organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-[1,4-Phenyl­enebis(methyl­ene)]bis­­(N,N-di­ethyl­ethanaminium) dibromide

aUniversity of Malaya Centre for Ionic Liquids, Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChina Ionic Liquid Laboratory, Dalian Institute of Chemical Physics, Chinese, Academy of Sciences, 116023 Dalian, People's Republic of China
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 28 December 2011; accepted 3 January 2012; online 11 January 2012)

In the crystal structure of the title compound, C20H38N22+·2Br, the centroid of the aromatic ring is located on an inversion center, so that the asymmetric unit consists of one-half mol­ecule of the dication and one bromide anion. C—H⋯Br inter­actions connect the two components into a three-dimensional network. An intra­molecular C—H⋯π inter­action is also observed.

Related literature

For the properties of dicationic ionic liquids, see: Anderson et al. (2005[Anderson, J. L., Rongfang, D., Ellern, A. & Armstrong, D. W. (2005). J. Am. Chem. Soc. 127, 593-604.]). For the structure of p-phenyl­enedimethanaminium dibromide, see: Zhang & Han (2010[Zhang, Y. & Han, M. T. (2010). Acta Cryst. E66, o1865.]).

[Scheme 1]

Experimental

Crystal data
  • C20H38N22+·2Br

  • Mr = 466.34

  • Monoclinic, P 21 /n

  • a = 8.2713 (5) Å

  • b = 14.1440 (9) Å

  • c = 9.0762 (6) Å

  • β = 97.634 (1)°

  • V = 1052.41 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.86 mm−1

  • T = 100 K

  • 0.51 × 0.47 × 0.35 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.244, Tmax = 0.346

  • 10066 measured reflections

  • 2304 independent reflections

  • 2093 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.043

  • S = 1.06

  • 2304 reflections

  • 112 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the aromatic ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯Br1 0.99 2.80 3.7565 (14) 163
C2—H2B⋯Br1i 0.99 2.90 3.7716 (14) 148
C6—H6B⋯Br1ii 0.99 2.92 3.8318 (14) 153
C7—H7B⋯Br1ii 0.99 2.89 3.7832 (14) 150
C1—H1CCg 0.98 2.74 3.6529 (16) 156
Symmetry codes: (i) x, y, z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In comparison to the common singly charged ionic liquids, dicationic ionic liquids are a new class of organic salts having two positive charges on the same cation. They have been proved to have a better performance in terms of thermal stability, wide liquidus range, and unusual dissolution properties (Anderson et al., 2005). The title compound was synthesized as a precursor for the synthesis of dicationic ionic liquids with a rigid phenylene group spacer.

Similar to the structure of p-phenylenedimethanaminium dibromide (Zhang & Han, 2010), the centroid of the aromatic ring is located on an inversion center, therefore the asymmetric unit consists of one-half of the dication and one bromide anion. In the crystal, the cations and anions are linked into a three-dimensional polymeric structure via C—H···Br interactions. The network is further condolidated by intramolecular C—H···π interactions (Table 1).

Related literature top

For the properties of dicationic ionic liquids, see: Anderson et al. (2005). For the structure of p-phenylenedimethanaminium dibromide, see: Zhang & Han (2010).

Experimental top

Triethylamine (3.06 ml, 22 mmol) was added dropwise to a solution of α,α-dibromo-p-xylene (2.64 g, 10 mmol) in acetonitrile (50 ml). The mixture was stirred at room temperature for 24 hr. The white precipitate of the product was filtered and washed with acetonitrile and dried under vacuum. Recrystallization of the dicationic salt from methanol afforded crystals suitable for X-ray crystallographicanalysis

Refinement top

H atoms were placed at calculated positions and refined as riding atoms, with C—H distances of 0.95 (aryl), 0.98 (methyl) and 0.99 (methylene) Å, and with Uiso(H) set to 1.2 (1.5 for methyl) Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. [Symmetry code: ' = -x + 1, -y + 1, -z + 1.]
N,N'-[1,4-Phenylenebis(methylene)]bis(N,N- diethylethanaminium) dibromide top
Crystal data top
C20H38N22+·2BrF(000) = 484
Mr = 466.34Dx = 1.472 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8155 reflections
a = 8.2713 (5) Åθ = 2.7–28.3°
b = 14.1440 (9) ŵ = 3.86 mm1
c = 9.0762 (6) ÅT = 100 K
β = 97.634 (1)°Block, colorless
V = 1052.41 (12) Å30.51 × 0.47 × 0.35 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
2304 independent reflections
Radiation source: fine-focus sealed tube2093 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 27.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.244, Tmax = 0.346k = 1618
10066 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.043H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.019P)2 + 0.5002P]
where P = (Fo2 + 2Fc2)/3
2304 reflections(Δ/σ)max = 0.001
112 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C20H38N22+·2BrV = 1052.41 (12) Å3
Mr = 466.34Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.2713 (5) ŵ = 3.86 mm1
b = 14.1440 (9) ÅT = 100 K
c = 9.0762 (6) Å0.51 × 0.47 × 0.35 mm
β = 97.634 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2304 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2093 reflections with I > 2σ(I)
Tmin = 0.244, Tmax = 0.346Rint = 0.021
10066 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0170 restraints
wR(F2) = 0.043H-atom parameters constrained
S = 1.06Δρmax = 0.43 e Å3
2304 reflectionsΔρmin = 0.23 e Å3
112 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.82236 (14)0.33100 (8)0.70235 (13)0.0099 (2)
C10.72184 (18)0.46030 (11)0.87038 (16)0.0176 (3)
H1A0.82990.48970.88940.026*
H1B0.66510.46810.95780.026*
H1C0.65850.49060.78430.026*
C20.74049 (18)0.35590 (10)0.83906 (15)0.0138 (3)
H2A0.63080.32670.82710.017*
H2B0.80450.32660.92730.017*
C31.10397 (18)0.38839 (11)0.80909 (16)0.0156 (3)
H3A1.06150.38700.90490.023*
H3B1.17690.44280.80620.023*
H3C1.16440.33000.79670.023*
C40.96263 (16)0.39682 (10)0.68396 (15)0.0120 (3)
H4A0.92230.46280.67960.014*
H4B1.00280.38280.58830.014*
C50.97084 (18)0.18930 (11)0.60528 (17)0.0166 (3)
H5A0.89540.18450.51270.025*
H5B1.01320.12640.63460.025*
H5C1.06160.23110.59000.025*
C60.88154 (17)0.22941 (10)0.72681 (16)0.0131 (3)
H6A0.95500.22630.82210.016*
H6B0.78620.18870.73640.016*
C70.69822 (17)0.33096 (10)0.56112 (15)0.0113 (3)
H7A0.75770.31970.47500.014*
H7B0.62310.27700.56680.014*
C80.59739 (16)0.41916 (10)0.53110 (15)0.0110 (3)
C90.43874 (17)0.42236 (10)0.56832 (15)0.0124 (3)
H90.39580.36920.61390.015*
C100.65646 (17)0.49722 (10)0.46095 (15)0.0126 (3)
H100.76300.49540.43290.015*
Br10.937757 (16)0.344754 (10)0.237945 (15)0.01420 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0107 (5)0.0084 (6)0.0103 (5)0.0003 (5)0.0002 (4)0.0017 (4)
C10.0219 (7)0.0177 (8)0.0136 (7)0.0005 (6)0.0034 (6)0.0040 (6)
C20.0152 (7)0.0164 (7)0.0102 (6)0.0006 (6)0.0035 (5)0.0001 (5)
C30.0136 (7)0.0160 (8)0.0162 (7)0.0026 (6)0.0022 (5)0.0011 (6)
C40.0126 (6)0.0107 (7)0.0126 (6)0.0029 (5)0.0009 (5)0.0008 (5)
C50.0162 (7)0.0118 (7)0.0212 (7)0.0033 (6)0.0005 (6)0.0012 (6)
C60.0137 (6)0.0089 (7)0.0160 (7)0.0011 (6)0.0007 (5)0.0034 (6)
C70.0111 (6)0.0112 (7)0.0108 (6)0.0007 (5)0.0020 (5)0.0008 (5)
C80.0122 (6)0.0105 (7)0.0095 (6)0.0009 (5)0.0017 (5)0.0005 (5)
C90.0132 (6)0.0115 (7)0.0124 (6)0.0013 (5)0.0011 (5)0.0029 (5)
C100.0106 (6)0.0149 (7)0.0121 (6)0.0001 (5)0.0012 (5)0.0006 (5)
Br10.01526 (8)0.01314 (8)0.01435 (8)0.00247 (5)0.00246 (5)0.00042 (5)
Geometric parameters (Å, º) top
N1—C41.5140 (17)C5—C61.517 (2)
N1—C61.5246 (18)C5—H5A0.9800
N1—C21.5314 (17)C5—H5B0.9800
N1—C71.5322 (17)C5—H5C0.9800
C1—C21.516 (2)C6—H6A0.9900
C1—H1A0.9800C6—H6B0.9900
C1—H1B0.9800C7—C81.5052 (19)
C1—H1C0.9800C7—H7A0.9900
C2—H2A0.9900C7—H7B0.9900
C2—H2B0.9900C8—C101.395 (2)
C3—C41.5225 (19)C8—C91.3986 (19)
C3—H3A0.9800C9—C10i1.389 (2)
C3—H3B0.9800C9—H90.9500
C3—H3C0.9800C10—C9i1.389 (2)
C4—H4A0.9900C10—H100.9500
C4—H4B0.9900
C4—N1—C6111.08 (10)H4A—C4—H4B107.8
C4—N1—C2112.07 (11)C6—C5—H5A109.5
C6—N1—C2105.47 (10)C6—C5—H5B109.5
C4—N1—C7110.25 (10)H5A—C5—H5B109.5
C6—N1—C7106.74 (10)C6—C5—H5C109.5
C2—N1—C7111.01 (10)H5A—C5—H5C109.5
C2—C1—H1A109.5H5B—C5—H5C109.5
C2—C1—H1B109.5C5—C6—N1115.13 (12)
H1A—C1—H1B109.5C5—C6—H6A108.5
C2—C1—H1C109.5N1—C6—H6A108.5
H1A—C1—H1C109.5C5—C6—H6B108.5
H1B—C1—H1C109.5N1—C6—H6B108.5
C1—C2—N1116.30 (12)H6A—C6—H6B107.5
C1—C2—H2A108.2C8—C7—N1116.41 (11)
N1—C2—H2A108.2C8—C7—H7A108.2
C1—C2—H2B108.2N1—C7—H7A108.2
N1—C2—H2B108.2C8—C7—H7B108.2
H2A—C2—H2B107.4N1—C7—H7B108.2
C4—C3—H3A109.5H7A—C7—H7B107.3
C4—C3—H3B109.5C10—C8—C9118.77 (13)
H3A—C3—H3B109.5C10—C8—C7121.29 (12)
C4—C3—H3C109.5C9—C8—C7119.88 (13)
H3A—C3—H3C109.5C10i—C9—C8120.44 (13)
H3B—C3—H3C109.5C10i—C9—H9119.8
N1—C4—C3113.17 (11)C8—C9—H9119.8
N1—C4—H4A108.9C9i—C10—C8120.76 (13)
C3—C4—H4A108.9C9i—C10—H10119.6
N1—C4—H4B108.9C8—C10—H10119.6
C3—C4—H4B108.9
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the aromatic ring.
D—H···AD—HH···AD···AD—H···A
C7—H7A···Br10.992.803.7565 (14)163
C2—H2B···Br1ii0.992.903.7716 (14)148
C6—H6B···Br1iii0.992.923.8318 (14)153
C7—H7B···Br1iii0.992.893.7832 (14)150
C1—H1C···Cg0.982.743.6529 (16)156
Symmetry codes: (ii) x, y, z+1; (iii) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H38N22+·2Br
Mr466.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)8.2713 (5), 14.1440 (9), 9.0762 (6)
β (°) 97.634 (1)
V3)1052.41 (12)
Z2
Radiation typeMo Kα
µ (mm1)3.86
Crystal size (mm)0.51 × 0.47 × 0.35
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.244, 0.346
No. of measured, independent and
observed [I > 2σ(I)] reflections
10066, 2304, 2093
Rint0.021
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.043, 1.06
No. of reflections2304
No. of parameters112
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.23

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the aromatic ring.
D—H···AD—HH···AD···AD—H···A
C7—H7A···Br10.992.803.7565 (14)163.3
C2—H2B···Br1i0.992.903.7716 (14)147.5
C6—H6B···Br1ii0.992.923.8318 (14)153.2
C7—H7B···Br1ii0.992.893.7832 (14)150.3
C1—H1C···Cg0.982.743.6529 (16)156
Symmetry codes: (i) x, y, z+1; (ii) x1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the University of Malaya for financial support (HIR-MOHE F00004–21001).

References

First citationAnderson, J. L., Rongfang, D., Ellern, A. & Armstrong, D. W. (2005). J. Am. Chem. Soc. 127, 593–604.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y. & Han, M. T. (2010). Acta Cryst. E66, o1865.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds