of Carbon-Carbon Bonds. Oxford: Pergamon Press.]). For structure–property relationships of cobaloximes, see: Gupta et al. (2004[Gupta, B. D., Vijaikanth, V. & Singh, V. (2004). Organometallics, 23, 2069-2079.]). For related structures, see: Mandal & Gupta (2005[Mandal, D. & Gupta, B. D. (2005). Organometallics, 24, 1501-1510.], 2007[Mandal, D. & Gupta, B. D. (2007). Organometallics, 26, 658-670.]); Kumar & Gupta (2011[Kumar, S. & Gupta, B. D. (2011). Inorg. Chem. 50, 9207-9209.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C4H9)(C4H7N2O2)2(C5H5N)]

  • Mr = 425.37

  • Monoclinic, P n

  • a = 8.365 (2) Å

  • b = 10.408 (2) Å

  • c = 11.487 (3) Å

  • β = 91.768 (4)°

  • V = 999.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.89 mm−1

  • T = 100 K

  • 0.22 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.828, Tmax = 0.871

  • 5174 measured reflections

  • 3400 independent reflections

  • 3144 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.100

  • S = 1.05

  • 3400 reflections

  • 256 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.90 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1551 Friedel pairs

  • Flack parameter: 0.038 (16)

Table 1
Selected bond lengths (Å)

N1—Co1 1.887 (4)
N2—Co1 1.884 (4)
N3—Co1 1.873 (4)
N4—Co1 1.881 (4)
N5—Co1 2.061 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4 0.86 (2) 1.61 (2) 2.465 (3) 174 (6)
O3—H2⋯O2 0.87 (2) 1.60 (2) 2.465 (3) 171 (6)

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Comment top

Organocobaloximes have extensively been used as structural and functional mimic for vitamin B12 ever since these were first introduced by Schrauzer four decades ago as model of vitamin B12 (Schrauzer & Kohnle, 1964; Schrauzer, 1968, 1976). These represent a unique class of compounds in organometallic and bioinorganic chemistry. These have rich coordination chemistry, application in organic synthesis and catalysis, and their stability and redox properties are of particular interest (Rockenbaur et al., 1982; Giese, 1986). The general formula of cobaloximes is RCo(L)B, where R is an organic group, bonded to cobalt, B is an axial base trans to the organic group, and L is a monoanionic dioxime ligand. Dimethylglyoximate (dmg) is a familiar ligand with excellent coordination capability to generate mono-, bi- or trinuclear complexes. Cobaloximes are best characterized by NMR and X-ray studies. Most of the recent studies on cobaloximes have been focused on their structure–property relationships (Gupta et al., 2004). We synthesized the title compound and determined its structure.

In the title compound, the cobalt atom is in a distorted octahedral geometry (Table 1) by four N atoms of the N,N-bidentate dimethylglyoximate ligands in the equatorial plane, and by a butyl group and a nitrogen atom of pyridine in mutually trans positions [N5—Co1—C14 = 177.15 (16)°; Fig. 1]. The Co—N(dmg) bonds range in length from 1.872 (3) to 1.887 (3) Å. The plane of the four nitrogen atoms is particular planar. The O—H···O bridge (Table 2) in the structure is very common in cobaloxime derivatives (Mandal & Gupta, 2005, 2007; Kumar & Gupta, 2011). In packing diagram (Fig. 2), one unit cell contains two molecules.

Related literature top

For general background to organocobaloximes, see: Schrauzer & Kohnle (1964); Schrauzer (1968, 1976). For applications of cobaloximes, see: Rockenbaur et al. (1982); Giese (1986). For structure–property relationships of cobaloximes, see: Gupta et al. (2004). For related structures, see: Mandal & Gupta (2005, 2007); Kumar & Gupta (2011).

Experimental top

A solution of ClCo(dmgH)2py (1 mmol) in 10 ml of methanol was purged thoroughly with N2 for 20 min and was cooled to 0 °C with stirring. The solution turned deep blue after the addition of a few drops of aqueous NaOH followed by sodium borohydride (1.5 mmol in 0.5 ml of water). The color of the solution turned orange-red on the addition of bromobutane (1.5 mmol). The reaction was stirred 1 h at 0 °C then poured into 20 ml chilled water. The resulting orange-red precipitate was filtered, washed with water, and dried. The crude product was purified on the silica gel column using dichloromethane. The obtained orange colored compound was recrystallized from dichloromethane and methanol. After three days, orange colored crystals obtained which were suitable for single-crystal data collection.

Refinement top

Atoms H1 and H2 were located in a difference Fourier map and were refined with the O—H distance restraints of 0.84 (2) Å. Other hydrogen atoms were placed in calculated positions and included in the refinement in a riding-model approximation, with C—H = 0.95–0.99 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: DIAMOND (Brandenburg, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title compound with 50% probability displacement ellipsoids for non-hydrogen atoms.
[Figure 2] Fig. 2. Packing diagram of the title compound in the unit cell. Dashed lines indicate the O—H···O hydrogen bonds.
Butylbis(dimethylglyoximato-κ2N,N')(pyridine- κN)cobalt(III) top
Crystal data top
[Co(C4H9)(C4H7N2O2)2(C5H5N)]F(000) = 448
Mr = 425.37Dx = 1.413 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2yacCell parameters from 1911 reflections
a = 8.365 (2) Åθ = 2.6–28.2°
b = 10.408 (2) ŵ = 0.89 mm1
c = 11.487 (3) ÅT = 100 K
β = 91.768 (4)°Prism, orange
V = 999.7 (4) Å30.22 × 0.18 × 0.16 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
3400 independent reflections
Radiation source: fine-focus sealed tube3144 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and w scansθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1010
Tmin = 0.828, Tmax = 0.871k = 128
5174 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.048P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3400 reflectionsΔρmax = 0.90 e Å3
256 parametersΔρmin = 0.25 e Å3
4 restraintsAbsolute structure: Flack (1983), 1551 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.038 (16)
Crystal data top
[Co(C4H9)(C4H7N2O2)2(C5H5N)]V = 999.7 (4) Å3
Mr = 425.37Z = 2
Monoclinic, PnMo Kα radiation
a = 8.365 (2) ŵ = 0.89 mm1
b = 10.408 (2) ÅT = 100 K
c = 11.487 (3) Å0.22 × 0.18 × 0.16 mm
β = 91.768 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3400 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3144 reflections with I > 2σ(I)
Tmin = 0.828, Tmax = 0.871Rint = 0.031
5174 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100Δρmax = 0.90 e Å3
S = 1.05Δρmin = 0.25 e Å3
3400 reflectionsAbsolute structure: Flack (1983), 1551 Friedel pairs
256 parametersAbsolute structure parameter: 0.038 (16)
4 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5829 (5)0.3423 (5)0.8074 (3)0.0196 (11)
C20.5910 (5)0.2031 (5)0.8137 (4)0.0211 (11)
C30.7089 (6)0.4250 (5)0.7546 (4)0.0340 (13)
H3A0.71450.40590.67130.051*
H3B0.81270.40730.79310.051*
H3C0.68150.51570.76500.051*
C40.7261 (5)0.1253 (5)0.7673 (4)0.0334 (12)
H4A0.71550.03570.79220.050*
H4B0.82820.16000.79740.050*
H4C0.72290.12940.68200.050*
C50.0468 (5)0.1913 (5)1.0286 (4)0.0224 (11)
C60.0360 (5)0.3328 (5)1.0188 (3)0.0218 (12)
C70.0980 (6)0.4091 (5)1.0639 (4)0.0284 (12)
H7A0.09280.49701.03360.043*
H7B0.09030.41101.14920.043*
H7C0.19980.36981.03880.043*
C80.0731 (6)0.1105 (5)1.0866 (4)0.0323 (12)
H8A0.07430.02451.05180.048*
H8B0.17920.14961.07640.048*
H8C0.04510.10391.16980.048*
C90.1611 (4)0.1295 (4)0.7124 (3)0.0202 (8)
H90.18990.05610.75760.024*
C100.0893 (4)0.1114 (4)0.6052 (3)0.0235 (8)
H100.06910.02720.57650.028*
C110.0463 (5)0.2182 (4)0.5392 (3)0.0234 (9)
H110.00390.20820.46440.028*
C120.0774 (5)0.3386 (4)0.5834 (3)0.0237 (8)
H120.04910.41330.53990.028*
C130.1511 (4)0.3484 (4)0.6931 (3)0.0222 (8)
H130.17250.43160.72380.027*
C140.4381 (5)0.2916 (4)1.0654 (4)0.0230 (10)
H14A0.54800.26021.05290.028*
H14B0.44630.38531.07890.028*
C150.3839 (4)0.2318 (4)1.1776 (3)0.0197 (8)
H15A0.37730.13741.16820.024*
H15B0.27570.26401.19490.024*
C160.4999 (5)0.2642 (4)1.2799 (3)0.0255 (9)
H16A0.60550.22561.26500.031*
H16B0.51390.35851.28400.031*
C170.4431 (6)0.2162 (4)1.3960 (3)0.0351 (10)
H17A0.52160.23941.45760.053*
H17B0.43120.12261.39330.053*
H17C0.33980.25561.41240.053*
N10.4540 (4)0.3883 (4)0.8523 (3)0.0197 (9)
N20.4708 (4)0.1519 (4)0.8647 (3)0.0198 (9)
N30.1770 (4)0.1474 (4)0.9832 (3)0.0186 (9)
N40.1586 (4)0.3816 (4)0.9692 (3)0.0174 (9)
N50.1929 (5)0.2471 (3)0.7568 (3)0.0181 (8)
O10.1700 (4)0.5107 (3)0.9556 (2)0.0255 (8)
O20.2086 (4)0.0191 (3)0.9865 (2)0.0259 (8)
O30.4583 (4)0.0245 (3)0.8781 (3)0.0266 (8)
O40.4259 (4)0.5151 (3)0.8549 (2)0.0242 (8)
Co10.31315 (6)0.26668 (4)0.91509 (5)0.01707 (14)
H10.261 (4)0.517 (5)0.923 (5)0.072 (19)*
H20.374 (5)0.016 (6)0.921 (5)0.09 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.010 (2)0.034 (3)0.015 (2)0.006 (2)0.0007 (17)0.000 (2)
C20.008 (2)0.041 (3)0.014 (2)0.004 (2)0.0023 (17)0.001 (2)
C30.022 (3)0.051 (3)0.029 (2)0.011 (2)0.011 (2)0.007 (2)
C40.024 (3)0.045 (3)0.031 (3)0.005 (2)0.006 (2)0.004 (2)
C50.022 (3)0.030 (3)0.016 (2)0.003 (2)0.0005 (18)0.003 (2)
C60.014 (2)0.035 (3)0.016 (2)0.001 (2)0.0005 (17)0.005 (2)
C70.019 (2)0.044 (3)0.022 (2)0.005 (2)0.0013 (19)0.005 (2)
C80.021 (2)0.044 (3)0.033 (3)0.011 (2)0.0120 (19)0.000 (2)
C90.019 (2)0.019 (2)0.0230 (19)0.0007 (15)0.0031 (15)0.0017 (15)
C100.021 (2)0.022 (2)0.028 (2)0.0009 (16)0.0005 (16)0.0066 (16)
C110.016 (2)0.035 (2)0.0193 (19)0.0010 (18)0.0008 (16)0.0064 (17)
C120.022 (2)0.025 (2)0.0245 (19)0.0074 (17)0.0038 (15)0.0073 (17)
C130.019 (2)0.022 (2)0.026 (2)0.0011 (16)0.0002 (16)0.0016 (16)
C140.016 (2)0.034 (3)0.018 (2)0.000 (2)0.0008 (16)0.0003 (19)
C150.0129 (19)0.028 (2)0.0178 (19)0.0011 (15)0.0008 (15)0.0010 (15)
C160.021 (2)0.038 (3)0.017 (2)0.0047 (19)0.0017 (17)0.0026 (17)
C170.044 (3)0.044 (3)0.017 (2)0.002 (2)0.0005 (18)0.0068 (18)
N10.0166 (19)0.029 (3)0.0132 (17)0.0046 (16)0.0033 (14)0.0018 (15)
N20.018 (2)0.023 (2)0.0180 (17)0.0051 (16)0.0003 (14)0.0023 (14)
N30.019 (2)0.021 (2)0.0160 (17)0.0008 (15)0.0001 (14)0.0036 (14)
N40.0196 (19)0.018 (2)0.0143 (17)0.0015 (16)0.0019 (14)0.0003 (14)
N50.0103 (17)0.032 (2)0.0126 (18)0.0012 (14)0.0030 (13)0.0020 (15)
O10.0329 (19)0.0201 (18)0.0240 (16)0.0030 (14)0.0065 (14)0.0001 (12)
O20.0302 (18)0.0167 (16)0.0308 (17)0.0035 (13)0.0004 (13)0.0030 (13)
O30.0254 (18)0.0261 (18)0.0284 (18)0.0080 (13)0.0035 (14)0.0016 (13)
O40.0290 (17)0.0201 (18)0.0238 (15)0.0087 (14)0.0032 (12)0.0009 (12)
Co10.0135 (2)0.0219 (2)0.0160 (2)0.0002 (4)0.00278 (15)0.0001 (4)
Geometric parameters (Å, º) top
C1—N11.301 (6)C12—C131.390 (5)
C1—C21.452 (8)C12—H120.9500
C1—C31.503 (6)C13—N51.324 (5)
C2—N21.294 (6)C13—H130.9500
C2—C41.502 (6)C14—C151.513 (5)
C3—H3A0.9800C14—Co12.008 (4)
C3—H3B0.9800C14—H14A0.9900
C3—H3C0.9800C14—H14B0.9900
C4—H4A0.9800C15—C161.538 (5)
C4—H4B0.9800C15—H15A0.9900
C4—H4C0.9800C15—H15B0.9900
C5—N31.304 (6)C16—C171.514 (5)
C5—C61.480 (8)C16—H16A0.9900
C5—C81.482 (6)C16—H16B0.9900
C6—N41.292 (5)C17—H17A0.9800
C6—C71.480 (6)C17—H17B0.9800
C7—H7A0.9800C17—H17C0.9800
C7—H7B0.9800N1—O41.342 (5)
C7—H7C0.9800N1—Co11.887 (4)
C8—H8A0.9800N2—O31.340 (5)
C8—H8B0.9800N2—Co11.884 (4)
C8—H8C0.9800N3—O21.361 (5)
C9—N51.349 (5)N3—Co11.873 (4)
C9—C101.366 (5)N4—O11.357 (5)
C9—H90.9500N4—Co11.881 (4)
C10—C111.387 (5)N5—Co12.061 (4)
C10—H100.9500O1—H10.86 (2)
C11—C121.374 (5)O3—H20.87 (2)
C11—H110.9500
N1—C1—C2112.7 (4)C15—C14—H14B107.0
N1—C1—C3123.3 (5)Co1—C14—H14B107.0
C2—C1—C3124.0 (4)H14A—C14—H14B106.8
N2—C2—C1113.4 (4)C14—C15—C16111.2 (3)
N2—C2—C4122.9 (5)C14—C15—H15A109.4
C1—C2—C4123.7 (4)C16—C15—H15A109.4
C1—C3—H3A109.5C14—C15—H15B109.4
C1—C3—H3B109.5C16—C15—H15B109.4
H3A—C3—H3B109.5H15A—C15—H15B108.0
C1—C3—H3C109.5C17—C16—C15113.2 (4)
H3A—C3—H3C109.5C17—C16—H16A108.9
H3B—C3—H3C109.5C15—C16—H16A108.9
C2—C4—H4A109.5C17—C16—H16B108.9
C2—C4—H4B109.5C15—C16—H16B108.9
H4A—C4—H4B109.5H16A—C16—H16B107.8
C2—C4—H4C109.5C16—C17—H17A109.5
H4A—C4—H4C109.5C16—C17—H17B109.5
H4B—C4—H4C109.5H17A—C17—H17B109.5
N3—C5—C6111.6 (4)C16—C17—H17C109.5
N3—C5—C8124.5 (5)H17A—C17—H17C109.5
C6—C5—C8123.9 (4)H17B—C17—H17C109.5
N4—C6—C5112.2 (4)C1—N1—O4121.3 (4)
N4—C6—C7124.3 (5)C1—N1—Co1116.1 (4)
C5—C6—C7123.5 (4)O4—N1—Co1122.6 (3)
C6—C7—H7A109.5C2—N2—O3121.6 (4)
C6—C7—H7B109.5C2—N2—Co1116.1 (4)
H7A—C7—H7B109.5O3—N2—Co1122.3 (3)
C6—C7—H7C109.5C5—N3—O2119.8 (4)
H7A—C7—H7C109.5C5—N3—Co1117.4 (4)
H7B—C7—H7C109.5O2—N3—Co1122.8 (3)
C5—C8—H8A109.5C6—N4—O1120.0 (4)
C5—C8—H8B109.5C6—N4—Co1117.3 (3)
H8A—C8—H8B109.5O1—N4—Co1122.7 (3)
C5—C8—H8C109.5C13—N5—C9117.9 (4)
H8A—C8—H8C109.5C13—N5—Co1121.4 (3)
H8B—C8—H8C109.5C9—N5—Co1120.5 (3)
N5—C9—C10122.8 (4)N4—O1—H1101 (4)
N5—C9—H9118.6N2—O3—H2104 (4)
C10—C9—H9118.6N3—Co1—N481.38 (19)
C9—C10—C11118.8 (3)N3—Co1—N298.56 (11)
C9—C10—H10120.6N4—Co1—N2178.50 (16)
C11—C10—H10120.6N3—Co1—N1177.73 (16)
C12—C11—C10119.1 (4)N4—Co1—N198.26 (11)
C12—C11—H11120.4N2—Co1—N181.7 (2)
C10—C11—H11120.4N3—Co1—C1491.91 (16)
C11—C12—C13118.4 (4)N4—Co1—C1488.78 (17)
C11—C12—H12120.8N2—Co1—C1489.72 (17)
C13—C12—H12120.8N1—Co1—C1485.84 (16)
N5—C13—C12123.0 (4)N3—Co1—N590.94 (14)
N5—C13—H13118.5N4—Co1—N591.88 (14)
C12—C13—H13118.5N2—Co1—N589.62 (14)
C15—C14—Co1121.2 (3)N1—Co1—N591.32 (14)
C15—C14—H14A107.0C14—Co1—N5177.14 (18)
Co1—C14—H14A107.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.86 (2)1.61 (2)2.465 (3)174 (6)
O3—H2···O20.87 (2)1.60 (2)2.465 (3)171 (6)

Experimental details

Crystal data
Chemical formula[Co(C4H9)(C4H7N2O2)2(C5H5N)]
Mr425.37
Crystal system, space groupMonoclinic, Pn
Temperature (K)100
a, b, c (Å)8.365 (2), 10.408 (2), 11.487 (3)
β (°) 91.768 (4)
V3)999.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.22 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.828, 0.871
No. of measured, independent and
observed [I > 2σ(I)] reflections
5174, 3400, 3144
Rint0.031
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.100, 1.05
No. of reflections3400
No. of parameters256
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.90, 0.25
Absolute structureFlack (1983), 1551 Friedel pairs
Absolute structure parameter0.038 (16)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Selected bond lengths (Å) top
N1—Co11.887 (4)N4—Co11.881 (4)
N2—Co11.884 (4)N5—Co12.061 (4)
N3—Co11.873 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O40.86 (2)1.61 (2)2.465 (3)174 (6)
O3—H2···O20.87 (2)1.60 (2)2.465 (3)171 (6)
 

Footnotes

This article is dedicated to the late Professor B. D. Gupta.

Acknowledgements

The authors are thankul to the IIT Kanpur, India, for the X-ray data collection and SK thanks TWAS and CONICET, Argentina, for financial support.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGiese, B. (1986). Radicals in Organic Synthesis: Formation of Carbon–Carbon Bonds. Oxford: Pergamon Press.  Google Scholar
First citationGupta, B. D., Vijaikanth, V. & Singh, V. (2004). Organometallics, 23, 2069–2079.  Web of Science CSD CrossRef CAS Google Scholar
First citationKumar, S. & Gupta, B. D. (2011). Inorg. Chem. 50, 9207–9209.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMandal, D. & Gupta, B. D. (2005). Organometallics, 24, 1501–1510.  Web of Science CSD CrossRef CAS Google Scholar
First citationMandal, D. & Gupta, B. D. (2007). Organometallics, 26, 658–670.  Web of Science CSD CrossRef CAS Google Scholar
First citationRockenbaur, A., Eyor, M., Kwielinsci, M. & Tyrlik, S. (1982). Inorg. Chim. Acta, 58, 237–242.  Google Scholar
First citationSchrauzer, G. N. (1968). Inorg. Synth. 11, 61–70.  CrossRef CAS Google Scholar
First citationSchrauzer, G. N. (1976). Angew. Chem., Int. Ed. Engl. 15, 417–426.  Google Scholar
First citationSchrauzer, G. N. & Kohnle, J. (1964). Chem. Ber. 97, 3056–3063.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m156-m157
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds