organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-Benzyl­­idene-2,2-di­phenyl­hydrazine

aCentro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, México, and bFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, México
*Correspondence e-mail: angel.mendoza.m@gmail.com

(Received 4 January 2012; accepted 7 January 2012; online 18 January 2012)

The asymmetric unit of the title compound, C19H16N2, contains two independent mol­ecules, both of which show an E configuration with respect to the C=N bond. The dihedral angles between the phenyl rings bonded to the hydrazine group are 81.00 (10) and 88.34 (8)° in the two mol­ecules. Inter­molecular C—H⋯π inter­actions are observed in the crystal structure.

Related literature

For biological applications of hydrazones, see: Guniz & Rollas (2002[Guniz, S. & Rollas, S. (2002). Farmaco, 57, 583-587.]); Ibañez et al. (2002[Ibañez, G. A., Escandar, G. M. & Olivieri, A. C. (2002). J. Mol. Struct. 605, 17-26.]); Vicini et al. (2002[Vicini, P., Zani, F., Cozzini, P. & Doytchinova, I. (2002). Eur. J. Med. Chem. 37, 553-564.]); Rollas et al. (2002[Rollas, S., Gulerman, N. & Erdeniz, H. (2002). Farmaco, 57, 171-174.]). For related structures, see: Clulow et al. (2008[Clulow, A. J., Selby, J. D., Cushion, M. G., Schwarz, A. D. & Mountford, P. (2008). Inorg. Chem. 47, 12049-12062.]); Mendoza et al. (2011[Mendoza, A., Cabrera-Vivas, B. M., Meléndrez-Luevano, R., Ramírez, J. C. & Flores-Alamo, M. (2011). Acta Cryst. E67, o1287.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C19H16N2

  • Mr = 272.34

  • Triclinic, [P \overline 1]

  • a = 10.283 (3) Å

  • b = 10.558 (3) Å

  • c = 16.409 (5) Å

  • α = 75.70 (4)°

  • β = 85.40 (2)°

  • γ = 63.403 (15)°

  • V = 1542.6 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 K

  • 0.5 × 0.4 × 0.2 mm

Data collection
  • Siemens P4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.924, Tmax = 0.97

  • 9357 measured reflections

  • 8060 independent reflections

  • 4867 reflections with I > 2σ(I)

  • Rint = 0.089

  • 3 standard reflections every 97 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.176

  • S = 1.02

  • 8060 reflections

  • 380 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg4 are the centroids of the C1–C6, C7–C12 and C20–C25 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯Cg4i 0.93 2.93 3.851 (2) 171
C22—H22⋯Cg2ii 0.93 2.88 3.788 (3) 166
C37—H37⋯Cg1iii 0.93 2.99 3.828 (2) 150
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x+1, y-1, z; (iii) -x+1, -y+1, -z.

Data collection: XSCANS (Siemens, 1994[Siemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Different applications of hydrazones has been demonstrated in the pharmaceutical and microbiological industry (Guniz et al., 2002; Ibañez et al., 2002). The structure of hydrazones is directly related to their activity. The condensation reaction with aromatic aldehydes in order to produce hydrazones has antibacterial and antifungal activity. Antimicrobial activity is enhanced when aldehydes have functional groups like –NO2 and –Cl (Vicini et al., 2002; Rollas et al., 2002).

The asymmetric unit of the title compound contains two non-planar molecules. Each molecule shows an E configuration on the CN double bond. The dihedral angle between the phenyl rings, C1–C6 and C7–C12, is 81.00 (10)° for molecule 1, and that between C20–C25 and C26–C31 rings is 88.34 (8)° for molecule 2. The phenyl rings attached to imine group shows a little twist with respect to the CN bond, with torsion angles of 5.7 (2)° for N4—C32—C33—C34 and 5.9 (2)° for N2—C13—C14—C19. The N—N distances [N1—N2 1.3689 (18) Å molecule 1 and N3—N4 1.3681 (18) Å molecule 2] are shorter than found in free diphenylhydrazine [1.418 (2) Å] (Clulow et al., 2008). Imine bond distances [N2—C13 1.279 (2) Å for molecule 1 and N4—C32 1.278 (2) Å for molecule 2] are longer than N=C typical bond (Allen et al., 1987) but similar to the structure with N,N-diphenylhydrazone group reported previously (Mendoza et al., 2011). Intermolecular C—H···π interactions are also observed.

Related literature top

For biological applications of hydorazones, see: Guniz et al. (2002); Ibañez et al. (2002); Vicini et al. (2002); Rollas et al. (2002). For related structures, see: Clulow et al. (2008); Mendoza et al. (2011). For bond-length data, see: Allen et al. (1987).

Experimental top

Diphenylhydrazine was dissolved in ethanol (1.2 chemical equivalents). A chemical equivalent of aldehyde, previously dissolved in the same solvent, was added drop by drop with continuous stirring. The reaction mixture was kept at room temperature and was monitored by TLC. After three hours the amber solution turns to be precipitated. The mixture was separated by filtration in a vacuum system and the precipitate was washed three times with cold methanol. The hydrazones were recrystallized with acetonitrile by a continuous and controlled process until colorless crystals with adequate size were developed in order to obtain X-ray studies. Yield 80%.

Refinement top

H atoms were placed in geometrically idealized positions and refined as riding on their parent atoms, with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS (Siemens, 1994); data reduction: XSCANS (Siemens, 1994); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
(E)-1-Benzylidene-2,2-diphenylhydrazine top
Crystal data top
C19H16N2Z = 4
Mr = 272.34F(000) = 576
Triclinic, P1Dx = 1.173 Mg m3
a = 10.283 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.558 (3) ÅCell parameters from 41 reflections
c = 16.409 (5) Åθ = 4.3–12.6°
α = 75.70 (4)°µ = 0.07 mm1
β = 85.40 (2)°T = 298 K
γ = 63.403 (15)°Prism, colorless
V = 1542.6 (8) Å30.5 × 0.4 × 0.2 mm
Data collection top
Siemens P4
diffractometer
Rint = 0.089
Graphite monochromatorθmax = 29.0°, θmin = 2.2°
2θ/ω scansh = 113
Absorption correction: ψ scan
(North et al., 1968)
k = 1213
Tmin = 0.924, Tmax = 0.97l = 2222
9357 measured reflections3 standard reflections every 97 reflections
8060 independent reflections intensity decay: 1%
4867 reflections with I > 2σ(I)
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.176 w = 1/[σ2(Fo2) + (0.0803P)2 + 0.1084P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
8060 reflectionsΔρmax = 0.16 e Å3
380 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.019 (3)
Crystal data top
C19H16N2γ = 63.403 (15)°
Mr = 272.34V = 1542.6 (8) Å3
Triclinic, P1Z = 4
a = 10.283 (3) ÅMo Kα radiation
b = 10.558 (3) ŵ = 0.07 mm1
c = 16.409 (5) ÅT = 298 K
α = 75.70 (4)°0.5 × 0.4 × 0.2 mm
β = 85.40 (2)°
Data collection top
Siemens P4
diffractometer
4867 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.089
Tmin = 0.924, Tmax = 0.973 standard reflections every 97 reflections
9357 measured reflections intensity decay: 1%
8060 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.176H-atom parameters constrained
S = 1.02Δρmax = 0.16 e Å3
8060 reflectionsΔρmin = 0.21 e Å3
380 parameters
Special details top

Experimental. UV λmax = 340.13 nm. FT IR (film): (cm-1): 1586, 1490 n(C=N). 1H NMR (400 MHz, (CD3)2CO: (d/p.p.m.): 7.64–7.62 (m, 2H), 7.48–7.44 (m, 4H), 7.36–7.33 (m, 2H), 7.28–7.18 (m, 8H). 13C NMR (400 MHz, (CD3)2CO: (d/ p.p.m.): 143.66, 136.26, 135.18, 129.87, 128.55, 128.11, 126.18, 124.58, 122.35. MS—EI: m/z = 272 M+. C19H16N2.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N40.66701 (13)0.13335 (14)0.09112 (8)0.0577 (3)
C200.63112 (16)0.02550 (15)0.23094 (9)0.0553 (3)
C140.75034 (16)0.49413 (16)0.28985 (10)0.0599 (4)
C330.71087 (16)0.25152 (16)0.04454 (9)0.0555 (3)
N30.57712 (13)0.09670 (16)0.14774 (8)0.0648 (3)
N10.74949 (16)0.36007 (14)0.51727 (8)0.0670 (4)
N20.75818 (14)0.36776 (13)0.43264 (8)0.0593 (3)
C320.61652 (16)0.21588 (16)0.01844 (9)0.0579 (4)
H320.51780.25390.00550.069*
C70.78137 (16)0.22139 (17)0.57040 (10)0.0582 (4)
C130.74545 (17)0.48540 (17)0.38070 (10)0.0617 (4)
H130.73310.56530.40040.074*
C10.73689 (17)0.47714 (16)0.55251 (9)0.0575 (4)
C380.65030 (19)0.34881 (17)0.12140 (10)0.0653 (4)
H380.55010.39160.13130.078*
C250.54528 (17)0.01815 (17)0.28984 (10)0.0636 (4)
H250.452600.27390.076*
C30.8446 (2)0.5908 (2)0.61514 (11)0.0714 (4)
H30.9270.59240.63350.086*
C310.32350 (18)0.27985 (18)0.13879 (11)0.0672 (4)
H310.35130.33660.16180.081*
C270.38484 (17)0.06357 (17)0.09176 (10)0.0609 (4)
H270.45410.02580.08330.073*
C150.75028 (19)0.61704 (19)0.23438 (11)0.0735 (5)
H150.7460.69330.2550.088*
C370.7370 (2)0.38223 (18)0.18280 (10)0.0704 (4)
H370.69470.4490.23320.084*
C60.60157 (18)0.58601 (19)0.56083 (11)0.0682 (4)
H60.51890.58550.5420.082*
C50.58795 (19)0.69641 (19)0.59711 (12)0.0734 (5)
H50.49620.76950.6030.088*
C240.5964 (2)0.08800 (19)0.37158 (11)0.0759 (5)
H240.53810.1170.41030.091*
C190.75539 (19)0.38216 (19)0.25709 (11)0.0695 (4)
H190.75480.29930.29320.083*
C340.86116 (18)0.1890 (2)0.03245 (11)0.0704 (4)
H340.90440.1250.01850.085*
C20.85940 (18)0.48028 (18)0.57871 (10)0.0652 (4)
H20.95140.40850.57190.078*
C160.7566 (2)0.6266 (2)0.14858 (12)0.0849 (6)
H160.7570.70910.11190.102*
C360.8848 (2)0.3178 (2)0.17017 (11)0.0780 (5)
H360.94320.33930.21210.094*
C210.76949 (18)0.00257 (19)0.25626 (11)0.0687 (4)
H210.82880.02570.2180.082*
C260.42597 (15)0.14762 (16)0.12623 (9)0.0544 (3)
C120.8288 (2)0.09859 (18)0.53921 (11)0.0715 (4)
H120.83590.10650.48150.086*
C170.76235 (19)0.5146 (2)0.11706 (12)0.0821 (6)
H170.76690.52120.05940.099*
C80.7669 (2)0.2061 (2)0.65620 (11)0.0803 (5)
H80.73070.28810.67830.096*
C40.7097 (2)0.69792 (19)0.62438 (11)0.0704 (4)
H40.70070.77170.64910.084*
C290.13758 (18)0.2447 (2)0.08227 (11)0.0707 (4)
H290.04050.27760.06720.085*
C280.24001 (18)0.11309 (19)0.06995 (11)0.0687 (4)
H280.21210.05660.04680.082*
C300.17860 (18)0.32819 (19)0.11703 (12)0.0748 (5)
H300.10890.41720.12590.09*
C180.7613 (2)0.3935 (2)0.17156 (12)0.0809 (5)
H180.76460.3180.15050.097*
C350.9464 (2)0.2210 (2)0.09511 (12)0.0847 (6)
H351.04690.17660.08660.102*
C90.8057 (3)0.0704 (2)0.70945 (12)0.0894 (6)
H90.79790.06170.76720.107*
C110.8656 (2)0.0360 (2)0.59365 (14)0.0867 (6)
H110.89830.11810.57190.104*
C100.8554 (2)0.0514 (2)0.67862 (13)0.0843 (6)
H100.88160.14280.71470.101*
C220.8179 (2)0.0727 (2)0.33864 (13)0.0862 (6)
H220.91040.09140.35520.103*
C230.7331 (2)0.1152 (2)0.39642 (12)0.0864 (6)
H230.76720.1620.45170.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N40.0519 (7)0.0667 (7)0.0524 (7)0.0265 (6)0.0002 (5)0.0097 (6)
C200.0544 (8)0.0515 (8)0.0517 (8)0.0179 (6)0.0030 (6)0.0077 (6)
C140.0514 (8)0.0574 (8)0.0584 (9)0.0166 (7)0.0011 (6)0.0067 (7)
C330.0595 (9)0.0565 (8)0.0510 (8)0.0257 (7)0.0009 (6)0.0126 (6)
N30.0496 (7)0.0842 (9)0.0530 (7)0.0297 (6)0.0034 (5)0.0017 (6)
N10.0903 (10)0.0572 (7)0.0514 (7)0.0310 (7)0.0002 (6)0.0116 (6)
N20.0620 (7)0.0589 (7)0.0521 (7)0.0234 (6)0.0010 (5)0.0113 (6)
C320.0521 (8)0.0631 (9)0.0534 (8)0.0224 (7)0.0034 (6)0.0095 (7)
C70.0593 (8)0.0601 (9)0.0571 (8)0.0301 (7)0.0006 (6)0.0091 (7)
C130.0643 (9)0.0572 (9)0.0596 (9)0.0240 (7)0.0009 (7)0.0124 (7)
C10.0635 (9)0.0561 (8)0.0517 (8)0.0261 (7)0.0016 (6)0.0115 (6)
C380.0677 (10)0.0621 (9)0.0566 (9)0.0222 (8)0.0035 (7)0.0090 (7)
C250.0591 (9)0.0626 (9)0.0599 (9)0.0218 (7)0.0001 (7)0.0084 (7)
C30.0724 (11)0.0759 (11)0.0749 (11)0.0423 (9)0.0052 (8)0.0122 (9)
C310.0669 (10)0.0660 (10)0.0701 (10)0.0274 (8)0.0015 (8)0.0211 (8)
C270.0580 (9)0.0611 (9)0.0576 (9)0.0205 (7)0.0024 (7)0.0153 (7)
C150.0702 (10)0.0670 (10)0.0708 (11)0.0260 (8)0.0032 (8)0.0037 (8)
C370.0917 (13)0.0649 (10)0.0504 (9)0.0339 (9)0.0007 (8)0.0076 (7)
C60.0591 (9)0.0722 (10)0.0738 (10)0.0273 (8)0.0021 (8)0.0203 (8)
C50.0656 (10)0.0679 (10)0.0817 (12)0.0226 (8)0.0110 (8)0.0257 (9)
C240.0823 (12)0.0702 (10)0.0585 (10)0.0261 (9)0.0047 (8)0.0026 (8)
C190.0743 (11)0.0676 (10)0.0586 (9)0.0260 (8)0.0003 (8)0.0112 (8)
C340.0635 (10)0.0920 (12)0.0564 (9)0.0396 (9)0.0037 (7)0.0069 (8)
C20.0569 (9)0.0624 (9)0.0690 (10)0.0230 (7)0.0023 (7)0.0100 (7)
C160.0705 (11)0.0873 (13)0.0689 (11)0.0267 (10)0.0016 (9)0.0129 (10)
C360.0918 (13)0.1001 (13)0.0590 (10)0.0592 (11)0.0123 (9)0.0182 (9)
C210.0595 (9)0.0724 (10)0.0663 (10)0.0281 (8)0.0115 (7)0.0008 (8)
C260.0475 (7)0.0624 (8)0.0484 (7)0.0225 (6)0.0000 (6)0.0077 (6)
C120.0849 (12)0.0635 (10)0.0661 (10)0.0344 (9)0.0062 (8)0.0133 (8)
C170.0622 (10)0.1023 (15)0.0548 (10)0.0176 (10)0.0015 (7)0.0085 (10)
C80.1113 (15)0.0789 (12)0.0610 (10)0.0526 (11)0.0066 (9)0.0146 (9)
C40.0890 (12)0.0679 (10)0.0635 (10)0.0412 (9)0.0080 (8)0.0203 (8)
C290.0521 (9)0.0836 (11)0.0682 (10)0.0246 (8)0.0039 (7)0.0132 (9)
C280.0672 (10)0.0787 (11)0.0669 (10)0.0358 (9)0.0051 (8)0.0193 (8)
C300.0588 (10)0.0677 (10)0.0801 (12)0.0104 (8)0.0022 (8)0.0215 (9)
C180.0795 (12)0.0866 (12)0.0641 (11)0.0241 (10)0.0019 (9)0.0201 (9)
C350.0685 (11)0.1229 (16)0.0691 (11)0.0526 (11)0.0020 (9)0.0135 (11)
C90.1234 (17)0.1000 (15)0.0604 (10)0.0717 (14)0.0005 (10)0.0010 (10)
C110.1050 (15)0.0634 (11)0.0913 (15)0.0409 (10)0.0075 (11)0.0116 (10)
C100.0920 (13)0.0766 (12)0.0842 (13)0.0506 (11)0.0073 (10)0.0103 (10)
C220.0771 (12)0.0893 (13)0.0755 (12)0.0306 (10)0.0280 (10)0.0063 (10)
C230.0938 (14)0.0823 (12)0.0595 (10)0.0260 (11)0.0161 (10)0.0041 (9)
Geometric parameters (Å, º) top
N4—C321.278 (2)C6—C51.384 (2)
N4—N31.3681 (18)C6—H60.93
C20—C251.390 (2)C5—C41.371 (3)
C20—C211.393 (2)C5—H50.93
C20—N31.406 (2)C24—C231.377 (3)
C14—C151.389 (2)C24—H240.93
C14—C191.394 (2)C19—C181.377 (2)
C14—C131.469 (2)C19—H190.93
C33—C341.391 (2)C34—C351.374 (2)
C33—C381.395 (2)C34—H340.93
C33—C321.458 (2)C2—H20.93
N3—C261.4406 (19)C16—C171.380 (3)
N1—N21.3689 (18)C16—H160.93
N1—C71.413 (2)C36—C351.373 (3)
N1—C11.441 (2)C36—H360.93
N2—C131.279 (2)C21—C221.381 (2)
C32—H320.93C21—H210.93
C7—C121.379 (2)C12—C111.380 (3)
C7—C81.380 (2)C12—H120.93
C13—H130.93C17—C181.372 (3)
C1—C61.375 (2)C17—H170.93
C1—C21.380 (2)C8—C91.379 (3)
C38—C371.377 (2)C8—H80.93
C38—H380.93C4—H40.93
C25—C241.377 (2)C29—C281.369 (2)
C25—H250.93C29—C301.379 (3)
C3—C41.368 (3)C29—H290.93
C3—C21.384 (2)C28—H280.93
C3—H30.93C30—H300.93
C31—C261.376 (2)C18—H180.93
C31—C301.386 (2)C35—H350.93
C31—H310.93C9—C101.365 (3)
C27—C261.382 (2)C9—H90.93
C27—C281.384 (2)C11—C101.364 (3)
C27—H270.93C11—H110.93
C15—C161.385 (3)C10—H100.93
C15—H150.93C22—C231.368 (3)
C37—C361.368 (3)C22—H220.93
C37—H370.93C23—H230.93
C32—N4—N3119.93 (13)C14—C19—H19119.8
C25—C20—C21118.74 (15)C35—C34—C33120.61 (16)
C25—C20—N3119.73 (14)C35—C34—H34119.7
C21—C20—N3121.53 (14)C33—C34—H34119.7
C15—C14—C19118.52 (16)C1—C2—C3119.64 (15)
C15—C14—C13119.47 (16)C1—C2—H2120.2
C19—C14—C13122.00 (14)C3—C2—H2120.2
C34—C33—C38117.84 (14)C17—C16—C15120.51 (18)
C34—C33—C32122.66 (14)C17—C16—H16119.7
C38—C33—C32119.48 (14)C15—C16—H16119.7
N4—N3—C20117.82 (12)C37—C36—C35119.54 (17)
N4—N3—C26120.99 (12)C37—C36—H36120.2
C20—N3—C26120.60 (12)C35—C36—H36120.2
N2—N1—C7116.32 (13)C22—C21—C20119.51 (16)
N2—N1—C1122.62 (12)C22—C21—H21120.2
C7—N1—C1120.01 (13)C20—C21—H21120.2
C13—N2—N1120.28 (14)C31—C26—C27120.16 (14)
N4—C32—C33121.20 (14)C31—C26—N3120.32 (14)
N4—C32—H32119.4C27—C26—N3119.52 (14)
C33—C32—H32119.4C7—C12—C11120.01 (17)
C12—C7—C8118.27 (15)C7—C12—H12120
C12—C7—N1121.85 (15)C11—C12—H12120
C8—C7—N1119.87 (15)C18—C17—C16119.36 (18)
N2—C13—C14119.90 (15)C18—C17—H17120.3
N2—C13—H13120.1C16—C17—H17120.3
C14—C13—H13120.1C9—C8—C7120.65 (18)
C6—C1—C2119.68 (15)C9—C8—H8119.7
C6—C1—N1119.74 (14)C7—C8—H8119.7
C2—C1—N1120.58 (14)C3—C4—C5119.94 (16)
C37—C38—C33120.81 (16)C3—C4—H4120
C37—C38—H38119.6C5—C4—H4120
C33—C38—H38119.6C28—C29—C30119.89 (16)
C24—C25—C20120.52 (16)C28—C29—H29120.1
C24—C25—H25119.7C30—C29—H29120.1
C20—C25—H25119.7C29—C28—C27120.42 (16)
C4—C3—C2120.54 (16)C29—C28—H28119.8
C4—C3—H3119.7C27—C28—H28119.8
C2—C3—H3119.7C29—C30—C31120.15 (16)
C26—C31—C30119.71 (16)C29—C30—H30119.9
C26—C31—H31120.1C31—C30—H30119.9
C30—C31—H31120.1C17—C18—C19120.8 (2)
C26—C27—C28119.67 (15)C17—C18—H18119.6
C26—C27—H27120.2C19—C18—H18119.6
C28—C27—H27120.2C36—C35—C34120.75 (18)
C16—C15—C14120.34 (19)C36—C35—H35119.6
C16—C15—H15119.8C34—C35—H35119.6
C14—C15—H15119.8C10—C9—C8120.96 (19)
C36—C37—C38120.43 (16)C10—C9—H9119.5
C36—C37—H37119.8C8—C9—H9119.5
C38—C37—H37119.8C10—C11—C12121.58 (19)
C1—C6—C5120.22 (16)C10—C11—H11119.2
C1—C6—H6119.9C12—C11—H11119.2
C5—C6—H6119.9C11—C10—C9118.46 (17)
C4—C5—C6119.97 (16)C11—C10—H10120.8
C4—C5—H5120C9—C10—H10120.8
C6—C5—H5120C23—C22—C21121.57 (18)
C23—C24—C25120.58 (17)C23—C22—H22119.2
C23—C24—H24119.7C21—C22—H22119.2
C25—C24—H24119.7C22—C23—C24119.07 (17)
C18—C19—C14120.44 (17)C22—C23—H23120.5
C18—C19—H19119.8C24—C23—H23120.5
C32—N4—N3—C20170.05 (14)C6—C1—C2—C31.7 (2)
C32—N4—N3—C261.2 (2)N1—C1—C2—C3177.69 (14)
C25—C20—N3—N4177.82 (13)C4—C3—C2—C10.8 (3)
C21—C20—N3—N42.3 (2)C14—C15—C16—C170.3 (3)
C25—C20—N3—C2610.9 (2)C38—C37—C36—C351.1 (3)
C21—C20—N3—C26168.98 (15)C25—C20—C21—C220.0 (3)
C7—N1—N2—C13172.96 (14)N3—C20—C21—C22179.94 (17)
C1—N1—N2—C134.7 (2)C30—C31—C26—C270.3 (2)
N3—N4—C32—C33177.21 (13)C30—C31—C26—N3179.36 (15)
C34—C33—C32—N45.7 (2)C28—C27—C26—C310.0 (2)
C38—C33—C32—N4176.26 (14)C28—C27—C26—N3179.11 (14)
N2—N1—C7—C124.5 (2)N4—N3—C26—C3187.86 (19)
C1—N1—C7—C12164.03 (15)C20—N3—C26—C3183.1 (2)
N2—N1—C7—C8176.26 (15)N4—N3—C26—C2791.25 (19)
C1—N1—C7—C815.2 (2)C20—N3—C26—C2797.77 (18)
N1—N2—C13—C14178.09 (13)C8—C7—C12—C112.4 (3)
C15—C14—C13—N2173.94 (15)N1—C7—C12—C11176.78 (17)
C19—C14—C13—N25.9 (2)C15—C16—C17—C180.2 (3)
N2—N1—C1—C688.2 (2)C12—C7—C8—C93.1 (3)
C7—N1—C1—C6103.97 (18)N1—C7—C8—C9176.16 (17)
N2—N1—C1—C292.37 (19)C2—C3—C4—C50.3 (3)
C7—N1—C1—C275.4 (2)C6—C5—C4—C30.5 (3)
C34—C33—C38—C370.5 (2)C30—C29—C28—C270.3 (3)
C32—C33—C38—C37178.62 (14)C26—C27—C28—C290.0 (3)
C21—C20—C25—C240.1 (2)C28—C29—C30—C310.6 (3)
N3—C20—C25—C24180.00 (14)C26—C31—C30—C290.6 (3)
C19—C14—C15—C160.6 (2)C16—C17—C18—C190.4 (3)
C13—C14—C15—C16179.23 (15)C14—C19—C18—C170.0 (3)
C33—C38—C37—C361.5 (3)C37—C36—C35—C340.4 (3)
C2—C1—C6—C51.5 (3)C33—C34—C35—C361.5 (3)
N1—C1—C6—C5177.89 (15)C7—C8—C9—C101.8 (3)
C1—C6—C5—C40.4 (3)C7—C12—C11—C100.6 (3)
C20—C25—C24—C230.3 (3)C12—C11—C10—C90.7 (3)
C15—C14—C19—C180.5 (2)C8—C9—C10—C110.1 (3)
C13—C14—C19—C18179.39 (16)C20—C21—C22—C230.1 (3)
C38—C33—C34—C351.0 (3)C21—C22—C23—C240.3 (3)
C32—C33—C34—C35177.06 (16)C25—C24—C23—C220.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg4 are the centroids of the C1–C6, C7–C12 and C20–C25 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C15—H15···Cg4i0.932.933.851 (2)171
C22—H22···Cg2ii0.932.883.788 (3)166
C37—H37···Cg1iii0.932.993.828 (2)150
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y1, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC19H16N2
Mr272.34
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.283 (3), 10.558 (3), 16.409 (5)
α, β, γ (°)75.70 (4), 85.40 (2), 63.403 (15)
V3)1542.6 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.5 × 0.4 × 0.2
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.924, 0.97
No. of measured, independent and
observed [I > 2σ(I)] reflections
9357, 8060, 4867
Rint0.089
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.176, 1.02
No. of reflections8060
No. of parameters380
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.21

Computer programs: XSCANS (Siemens, 1994), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg4 are the centroids of the C1–C6, C7–C12 and C20–C25 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C15—H15···Cg4i0.932.933.851 (2)171
C22—H22···Cg2ii0.932.883.788 (3)166
C37—H37···Cg1iii0.932.993.828 (2)150
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y1, z; (iii) x+1, y+1, z.
 

Acknowledgements

We gratefully acknowledge financial support from project CAVB-NAT11-I, VIEP, BUAP.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationClulow, A. J., Selby, J. D., Cushion, M. G., Schwarz, A. D. & Mountford, P. (2008). Inorg. Chem. 47, 12049–12062.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGuniz, S. & Rollas, S. (2002). Farmaco, 57, 583–587.  Web of Science PubMed Google Scholar
First citationIbañez, G. A., Escandar, G. M. & Olivieri, A. C. (2002). J. Mol. Struct. 605, 17–26.  Google Scholar
First citationMendoza, A., Cabrera-Vivas, B. M., Meléndrez-Luevano, R., Ramírez, J. C. & Flores-Alamo, M. (2011). Acta Cryst. E67, o1287.  Web of Science CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRollas, S., Gulerman, N. & Erdeniz, H. (2002). Farmaco, 57, 171–174.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationVicini, P., Zani, F., Cozzini, P. & Doytchinova, I. (2002). Eur. J. Med. Chem. 37, 553–564.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds