metal-organic compounds
Butylbis(dimethylglyoximato-κ2N,N′)(pyridine-κN)cobalt(III)†
aDQIAQF/INQUIMAE, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, p. 3, EHA1428 Buenos Aires, Argentina, and bFaculty of Science and Technology, Purbanchal University, Biratnagar, Nepal
*Correspondence e-mail: skumarchem01@gmail.com
In the title compound, [Co(C4H9)(C4H7N2O2)2(C5H5N)], which was prepared as a model complex of vitamin B12, the CoIII atom is coordinated by a butyl group, a pyridine and two N,N′-bidentate dimethylglyoximate ligands in a distorted octahedral geometry. The bis-chelating dimethylglyoximate ligands, which occupy equatorial sites, are linked by strong intramolecular O—H⋯O hydrogen bonds.
Related literature
For general background to organocobaloximes, see: Schrauzer & Kohnle (1964); Schrauzer (1968, 1976). For applications of cobaloximes, see: Rockenbaur et al. (1982); Giese (1986). For structure–property relationships of cobaloximes, see: Gupta et al. (2004). For related structures, see: Mandal & Gupta (2005, 2007); Kumar & Gupta (2011).
Experimental
Crystal data
|
|
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: DIAMOND (Brandenburg, 1999).
Supporting information
10.1107/S1600536812000967/is5041sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812000967/is5041Isup2.hkl
A solution of ClCo(dmgH)2py (1 mmol) in 10 ml of methanol was purged thoroughly with N2 for 20 min and was cooled to 0 °C with stirring. The solution turned deep blue after the addition of a few drops of aqueous NaOH followed by sodium borohydride (1.5 mmol in 0.5 ml of water). The color of the solution turned orange-red on the addition of bromobutane (1.5 mmol). The reaction was stirred 1 h at 0 °C then poured into 20 ml chilled water. The resulting orange-red precipitate was filtered, washed with water, and dried. The crude product was purified on the silica gel column using dichloromethane. The obtained orange colored compound was recrystallized from dichloromethane and methanol. After three days, orange colored crystals obtained which were suitable for single-crystal data collection.
Atoms H1 and H2 were located in a difference Fourier map and were refined with the O—H distance restraints of 0.84 (2) Å. Other hydrogen atoms were placed in calculated positions and included in the
in a riding-model approximation, with C—H = 0.95–0.99 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: DIAMOND (Brandenburg, 1999).[Co(C4H9)(C4H7N2O2)2(C5H5N)] | F(000) = 448 |
Mr = 425.37 | Dx = 1.413 Mg m−3 |
Monoclinic, Pn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P -2yac | Cell parameters from 1911 reflections |
a = 8.365 (2) Å | θ = 2.6–28.2° |
b = 10.408 (2) Å | µ = 0.89 mm−1 |
c = 11.487 (3) Å | T = 100 K |
β = 91.768 (4)° | Prism, orange |
V = 999.7 (4) Å3 | 0.22 × 0.18 × 0.16 mm |
Z = 2 |
Bruker SMART CCD area-detector diffractometer | 3400 independent reflections |
Radiation source: fine-focus sealed tube | 3144 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
ϕ and w scans | θmax = 25.5°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −10→10 |
Tmin = 0.828, Tmax = 0.871 | k = −12→8 |
5174 measured reflections | l = −13→13 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.042 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.100 | w = 1/[σ2(Fo2) + (0.048P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
3400 reflections | Δρmax = 0.90 e Å−3 |
256 parameters | Δρmin = −0.25 e Å−3 |
4 restraints | Absolute structure: Flack (1983), 1551 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.038 (16) |
[Co(C4H9)(C4H7N2O2)2(C5H5N)] | V = 999.7 (4) Å3 |
Mr = 425.37 | Z = 2 |
Monoclinic, Pn | Mo Kα radiation |
a = 8.365 (2) Å | µ = 0.89 mm−1 |
b = 10.408 (2) Å | T = 100 K |
c = 11.487 (3) Å | 0.22 × 0.18 × 0.16 mm |
β = 91.768 (4)° |
Bruker SMART CCD area-detector diffractometer | 3400 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 3144 reflections with I > 2σ(I) |
Tmin = 0.828, Tmax = 0.871 | Rint = 0.031 |
5174 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.100 | Δρmax = 0.90 e Å−3 |
S = 1.05 | Δρmin = −0.25 e Å−3 |
3400 reflections | Absolute structure: Flack (1983), 1551 Friedel pairs |
256 parameters | Absolute structure parameter: 0.038 (16) |
4 restraints |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5829 (5) | 0.3423 (5) | 0.8074 (3) | 0.0196 (11) | |
C2 | 0.5910 (5) | 0.2031 (5) | 0.8137 (4) | 0.0211 (11) | |
C3 | 0.7089 (6) | 0.4250 (5) | 0.7546 (4) | 0.0340 (13) | |
H3A | 0.7145 | 0.4059 | 0.6713 | 0.051* | |
H3B | 0.8127 | 0.4073 | 0.7931 | 0.051* | |
H3C | 0.6815 | 0.5157 | 0.7650 | 0.051* | |
C4 | 0.7261 (5) | 0.1253 (5) | 0.7673 (4) | 0.0334 (12) | |
H4A | 0.7155 | 0.0357 | 0.7922 | 0.050* | |
H4B | 0.8282 | 0.1600 | 0.7974 | 0.050* | |
H4C | 0.7229 | 0.1294 | 0.6820 | 0.050* | |
C5 | 0.0468 (5) | 0.1913 (5) | 1.0286 (4) | 0.0224 (11) | |
C6 | 0.0360 (5) | 0.3328 (5) | 1.0188 (3) | 0.0218 (12) | |
C7 | −0.0980 (6) | 0.4091 (5) | 1.0639 (4) | 0.0284 (12) | |
H7A | −0.0928 | 0.4970 | 1.0336 | 0.043* | |
H7B | −0.0903 | 0.4110 | 1.1492 | 0.043* | |
H7C | −0.1998 | 0.3698 | 1.0388 | 0.043* | |
C8 | −0.0731 (6) | 0.1105 (5) | 1.0866 (4) | 0.0323 (12) | |
H8A | −0.0743 | 0.0245 | 1.0518 | 0.048* | |
H8B | −0.1792 | 0.1496 | 1.0764 | 0.048* | |
H8C | −0.0451 | 0.1039 | 1.1698 | 0.048* | |
C9 | 0.1611 (4) | 0.1295 (4) | 0.7124 (3) | 0.0202 (8) | |
H9 | 0.1899 | 0.0561 | 0.7576 | 0.024* | |
C10 | 0.0893 (4) | 0.1114 (4) | 0.6052 (3) | 0.0235 (8) | |
H10 | 0.0691 | 0.0272 | 0.5765 | 0.028* | |
C11 | 0.0463 (5) | 0.2182 (4) | 0.5392 (3) | 0.0234 (9) | |
H11 | −0.0039 | 0.2082 | 0.4644 | 0.028* | |
C12 | 0.0774 (5) | 0.3386 (4) | 0.5834 (3) | 0.0237 (8) | |
H12 | 0.0491 | 0.4133 | 0.5399 | 0.028* | |
C13 | 0.1511 (4) | 0.3484 (4) | 0.6931 (3) | 0.0222 (8) | |
H13 | 0.1725 | 0.4316 | 0.7238 | 0.027* | |
C14 | 0.4381 (5) | 0.2916 (4) | 1.0654 (4) | 0.0230 (10) | |
H14A | 0.5480 | 0.2602 | 1.0529 | 0.028* | |
H14B | 0.4463 | 0.3853 | 1.0789 | 0.028* | |
C15 | 0.3839 (4) | 0.2318 (4) | 1.1776 (3) | 0.0197 (8) | |
H15A | 0.3773 | 0.1374 | 1.1682 | 0.024* | |
H15B | 0.2757 | 0.2640 | 1.1949 | 0.024* | |
C16 | 0.4999 (5) | 0.2642 (4) | 1.2799 (3) | 0.0255 (9) | |
H16A | 0.6055 | 0.2256 | 1.2650 | 0.031* | |
H16B | 0.5139 | 0.3585 | 1.2840 | 0.031* | |
C17 | 0.4431 (6) | 0.2162 (4) | 1.3960 (3) | 0.0351 (10) | |
H17A | 0.5216 | 0.2394 | 1.4576 | 0.053* | |
H17B | 0.4312 | 0.1226 | 1.3933 | 0.053* | |
H17C | 0.3398 | 0.2556 | 1.4124 | 0.053* | |
N1 | 0.4540 (4) | 0.3883 (4) | 0.8523 (3) | 0.0197 (9) | |
N2 | 0.4708 (4) | 0.1519 (4) | 0.8647 (3) | 0.0198 (9) | |
N3 | 0.1770 (4) | 0.1474 (4) | 0.9832 (3) | 0.0186 (9) | |
N4 | 0.1586 (4) | 0.3816 (4) | 0.9692 (3) | 0.0174 (9) | |
N5 | 0.1929 (5) | 0.2471 (3) | 0.7568 (3) | 0.0181 (8) | |
O1 | 0.1700 (4) | 0.5107 (3) | 0.9556 (2) | 0.0255 (8) | |
O2 | 0.2086 (4) | 0.0191 (3) | 0.9865 (2) | 0.0259 (8) | |
O3 | 0.4583 (4) | 0.0245 (3) | 0.8781 (3) | 0.0266 (8) | |
O4 | 0.4259 (4) | 0.5151 (3) | 0.8549 (2) | 0.0242 (8) | |
Co1 | 0.31315 (6) | 0.26668 (4) | 0.91509 (5) | 0.01707 (14) | |
H1 | 0.261 (4) | 0.517 (5) | 0.923 (5) | 0.072 (19)* | |
H2 | 0.374 (5) | 0.016 (6) | 0.921 (5) | 0.09 (2)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.010 (2) | 0.034 (3) | 0.015 (2) | −0.006 (2) | −0.0007 (17) | 0.000 (2) |
C2 | 0.008 (2) | 0.041 (3) | 0.014 (2) | 0.004 (2) | 0.0023 (17) | −0.001 (2) |
C3 | 0.022 (3) | 0.051 (3) | 0.029 (2) | −0.011 (2) | 0.011 (2) | 0.007 (2) |
C4 | 0.024 (3) | 0.045 (3) | 0.031 (3) | 0.005 (2) | 0.006 (2) | −0.004 (2) |
C5 | 0.022 (3) | 0.030 (3) | 0.016 (2) | −0.003 (2) | −0.0005 (18) | −0.003 (2) |
C6 | 0.014 (2) | 0.035 (3) | 0.016 (2) | −0.001 (2) | 0.0005 (17) | −0.005 (2) |
C7 | 0.019 (2) | 0.044 (3) | 0.022 (2) | 0.005 (2) | −0.0013 (19) | −0.005 (2) |
C8 | 0.021 (2) | 0.044 (3) | 0.033 (3) | −0.011 (2) | 0.0120 (19) | 0.000 (2) |
C9 | 0.019 (2) | 0.019 (2) | 0.0230 (19) | 0.0007 (15) | 0.0031 (15) | −0.0017 (15) |
C10 | 0.021 (2) | 0.022 (2) | 0.028 (2) | −0.0009 (16) | 0.0005 (16) | −0.0066 (16) |
C11 | 0.016 (2) | 0.035 (2) | 0.0193 (19) | −0.0010 (18) | 0.0008 (16) | −0.0064 (17) |
C12 | 0.022 (2) | 0.025 (2) | 0.0245 (19) | 0.0074 (17) | 0.0038 (15) | 0.0073 (17) |
C13 | 0.019 (2) | 0.022 (2) | 0.026 (2) | −0.0011 (16) | 0.0002 (16) | −0.0016 (16) |
C14 | 0.016 (2) | 0.034 (3) | 0.018 (2) | 0.000 (2) | −0.0008 (16) | 0.0003 (19) |
C15 | 0.0129 (19) | 0.028 (2) | 0.0178 (19) | −0.0011 (15) | −0.0008 (15) | 0.0010 (15) |
C16 | 0.021 (2) | 0.038 (3) | 0.017 (2) | −0.0047 (19) | 0.0017 (17) | −0.0026 (17) |
C17 | 0.044 (3) | 0.044 (3) | 0.017 (2) | −0.002 (2) | −0.0005 (18) | 0.0068 (18) |
N1 | 0.0166 (19) | 0.029 (3) | 0.0132 (17) | −0.0046 (16) | −0.0033 (14) | 0.0018 (15) |
N2 | 0.018 (2) | 0.023 (2) | 0.0180 (17) | 0.0051 (16) | −0.0003 (14) | 0.0023 (14) |
N3 | 0.019 (2) | 0.021 (2) | 0.0160 (17) | 0.0008 (15) | 0.0001 (14) | 0.0036 (14) |
N4 | 0.0196 (19) | 0.018 (2) | 0.0143 (17) | −0.0015 (16) | 0.0019 (14) | −0.0003 (14) |
N5 | 0.0103 (17) | 0.032 (2) | 0.0126 (18) | −0.0012 (14) | 0.0030 (13) | −0.0020 (15) |
O1 | 0.0329 (19) | 0.0201 (18) | 0.0240 (16) | 0.0030 (14) | 0.0065 (14) | 0.0001 (12) |
O2 | 0.0302 (18) | 0.0167 (16) | 0.0308 (17) | −0.0035 (13) | −0.0004 (13) | 0.0030 (13) |
O3 | 0.0254 (18) | 0.0261 (18) | 0.0284 (18) | 0.0080 (13) | 0.0035 (14) | 0.0016 (13) |
O4 | 0.0290 (17) | 0.0201 (18) | 0.0238 (15) | −0.0087 (14) | 0.0032 (12) | −0.0009 (12) |
Co1 | 0.0135 (2) | 0.0219 (2) | 0.0160 (2) | −0.0002 (4) | 0.00278 (15) | 0.0001 (4) |
C1—N1 | 1.301 (6) | C12—C13 | 1.390 (5) |
C1—C2 | 1.452 (8) | C12—H12 | 0.9500 |
C1—C3 | 1.503 (6) | C13—N5 | 1.324 (5) |
C2—N2 | 1.294 (6) | C13—H13 | 0.9500 |
C2—C4 | 1.502 (6) | C14—C15 | 1.513 (5) |
C3—H3A | 0.9800 | C14—Co1 | 2.008 (4) |
C3—H3B | 0.9800 | C14—H14A | 0.9900 |
C3—H3C | 0.9800 | C14—H14B | 0.9900 |
C4—H4A | 0.9800 | C15—C16 | 1.538 (5) |
C4—H4B | 0.9800 | C15—H15A | 0.9900 |
C4—H4C | 0.9800 | C15—H15B | 0.9900 |
C5—N3 | 1.304 (6) | C16—C17 | 1.514 (5) |
C5—C6 | 1.480 (8) | C16—H16A | 0.9900 |
C5—C8 | 1.482 (6) | C16—H16B | 0.9900 |
C6—N4 | 1.292 (5) | C17—H17A | 0.9800 |
C6—C7 | 1.480 (6) | C17—H17B | 0.9800 |
C7—H7A | 0.9800 | C17—H17C | 0.9800 |
C7—H7B | 0.9800 | N1—O4 | 1.342 (5) |
C7—H7C | 0.9800 | N1—Co1 | 1.887 (4) |
C8—H8A | 0.9800 | N2—O3 | 1.340 (5) |
C8—H8B | 0.9800 | N2—Co1 | 1.884 (4) |
C8—H8C | 0.9800 | N3—O2 | 1.361 (5) |
C9—N5 | 1.349 (5) | N3—Co1 | 1.873 (4) |
C9—C10 | 1.366 (5) | N4—O1 | 1.357 (5) |
C9—H9 | 0.9500 | N4—Co1 | 1.881 (4) |
C10—C11 | 1.387 (5) | N5—Co1 | 2.061 (4) |
C10—H10 | 0.9500 | O1—H1 | 0.86 (2) |
C11—C12 | 1.374 (5) | O3—H2 | 0.87 (2) |
C11—H11 | 0.9500 | ||
N1—C1—C2 | 112.7 (4) | C15—C14—H14B | 107.0 |
N1—C1—C3 | 123.3 (5) | Co1—C14—H14B | 107.0 |
C2—C1—C3 | 124.0 (4) | H14A—C14—H14B | 106.8 |
N2—C2—C1 | 113.4 (4) | C14—C15—C16 | 111.2 (3) |
N2—C2—C4 | 122.9 (5) | C14—C15—H15A | 109.4 |
C1—C2—C4 | 123.7 (4) | C16—C15—H15A | 109.4 |
C1—C3—H3A | 109.5 | C14—C15—H15B | 109.4 |
C1—C3—H3B | 109.5 | C16—C15—H15B | 109.4 |
H3A—C3—H3B | 109.5 | H15A—C15—H15B | 108.0 |
C1—C3—H3C | 109.5 | C17—C16—C15 | 113.2 (4) |
H3A—C3—H3C | 109.5 | C17—C16—H16A | 108.9 |
H3B—C3—H3C | 109.5 | C15—C16—H16A | 108.9 |
C2—C4—H4A | 109.5 | C17—C16—H16B | 108.9 |
C2—C4—H4B | 109.5 | C15—C16—H16B | 108.9 |
H4A—C4—H4B | 109.5 | H16A—C16—H16B | 107.8 |
C2—C4—H4C | 109.5 | C16—C17—H17A | 109.5 |
H4A—C4—H4C | 109.5 | C16—C17—H17B | 109.5 |
H4B—C4—H4C | 109.5 | H17A—C17—H17B | 109.5 |
N3—C5—C6 | 111.6 (4) | C16—C17—H17C | 109.5 |
N3—C5—C8 | 124.5 (5) | H17A—C17—H17C | 109.5 |
C6—C5—C8 | 123.9 (4) | H17B—C17—H17C | 109.5 |
N4—C6—C5 | 112.2 (4) | C1—N1—O4 | 121.3 (4) |
N4—C6—C7 | 124.3 (5) | C1—N1—Co1 | 116.1 (4) |
C5—C6—C7 | 123.5 (4) | O4—N1—Co1 | 122.6 (3) |
C6—C7—H7A | 109.5 | C2—N2—O3 | 121.6 (4) |
C6—C7—H7B | 109.5 | C2—N2—Co1 | 116.1 (4) |
H7A—C7—H7B | 109.5 | O3—N2—Co1 | 122.3 (3) |
C6—C7—H7C | 109.5 | C5—N3—O2 | 119.8 (4) |
H7A—C7—H7C | 109.5 | C5—N3—Co1 | 117.4 (4) |
H7B—C7—H7C | 109.5 | O2—N3—Co1 | 122.8 (3) |
C5—C8—H8A | 109.5 | C6—N4—O1 | 120.0 (4) |
C5—C8—H8B | 109.5 | C6—N4—Co1 | 117.3 (3) |
H8A—C8—H8B | 109.5 | O1—N4—Co1 | 122.7 (3) |
C5—C8—H8C | 109.5 | C13—N5—C9 | 117.9 (4) |
H8A—C8—H8C | 109.5 | C13—N5—Co1 | 121.4 (3) |
H8B—C8—H8C | 109.5 | C9—N5—Co1 | 120.5 (3) |
N5—C9—C10 | 122.8 (4) | N4—O1—H1 | 101 (4) |
N5—C9—H9 | 118.6 | N2—O3—H2 | 104 (4) |
C10—C9—H9 | 118.6 | N3—Co1—N4 | 81.38 (19) |
C9—C10—C11 | 118.8 (3) | N3—Co1—N2 | 98.56 (11) |
C9—C10—H10 | 120.6 | N4—Co1—N2 | 178.50 (16) |
C11—C10—H10 | 120.6 | N3—Co1—N1 | 177.73 (16) |
C12—C11—C10 | 119.1 (4) | N4—Co1—N1 | 98.26 (11) |
C12—C11—H11 | 120.4 | N2—Co1—N1 | 81.7 (2) |
C10—C11—H11 | 120.4 | N3—Co1—C14 | 91.91 (16) |
C11—C12—C13 | 118.4 (4) | N4—Co1—C14 | 88.78 (17) |
C11—C12—H12 | 120.8 | N2—Co1—C14 | 89.72 (17) |
C13—C12—H12 | 120.8 | N1—Co1—C14 | 85.84 (16) |
N5—C13—C12 | 123.0 (4) | N3—Co1—N5 | 90.94 (14) |
N5—C13—H13 | 118.5 | N4—Co1—N5 | 91.88 (14) |
C12—C13—H13 | 118.5 | N2—Co1—N5 | 89.62 (14) |
C15—C14—Co1 | 121.2 (3) | N1—Co1—N5 | 91.32 (14) |
C15—C14—H14A | 107.0 | C14—Co1—N5 | 177.14 (18) |
Co1—C14—H14A | 107.0 |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O4 | 0.86 (2) | 1.61 (2) | 2.465 (3) | 174 (6) |
O3—H2···O2 | 0.87 (2) | 1.60 (2) | 2.465 (3) | 171 (6) |
Experimental details
Crystal data | |
Chemical formula | [Co(C4H9)(C4H7N2O2)2(C5H5N)] |
Mr | 425.37 |
Crystal system, space group | Monoclinic, Pn |
Temperature (K) | 100 |
a, b, c (Å) | 8.365 (2), 10.408 (2), 11.487 (3) |
β (°) | 91.768 (4) |
V (Å3) | 999.7 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.89 |
Crystal size (mm) | 0.22 × 0.18 × 0.16 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.828, 0.871 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5174, 3400, 3144 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.100, 1.05 |
No. of reflections | 3400 |
No. of parameters | 256 |
No. of restraints | 4 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.90, −0.25 |
Absolute structure | Flack (1983), 1551 Friedel pairs |
Absolute structure parameter | 0.038 (16) |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).
N1—Co1 | 1.887 (4) | N4—Co1 | 1.881 (4) |
N2—Co1 | 1.884 (4) | N5—Co1 | 2.061 (4) |
N3—Co1 | 1.873 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O4 | 0.86 (2) | 1.61 (2) | 2.465 (3) | 174 (6) |
O3—H2···O2 | 0.87 (2) | 1.60 (2) | 2.465 (3) | 171 (6) |
Footnotes
†This article is dedicated to the late Professor B. D. Gupta.
Acknowledgements
The authors are thankul to the IIT Kanpur, India, for the X-ray data collection and SK thanks TWAS and CONICET, Argentina, for financial support.
References
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Giese, B. (1986). Radicals in Organic Synthesis: Formation of Carbon–Carbon Bonds. Oxford: Pergamon Press. Google Scholar
Gupta, B. D., Vijaikanth, V. & Singh, V. (2004). Organometallics, 23, 2069–2079. Web of Science CSD CrossRef CAS Google Scholar
Kumar, S. & Gupta, B. D. (2011). Inorg. Chem. 50, 9207–9209. Web of Science CrossRef CAS PubMed Google Scholar
Mandal, D. & Gupta, B. D. (2005). Organometallics, 24, 1501–1510. Web of Science CSD CrossRef CAS Google Scholar
Mandal, D. & Gupta, B. D. (2007). Organometallics, 26, 658–670. Web of Science CSD CrossRef CAS Google Scholar
Rockenbaur, A., Eyor, M., Kwielinsci, M. & Tyrlik, S. (1982). Inorg. Chim. Acta, 58, 237–242. Google Scholar
Schrauzer, G. N. (1968). Inorg. Synth. 11, 61–70. CrossRef CAS Google Scholar
Schrauzer, G. N. (1976). Angew. Chem., Int. Ed. Engl. 15, 417–426. Google Scholar
Schrauzer, G. N. & Kohnle, J. (1964). Chem. Ber. 97, 3056–3063. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Organocobaloximes have extensively been used as structural and functional mimic for vitamin B12 ever since these were first introduced by Schrauzer four decades ago as model of vitamin B12 (Schrauzer & Kohnle, 1964; Schrauzer, 1968, 1976). These represent a unique class of compounds in organometallic and bioinorganic chemistry. These have rich coordination chemistry, application in organic synthesis and catalysis, and their stability and redox properties are of particular interest (Rockenbaur et al., 1982; Giese, 1986). The general formula of cobaloximes is RCo(L)B, where R is an organic group, bonded to cobalt, B is an axial base trans to the organic group, and L is a monoanionic dioxime ligand. Dimethylglyoximate (dmg) is a familiar ligand with excellent coordination capability to generate mono-, bi- or trinuclear complexes. Cobaloximes are best characterized by NMR and X-ray studies. Most of the recent studies on cobaloximes have been focused on their structure–property relationships (Gupta et al., 2004). We synthesized the title compound and determined its structure.
In the title compound, the cobalt atom is in a distorted octahedral geometry (Table 1) by four N atoms of the N,N-bidentate dimethylglyoximate ligands in the equatorial plane, and by a butyl group and a nitrogen atom of pyridine in mutually trans positions [N5—Co1—C14 = 177.15 (16)°; Fig. 1]. The Co—N(dmg) bonds range in length from 1.872 (3) to 1.887 (3) Å. The plane of the four nitrogen atoms is particular planar. The O—H···O bridge (Table 2) in the structure is very common in cobaloxime derivatives (Mandal & Gupta, 2005, 2007; Kumar & Gupta, 2011). In packing diagram (Fig. 2), one unit cell contains two molecules.