organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Methyl­phen­yl)-1H-1,2,3,4-tetra­zole

aDepartment of Image Science and Engineering, Pukyong National University, Busan 608 739, Republic of Korea, bDepartment of Physics, Dr. M.G.R Educational and Research Institute, Dr. M.G.R University, Maduravoyal, Chennai 600 095, India, and cX-ray Crystallography Laboratory, Post Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India
*Correspondence e-mail: ytjeong@pknu.ac.kr

(Received 5 January 2012; accepted 9 January 2012; online 14 January 2012)

In the title compound, C8H8N4, the dihedral angle between the tetra­zole and benzene rings is 21.6 (1)°. An inter­molecular C—H⋯π inter­action is observed.

Related literature

For background to and applications of tetra­zole derivatives, see: Singh et al. (1980[Singh, H., Chawla, A. S., Kapoor, V. K., Paul, D. & Malhotra, R. K. (1980). Prog. Med. Chem. 17, 151-183.]); Brown (1967[Brown, M. (1967). US Patent No. 3 338 915.]); Ostrovskii et al. (1999[Ostrovskii, V. A., Pevzner, M. S., Kofmna, T. P., Shcherbinin, M. B. & Tselinskii, I. V. (1999). Targets Heterocycl. Syst. 3, 467-526.]). For the synthesis, see: Aridoss & Laali (2011[Aridoss, G. & Laali, K. K. (2011). Eur. J. Org. Chem. pp. 2827-2835.]). For related structures, see: Matsunaga et al. (1999[Matsunaga, T., Ohno, Y., Akutsu, Y., Arai, M., Tamura, M. & Iida, M. (1999). Acta Cryst. C55, 129-131.]); Lyakhov et al. (2000[Lyakhov, A. S., Ivashkevich, D. O., Gaponik, P. N., Grigoriev, Y. V. & Ivashkevich, L. S. (2000). Acta Cryst. C56, 256-257.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8N4

  • Mr = 160.18

  • Monoclinic, P 21 /n

  • a = 9.8352 (13) Å

  • b = 5.7244 (6) Å

  • c = 14.4190 (19) Å

  • β = 96.285 (12)°

  • V = 806.92 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.1 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.762, Tmax = 1.000

  • 14618 measured reflections

  • 1419 independent reflections

  • 936 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.211

  • S = 1.05

  • 1419 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Cgi 0.93 2.89 3.630 (3) 138
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Tetrazoles are an important functional group with wide range of applications (Aridoss & Laali, 2011). They function as ligands in coordination chemistry, in medicinal chemistry as a metabolically stable surrogate for a carboxylic acid group (Singh et al., 1980) and in materials science applications including propellants (Brown, 1967) and explosives (Ostrovskii et al., 1999).

Bond lengths and bond angles are comparable with the similar crystal structures (Matsunaga et al., 1999; Lyakhov et al., 2000). The tetrazole and benzene rings are planar with maximum deviations of 0.006 (2) and 0.011 (2) Å (r.m.s. deviations of the rings being 0.005 and 0.008 Å), respectively. The two rings are not coplanar with the dihedral angle being 21.6 (1)°. Methyl carbon atom lies 0.014 (5) Å from the plane of the phenyl ring. Bond distances C1—N1 [1.304 (4) Å] and N2—N3 [1.289 (4) Å] indicate the consistence of the formation of double bonds.

Related literature top

For background to and applications of tetrazole derivatives, see: Singh et al. (1980); Brown (1967); Ostrovskii et al. (1999). For the synthesis, see: Aridoss & Laali (2011). For related structures, see: Matsunaga et al. (1999); Lyakhov et al. (2000).

Experimental top

The title compound was synthesized from the known procedure reported elsewhere (Aridoss & Laali, 2011). Fine white diffraction quality crystals were obtained from the slow evaporation of its solution in ethanol.

Refinement top

All H atoms were refined using a riding model, with C—H = 0.93 Å (aromatic) or 0.96 Å (methyl), and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
1-(4-Methylphenyl)-1H-1,2,3,4-tetrazole top
Crystal data top
C8H8N4F(000) = 336
Mr = 160.18Dx = 1.319 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3527 reflections
a = 9.8352 (13) Åθ = 3.6–29.2°
b = 5.7244 (6) ŵ = 0.09 mm1
c = 14.4190 (19) ÅT = 293 K
β = 96.285 (12)°Plate, white
V = 806.92 (17) Å30.3 × 0.2 × 0.1 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
1419 independent reflections
Radiation source: fine-focus sealed tube936 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 16.1049 pixels mm-1θmax = 25.0°, θmin = 3.8°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 66
Tmin = 0.762, Tmax = 1.000l = 1717
14618 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.211H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1133P)2 + 0.1542P]
where P = (Fo2 + 2Fc2)/3
1419 reflections(Δ/σ)max < 0.001
110 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C8H8N4V = 806.92 (17) Å3
Mr = 160.18Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.8352 (13) ŵ = 0.09 mm1
b = 5.7244 (6) ÅT = 293 K
c = 14.4190 (19) Å0.3 × 0.2 × 0.1 mm
β = 96.285 (12)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
1419 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
936 reflections with I > 2σ(I)
Tmin = 0.762, Tmax = 1.000Rint = 0.054
14618 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.211H-atom parameters constrained
S = 1.05Δρmax = 0.21 e Å3
1419 reflectionsΔρmin = 0.25 e Å3
110 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7153 (3)0.0846 (5)0.8500 (2)0.0726 (9)
H10.72710.07290.83720.087*
C20.4656 (3)0.0810 (4)0.87347 (17)0.0540 (7)
C30.3730 (3)0.1934 (5)0.92335 (18)0.0635 (8)
H30.39590.33360.95370.076*
C40.2465 (3)0.0950 (5)0.9274 (2)0.0672 (9)
H40.18380.17180.96050.081*
C50.2090 (3)0.1143 (5)0.88414 (19)0.0622 (8)
C60.3039 (3)0.2219 (5)0.8337 (2)0.0634 (8)
H60.28110.36250.80360.076*
C70.4315 (3)0.1253 (4)0.82696 (18)0.0607 (8)
H70.49320.19800.79180.073*
C80.0709 (3)0.2228 (6)0.8897 (2)0.0850 (10)
H8A0.05340.23280.95380.127*
H8B0.06920.37670.86310.127*
H8C0.00170.12830.85580.127*
N10.8114 (3)0.2424 (5)0.85255 (19)0.0841 (9)
N20.7502 (3)0.4443 (5)0.8748 (2)0.0874 (9)
N30.6234 (3)0.4089 (4)0.8848 (2)0.0826 (9)
N40.5985 (2)0.1809 (4)0.86824 (14)0.0580 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.077 (2)0.0625 (18)0.081 (2)0.0000 (16)0.0255 (17)0.0042 (15)
C20.0584 (16)0.0504 (15)0.0528 (15)0.0089 (11)0.0041 (12)0.0054 (11)
C30.079 (2)0.0557 (16)0.0568 (17)0.0051 (14)0.0129 (14)0.0082 (13)
C40.071 (2)0.0697 (19)0.0636 (18)0.0125 (15)0.0181 (15)0.0055 (14)
C50.0616 (18)0.0644 (17)0.0609 (17)0.0079 (13)0.0075 (14)0.0067 (13)
C60.0678 (18)0.0531 (16)0.0686 (18)0.0045 (13)0.0046 (14)0.0049 (13)
C70.0661 (19)0.0524 (15)0.0635 (18)0.0138 (13)0.0073 (14)0.0052 (12)
C80.066 (2)0.101 (3)0.088 (2)0.0003 (17)0.0104 (17)0.0046 (19)
N10.0828 (19)0.086 (2)0.087 (2)0.0101 (15)0.0223 (15)0.0017 (14)
N20.085 (2)0.0721 (18)0.106 (2)0.0069 (15)0.0121 (16)0.0022 (15)
N30.082 (2)0.0569 (16)0.108 (2)0.0002 (13)0.0060 (16)0.0030 (13)
N40.0649 (15)0.0519 (13)0.0568 (14)0.0047 (11)0.0048 (11)0.0029 (10)
Geometric parameters (Å, º) top
C1—N11.304 (4)C5—C81.504 (4)
C1—N41.326 (3)C6—C71.385 (4)
C1—H10.9300C6—H60.9300
C2—C31.380 (4)C7—H70.9300
C2—C71.381 (4)C8—H8A0.9600
C2—N41.436 (3)C8—H8B0.9600
C3—C41.373 (4)C8—H8C0.9600
C3—H30.9300N1—N21.357 (4)
C4—C51.382 (4)N2—N31.288 (4)
C4—H40.9300N3—N41.345 (3)
C5—C61.389 (4)
N1—C1—N4110.3 (3)C5—C6—H6119.1
N1—C1—H1124.8C2—C7—C6118.8 (3)
N4—C1—H1124.8C2—C7—H7120.6
C3—C2—C7120.8 (3)C6—C7—H7120.6
C3—C2—N4119.9 (2)C5—C8—H8A109.5
C7—C2—N4119.2 (2)C5—C8—H8B109.5
C4—C3—C2119.0 (3)H8A—C8—H8B109.5
C4—C3—H3120.5C5—C8—H8C109.5
C2—C3—H3120.5H8A—C8—H8C109.5
C3—C4—C5122.3 (2)H8B—C8—H8C109.5
C3—C4—H4118.8C1—N1—N2105.0 (3)
C5—C4—H4118.8N3—N2—N1110.6 (2)
C4—C5—C6117.4 (3)N2—N3—N4107.0 (2)
C4—C5—C8122.1 (3)C1—N4—N3107.1 (2)
C6—C5—C8120.5 (3)C1—N4—C2131.2 (2)
C7—C6—C5121.7 (3)N3—N4—C2121.7 (2)
C7—C6—H6119.1
C7—C2—C3—C41.0 (4)C1—N1—N2—N30.1 (4)
N4—C2—C3—C4180.0 (2)N1—N2—N3—N40.6 (4)
C2—C3—C4—C50.7 (4)N1—C1—N4—N31.2 (3)
C3—C4—C5—C61.4 (4)N1—C1—N4—C2180.0 (3)
C3—C4—C5—C8179.3 (3)N2—N3—N4—C11.1 (3)
C4—C5—C6—C70.3 (4)N2—N3—N4—C2180.0 (2)
C8—C5—C6—C7179.7 (3)C3—C2—N4—C1157.9 (3)
C3—C2—C7—C62.0 (4)C7—C2—N4—C123.2 (4)
N4—C2—C7—C6179.0 (2)C3—C2—N4—N320.7 (4)
C5—C6—C7—C21.3 (4)C7—C2—N4—N3158.2 (2)
N4—C1—N1—N20.9 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···Cgi0.932.893.630 (3)138
Symmetry code: (i) x+1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC8H8N4
Mr160.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.8352 (13), 5.7244 (6), 14.4190 (19)
β (°) 96.285 (12)
V3)806.92 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.3 × 0.2 × 0.1
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.762, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14618, 1419, 936
Rint0.054
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.211, 1.05
No. of reflections1419
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.25

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···Cgi0.932.893.630 (3)138
Symmetry code: (i) x+1/2, y1/2, z+3/2.
 

Acknowledgements

KB and YTJ acknowledge the support provided by the second stage of the BK21 Program. RK thanks the DST, New Delhi, India, for the X-ray data collection facility.

References

First citationAridoss, G. & Laali, K. K. (2011). Eur. J. Org. Chem. pp. 2827–2835.  Web of Science CrossRef Google Scholar
First citationBrown, M. (1967). US Patent No. 3 338 915.  Google Scholar
First citationLyakhov, A. S., Ivashkevich, D. O., Gaponik, P. N., Grigoriev, Y. V. & Ivashkevich, L. S. (2000). Acta Cryst. C56, 256–257.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMatsunaga, T., Ohno, Y., Akutsu, Y., Arai, M., Tamura, M. & Iida, M. (1999). Acta Cryst. C55, 129–131.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOstrovskii, V. A., Pevzner, M. S., Kofmna, T. P., Shcherbinin, M. B. & Tselinskii, I. V. (1999). Targets Heterocycl. Syst. 3, 467–526.  CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, H., Chawla, A. S., Kapoor, V. K., Paul, D. & Malhotra, R. K. (1980). Prog. Med. Chem. 17, 151–183.  CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds