organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzoyl-2-thio­biuret

aDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

(Received 31 December 2011; accepted 6 January 2012; online 14 January 2012)

In the title compound [systematic name: N-(carbamoyl­carb­a­mo­thio­yl)benzamide], C9H9N3O2S, the benzoyl and terminal urea fragments adopt cisoid and transoid conformations, respectively, with respect to the S atom. The benzoyl and thio­biuret groups are almost coplanar, making a dihedral angle of 8.48 (5)°. The mol­ecular structure is stabilized by an intra­molecular N—H⋯O hydrogen bond. In the crystal, N—H⋯O and N—H⋯S hydrogen bonds link the mol­ecules into a sheet parallel to the bc plane.

Related literature

For structures and reactivity of thia­diazole derivatives, see: Cho et al. (1991a[Cho, N. S., Shon, H. I. & Parkanyi, C. (1991a). J. Heterocycl. Chem. 28, 1645-1649.],b[Cho, N. S., Shon, H. I. & Parkanyi, C. (1991b). J. Heterocycl. Chem. 28, 1725-1729.], 1996[Cho, N. S., Ra, C. S., Ra, D. Y., Song, J. S. & Kang, S. K. (1996). J. Heterocycl. Chem. 33, 1201-1206.]); Parkanyi et al. (1989[Parkanyi, C., Yuan, H. L., Cho, N. S., Jaw, J. J., Woodhouse, T. E. & Aung, T. L. (1989). J. Heterocycl. Chem. 26, 1331-1334.]). For the biological activity of thia­diazole derivatives, see: Piskala et al. (2004[Piskala, A., Vachalkova, A., Masojidkova, M., Horvathova, K., Ovesna, Z., Paces, V. & Novotny, L. (2004). Parmazie, 59, 756-762.]); Castro et al. (2008[Castro, A., Encinas, A., Gil, C., Brase, S., Porcal, W., Perez, C., Moreno, F. J. & Martinez, A. (2008). Bioorg. Med. Chem. 16, 495-510.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9N3O2S

  • Mr = 223.25

  • Monoclinic, C 2/c

  • a = 10.4583 (3) Å

  • b = 12.8103 (4) Å

  • c = 16.1830 (5) Å

  • β = 106.693 (1)°

  • V = 2076.73 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 296 K

  • 0.29 × 0.24 × 0.21 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.911, Tmax = 0.934

  • 7908 measured reflections

  • 1866 independent reflections

  • 1369 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.114

  • S = 1.09

  • 1866 reflections

  • 152 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9⋯O14 0.89 (2) 1.82 (2) 2.617 (2) 147 (2)
N12—H12⋯O8i 0.88 (2) 2.11 (2) 2.946 (2) 158.7 (18)
N15—H15A⋯O8i 0.91 (3) 2.22 (3) 3.025 (2) 147 (2)
N15—H15A⋯S11i 0.91 (3) 2.61 (3) 3.312 (2) 134 (2)
N15—H15B⋯O14ii 0.87 (3) 2.08 (3) 2.943 (2) 177 (2)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y-{\script{1\over 2}}, -z].

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

On the basis of the well known analogy between a –CH=CH– group in benzenoid hydrocarbon and the bivalent sulfur –S–, in their heterocyclic sulfur-containing counterpart (e.g, thiophene is the isoelectronic analog of benzene), 5-amino-2H-1,2,4-thiadiazol-3-one is the analog of cytosine. As an analog of cytosine, the tautomeric structure and reactivity of this compound have been examined (Cho et al., 1991a,b, 1996). Within the framework of our interest in the synthesis of novel potential antimetablites of nucleic acid components which would possess cytostatic and/or antiviral activity, we have synthesized acylonuclesides (Parkanyi et al., 1989). Derivatives of 5-amino-2H-1,2,4-thiadiazol-3-one have recently arrested the attention on the antibacterial activity, potential carcinogenicity, and kinase inhibitor activity (Piskala et al., 2004; Castro et al., 2008). The title compound, 1-benzoyl-2-thiobiuret (I), is an intermediate for the formation of the thiobiuret which is a starting material to produce 5-amino-2H-1,2,4-thiadizolin-3-one via oxidative ring closure reaction.

The dihedral angle between the benzoyl unit (C1–C7/O8 atoms) and thiobiuret group (N9–N15 atoms) is 8.48 (5)°. The carbonyl-O8 and S11 atoms are positioned syn to each other, however, carbonyl-O14 atom is anti to S11 atom (Fig. 1). The intramolecular N9—H9···O14 hydrogen bond stabilizes the molecule (Fig. 1 and Table 1). The intermolecular N—H···O and N—H···S hydrogen bonds link the molecules into a sheet parallel to the bc plane (Fig. 2 and Table 1). The carbonyl-O atoms accept two hydrogen bonds from –NH groups.

Related literature top

For structures and reactivity of thiadiazole derivatives, see: Cho et al. (1991a,b, 1996); Parkanyi et al. (1989). For the biological activity of thiadiazole derivatives, see: Piskala et al. (2004); Castro et al. (2008).

Experimental top

To warm solution of potassium thiocyanate (48.0 g, 0.49 mole) in acetone (400 ml), benzoyl chloride (48 mL, 58.2 g, 0.41 mole) was added dropwise. Immediately upon the addition of benzoyl chloride, the solution became milky white and milky yellow when the addition had been completed. The mixture was stirred for 3.5 h at 50 °C and it was left to cool to room temperature. The precipitated potassium chloride was filtered off with suction. The amber filtrate was heated to 55 °C for 5 h with urea (24.0 g, 0.40 mole), the resulting solution was cooled to room temperature and then placed in an ice bath for several hours. The solution was stirred periodically and the walls of the flask were scratched to induce crystallization. The cold mixture was filtered to give 1-benzoyl-2-thiobiuret (27.0 g, 30% yield) as a bright yellow solid. Recrystallization from acetonitrile-methanol (10:1) afforded the yellow crystals suitable for X-ray diffraction, mp 174–175 °C, 1H NMR (DMSO-d6, p.p.m.): 3.7 (s, 4H, NH2 + 2NH), 8.1–8.5 (m, 5H, Ph).

Refinement top

H atoms of the NH and NH2 groups were located in a difference Fourier map and refined freely [refined distances = 0.87 (3)–0.91 (3) Å]. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-numbering scheme and 30% probability ellipsoids. Intramolecular N—H···O hydrogen bond is indicated by a dashed line.
[Figure 2] Fig. 2. Part of the packing diagram of the title compound, showing a molecular sheet formed by intermolecular N—H···O and N—H···S hydrogen bonds (dashed lines).
N-(carbamoylcarbamothioyl)benzamide top
Crystal data top
C9H9N3O2SF(000) = 928
Mr = 223.25Dx = 1.428 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2609 reflections
a = 10.4583 (3) Åθ = 3.2–28.5°
b = 12.8103 (4) ŵ = 0.30 mm1
c = 16.1830 (5) ÅT = 296 K
β = 106.693 (1)°Block, yellow
V = 2076.73 (11) Å30.29 × 0.24 × 0.21 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
1369 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 128
Tmin = 0.911, Tmax = 0.934k = 1315
7908 measured reflectionsl = 1910
1866 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0586P)2 + 0.3051P]
where P = (Fo2 + 2Fc2)/3
1866 reflections(Δ/σ)max < 0.001
152 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
C9H9N3O2SV = 2076.73 (11) Å3
Mr = 223.25Z = 8
Monoclinic, C2/cMo Kα radiation
a = 10.4583 (3) ŵ = 0.30 mm1
b = 12.8103 (4) ÅT = 296 K
c = 16.1830 (5) Å0.29 × 0.24 × 0.21 mm
β = 106.693 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1866 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1369 reflections with I > 2σ(I)
Tmin = 0.911, Tmax = 0.934Rint = 0.037
7908 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.39 e Å3
1866 reflectionsΔρmin = 0.48 e Å3
152 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.61686 (19)0.18189 (16)0.04253 (11)0.0448 (5)
C20.5827 (2)0.28638 (18)0.03339 (13)0.0552 (6)
H20.59440.32790.08220.066*
C30.5314 (2)0.3297 (2)0.04751 (14)0.0660 (7)
H30.50890.40010.0530.079*
C40.5136 (2)0.2690 (2)0.11972 (13)0.0667 (7)
H40.47880.29830.17420.08*
C50.5469 (2)0.1655 (2)0.11173 (13)0.0674 (7)
H50.53450.12470.16090.081*
C60.5988 (2)0.12116 (19)0.03144 (12)0.0587 (6)
H60.62170.05080.02660.07*
C70.6705 (2)0.14132 (16)0.13236 (11)0.0470 (5)
O80.67319 (17)0.19421 (11)0.19501 (8)0.0635 (5)
N90.71681 (18)0.03965 (14)0.13835 (10)0.0505 (5)
H90.718 (2)0.0044 (17)0.0909 (16)0.069 (7)*
C100.7608 (2)0.02204 (16)0.21000 (12)0.0483 (5)
S110.77062 (8)0.00861 (5)0.31016 (3)0.0797 (3)
N120.79787 (18)0.12067 (14)0.19313 (10)0.0521 (5)
H120.8182 (19)0.1644 (17)0.2370 (13)0.048 (6)*
C130.7888 (2)0.16766 (17)0.11369 (12)0.0487 (5)
O140.75791 (17)0.11737 (11)0.04566 (8)0.0623 (5)
N150.8183 (2)0.26820 (15)0.11896 (13)0.0567 (5)
H15A0.821 (2)0.307 (2)0.1667 (17)0.079 (8)*
H15B0.799 (2)0.3006 (19)0.0700 (16)0.073 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0499 (12)0.0499 (13)0.0359 (9)0.0032 (9)0.0143 (8)0.0002 (8)
C20.0676 (14)0.0537 (14)0.0420 (10)0.0019 (11)0.0121 (10)0.0022 (9)
C30.0755 (16)0.0629 (16)0.0553 (13)0.0088 (12)0.0120 (11)0.0133 (11)
C40.0681 (15)0.089 (2)0.0405 (11)0.0116 (14)0.0108 (10)0.0141 (11)
C50.0719 (15)0.091 (2)0.0353 (10)0.0112 (14)0.0090 (10)0.0051 (11)
C60.0728 (14)0.0609 (14)0.0390 (10)0.0069 (11)0.0106 (10)0.0048 (9)
C70.0595 (12)0.0436 (12)0.0370 (10)0.0049 (9)0.0123 (9)0.0008 (8)
O80.1056 (13)0.0474 (9)0.0352 (7)0.0069 (8)0.0168 (7)0.0053 (6)
N90.0797 (13)0.0404 (11)0.0314 (8)0.0001 (9)0.0160 (8)0.0016 (7)
C100.0670 (13)0.0382 (12)0.0379 (10)0.0111 (9)0.0122 (9)0.0014 (8)
S110.1564 (8)0.0453 (4)0.0330 (3)0.0008 (4)0.0199 (3)0.0030 (2)
N120.0813 (13)0.0401 (10)0.0338 (8)0.0013 (9)0.0148 (8)0.0025 (7)
C130.0654 (13)0.0445 (13)0.0395 (10)0.0004 (10)0.0206 (9)0.0001 (8)
O140.1069 (13)0.0474 (9)0.0381 (7)0.0104 (8)0.0296 (7)0.0046 (6)
N150.0886 (14)0.0447 (12)0.0414 (10)0.0072 (10)0.0262 (9)0.0034 (8)
Geometric parameters (Å, º) top
C1—C21.382 (3)C7—O81.213 (2)
C1—C61.394 (3)C7—N91.383 (3)
C1—C71.493 (2)N9—C101.369 (2)
C2—C31.381 (3)N9—H90.89 (2)
C2—H20.93C10—N121.372 (3)
C3—C41.371 (3)C10—S111.642 (2)
C3—H30.93N12—C131.398 (2)
C4—C51.368 (3)N12—H120.88 (2)
C4—H40.93C13—O141.236 (2)
C5—C61.379 (3)C13—N151.321 (3)
C5—H50.93N15—H15A0.91 (3)
C6—H60.93N15—H15B0.87 (3)
C2—C1—C6118.77 (18)O8—C7—N9122.94 (17)
C2—C1—C7117.03 (17)O8—C7—C1122.10 (19)
C6—C1—C7124.20 (19)N9—C7—C1114.96 (16)
C3—C2—C1120.6 (2)C10—N9—C7128.94 (17)
C3—C2—H2119.7C10—N9—H9110.5 (15)
C1—C2—H2119.7C7—N9—H9120.5 (14)
C4—C3—C2120.1 (2)N9—C10—N12114.10 (17)
C4—C3—H3120N9—C10—S11127.48 (17)
C2—C3—H3120N12—C10—S11118.40 (15)
C5—C4—C3120.0 (2)C10—N12—C13129.15 (17)
C5—C4—H4120C10—N12—H12116.3 (13)
C3—C4—H4120C13—N12—H12113.8 (13)
C4—C5—C6120.6 (2)O14—C13—N15124.21 (19)
C4—C5—H5119.7O14—C13—N12121.74 (19)
C6—C5—H5119.7N15—C13—N12114.05 (18)
C5—C6—C1119.9 (2)C13—N15—H15A122.3 (16)
C5—C6—H6120C13—N15—H15B114.8 (16)
C1—C6—H6120H15A—N15—H15B117 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···O140.89 (2)1.82 (2)2.617 (2)147 (2)
N12—H12···O8i0.88 (2)2.11 (2)2.946 (2)158.7 (18)
N15—H15A···O8i0.91 (3)2.22 (3)3.025 (2)147 (2)
N15—H15A···S11i0.91 (3)2.61 (3)3.312 (2)134 (2)
N15—H15B···O14ii0.87 (3)2.08 (3)2.943 (2)177 (2)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+3/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC9H9N3O2S
Mr223.25
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)10.4583 (3), 12.8103 (4), 16.1830 (5)
β (°) 106.693 (1)
V3)2076.73 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.29 × 0.24 × 0.21
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.911, 0.934
No. of measured, independent and
observed [I > 2σ(I)] reflections
7908, 1866, 1369
Rint0.037
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.114, 1.09
No. of reflections1866
No. of parameters152
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.48

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···O140.89 (2)1.82 (2)2.617 (2)147 (2)
N12—H12···O8i0.88 (2)2.11 (2)2.946 (2)158.7 (18)
N15—H15A···O8i0.91 (3)2.22 (3)3.025 (2)147 (2)
N15—H15A···S11i0.91 (3)2.61 (3)3.312 (2)134 (2)
N15—H15B···O14ii0.87 (3)2.08 (3)2.943 (2)177 (2)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+3/2, y1/2, z.
 

References

First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastro, A., Encinas, A., Gil, C., Brase, S., Porcal, W., Perez, C., Moreno, F. J. & Martinez, A. (2008). Bioorg. Med. Chem. 16, 495–510.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCho, N. S., Ra, C. S., Ra, D. Y., Song, J. S. & Kang, S. K. (1996). J. Heterocycl. Chem. 33, 1201–1206.  CrossRef CAS Google Scholar
First citationCho, N. S., Shon, H. I. & Parkanyi, C. (1991a). J. Heterocycl. Chem. 28, 1645–1649.  CrossRef CAS Google Scholar
First citationCho, N. S., Shon, H. I. & Parkanyi, C. (1991b). J. Heterocycl. Chem. 28, 1725–1729.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationParkanyi, C., Yuan, H. L., Cho, N. S., Jaw, J. J., Woodhouse, T. E. & Aung, T. L. (1989). J. Heterocycl. Chem. 26, 1331–1334.  CAS Google Scholar
First citationPiskala, A., Vachalkova, A., Masojidkova, M., Horvathova, K., Ovesna, Z., Paces, V. & Novotny, L. (2004). Parmazie, 59, 756–762.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds