organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(3,5-Di­chloro­phen­yl)-1H-1,2,3,4-tetra­zole

aDepartment of Chemistry, Karnatak University's Karnatak Science College, Dharwad 580 001, Karnataka, India, bDepartment of Physics, Dr M.G.R. Educational and Research Institute, Dr M.G.R. University, Maduravoyal, Chennai 600 095, India, cX-ray Crystallography Laboratory, Post Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and dDepartment of Image Science and Engineering, Pukyong National University, Busan 608 739, Republic of Korea
*Correspondence e-mail: ytjeong@pknu.ac.kr

(Received 8 January 2012; accepted 11 January 2012; online 18 January 2012)

In the title compound, C7H4Cl2N4, the dihedral angle between the tetra­zole and benzene rings is 17.2 (2)°. In the crystal, C—H⋯N inter­actions link the mol­ecules into a flattened helical chain along the b axis.

Related literature

For related structures, see: Baek et al. (2012[Baek, K., Gayathri, D., Gupta, V. K., Kant, R. & Jeong, Y. T. (2012). Acta Cryst. E68, o394.]); Matsunaga et al. (1999[Matsunaga, T., Ohno, Y., Akutsu, Y., Arai, M., Tamura, M. & Iida, M. (1999). Acta Cryst. C55, 129-131.]); Lyakhov et al. (2000[Lyakhov, A. S., Ivashkevich, D. O., Gaponik, P. N., Grigoriev, Y. V. & Ivashkevich, L. S. (2000). Acta Cryst. C56, 256-257.], 2001[Lyakhov, A. S., Gaponik, P. N., Voitekhovich, S. V., Ivashkevich, L. S., Kulak, A. A. & Ivashkevich, O. A. (2001). Acta Cryst. C57, 1436-1437.]). For the synthesis, see: Su et al. (2006[Su, W. K., Hong, Z., Shan, W. G. & Zhang, X. X. (2006). Eur. J. Org. Chem. pp. 2723-2726.]).

[Scheme 1]

Experimental

Crystal data
  • C7H4Cl2N4

  • Mr = 215.04

  • Monoclinic, P 21 /c

  • a = 3.8362 (2) Å

  • b = 9.0524 (3) Å

  • c = 24.8876 (11) Å

  • β = 91.956 (4)°

  • V = 863.76 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.699, Tmax = 0.869

  • 16772 measured reflections

  • 1692 independent reflections

  • 1451 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.114

  • S = 1.17

  • 1692 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯N2i 0.93 2.61 3.423 (5) 147
C7—H7⋯N1i 0.93 2.53 3.424 (5) 161
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In continuation of our work on tetrazole based heterocycles, we are here in reporting the crystal structure of the title compound.

Bond lengths and angles are comparable with the similar crystal structures (Baek et al., 2012; Lyakhov et al., 2000, 2001; Matsunaga et al., 1999). The tetrazole and phenyl rings are planar, with a maximum out-of-plane deviation of 0.007 (2) Å for each ring (r.m.s. deviation for each ring = 0.005 Å). The two rings are not coplanar with a dihedral angle being 17.2 (2)°. Chlorine atoms Cl1 and Cl2 deviate -0.002 (4) and 0.057 (5) Å, respectively, from the benzene plane. The crystal packing is stabilized by C—H···N intermolecular interactions, wherein atoms C1 and C7 act as a donor to N2 and N1, respectively, generating C(4) and C(6) chains along [010].

Related literature top

For related structures, see: Baek et al. (2012); Matsunaga et al. (1999); Lyakhov et al. (2000, 2001). For the synthesis, see: Su et al. (2006).

Experimental top

The title compound was synthesized from the known procedure reported by Su et al. (2006). Fine white diffraction quality crystals were obtained from the slow evaporation of its solution in ethanol.

Refinement top

All H atoms were refined using a riding model, with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The molecular packing of the title compound, showing intermolecular interactions. For clarity, hydrogen atoms not involved in hydrogen bonding have been omitted.
1-(3,5-Dichlorophenyl)-1H-1,2,3,4-tetrazole top
Crystal data top
C7H4Cl2N4F(000) = 432
Mr = 215.04Dx = 1.654 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7140 reflections
a = 3.8362 (2) Åθ = 4.0–29.0°
b = 9.0524 (3) ŵ = 0.70 mm1
c = 24.8876 (11) ÅT = 293 K
β = 91.956 (4)°Block, white
V = 863.76 (7) Å30.3 × 0.2 × 0.2 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
1692 independent reflections
Radiation source: fine-focus sealed tube1451 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 4.0°
ω scansh = 44
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1111
Tmin = 0.699, Tmax = 0.869l = 3030
16772 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0229P)2 + 1.3257P]
where P = (Fo2 + 2Fc2)/3
1692 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C7H4Cl2N4V = 863.76 (7) Å3
Mr = 215.04Z = 4
Monoclinic, P21/cMo Kα radiation
a = 3.8362 (2) ŵ = 0.70 mm1
b = 9.0524 (3) ÅT = 293 K
c = 24.8876 (11) Å0.3 × 0.2 × 0.2 mm
β = 91.956 (4)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
1692 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1451 reflections with I > 2σ(I)
Tmin = 0.699, Tmax = 0.869Rint = 0.048
16772 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.17Δρmax = 0.31 e Å3
1692 reflectionsΔρmin = 0.25 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8151 (11)0.8952 (4)0.22313 (15)0.0569 (10)
H10.76340.81550.24500.068*
C20.5993 (8)0.7942 (3)0.13392 (12)0.0332 (7)
C30.4810 (8)0.8412 (4)0.08358 (13)0.0389 (7)
H30.49660.93970.07340.047*
C40.3391 (8)0.7360 (4)0.04919 (12)0.0410 (8)
C50.3089 (8)0.5895 (4)0.06386 (13)0.0405 (8)
H50.21250.52020.04010.049*
C60.4258 (8)0.5491 (3)0.11477 (13)0.0378 (7)
C70.5739 (8)0.6494 (3)0.15071 (12)0.0348 (7)
H70.65330.62040.18480.042*
N10.9600 (10)1.0175 (4)0.23973 (13)0.0619 (9)
N20.9905 (10)1.1003 (4)0.19516 (15)0.0682 (10)
N30.8690 (10)1.0311 (3)0.15319 (13)0.0655 (10)
N40.7517 (7)0.9004 (3)0.17044 (11)0.0379 (6)
Cl10.1904 (3)0.78829 (13)0.01453 (4)0.0645 (3)
Cl20.3786 (3)0.36798 (10)0.13489 (4)0.0639 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.084 (3)0.043 (2)0.042 (2)0.014 (2)0.0130 (19)0.0013 (16)
C20.0334 (16)0.0344 (16)0.0319 (16)0.0010 (13)0.0023 (12)0.0025 (13)
C30.0421 (18)0.0371 (18)0.0375 (17)0.0027 (14)0.0005 (14)0.0056 (14)
C40.0377 (17)0.054 (2)0.0309 (16)0.0017 (15)0.0021 (13)0.0045 (15)
C50.0388 (18)0.0460 (19)0.0367 (17)0.0075 (15)0.0016 (14)0.0061 (15)
C60.0403 (17)0.0319 (16)0.0414 (18)0.0016 (14)0.0022 (14)0.0008 (14)
C70.0375 (17)0.0351 (17)0.0317 (16)0.0022 (13)0.0007 (13)0.0018 (13)
N10.087 (3)0.0454 (18)0.052 (2)0.0120 (18)0.0179 (17)0.0070 (15)
N20.096 (3)0.0420 (18)0.065 (2)0.0217 (18)0.015 (2)0.0050 (17)
N30.103 (3)0.0397 (17)0.053 (2)0.0251 (18)0.0099 (19)0.0065 (15)
N40.0451 (15)0.0307 (14)0.0375 (14)0.0040 (12)0.0038 (12)0.0002 (11)
Cl10.0754 (7)0.0796 (7)0.0374 (5)0.0070 (6)0.0160 (4)0.0084 (5)
Cl20.0968 (8)0.0353 (5)0.0589 (6)0.0147 (5)0.0059 (5)0.0006 (4)
Geometric parameters (Å, º) top
C1—N11.300 (5)C4—Cl11.733 (3)
C1—N41.326 (4)C5—C61.379 (4)
C1—H10.9300C5—H50.9300
C2—C71.381 (4)C6—C71.383 (4)
C2—C31.384 (4)C6—Cl21.726 (3)
C2—N41.434 (4)C7—H70.9300
C3—C41.380 (4)N1—N21.347 (5)
C3—H30.9300N2—N31.291 (4)
C4—C51.382 (5)N3—N41.342 (4)
N1—C1—N4110.3 (3)C4—C5—H5121.0
N1—C1—H1124.9C5—C6—C7122.3 (3)
N4—C1—H1124.9C5—C6—Cl2119.0 (2)
C7—C2—C3122.7 (3)C7—C6—Cl2118.7 (2)
C7—C2—N4118.4 (3)C2—C7—C6117.3 (3)
C3—C2—N4118.8 (3)C2—C7—H7121.3
C4—C3—C2117.4 (3)C6—C7—H7121.3
C4—C3—H3121.3C1—N1—N2105.1 (3)
C2—C3—H3121.3N3—N2—N1110.9 (3)
C3—C4—C5122.2 (3)N2—N3—N4106.5 (3)
C3—C4—Cl1119.3 (3)C1—N4—N3107.2 (3)
C5—C4—Cl1118.4 (3)C1—N4—C2131.3 (3)
C6—C5—C4118.0 (3)N3—N4—C2121.5 (3)
C6—C5—H5121.0
C7—C2—C3—C41.3 (5)N4—C1—N1—N20.8 (5)
N4—C2—C3—C4179.3 (3)C1—N1—N2—N30.0 (5)
C2—C3—C4—C51.0 (5)N1—N2—N3—N40.7 (5)
C2—C3—C4—Cl1179.5 (2)N1—C1—N4—N31.2 (5)
C3—C4—C5—C60.0 (5)N1—C1—N4—C2179.6 (3)
Cl1—C4—C5—C6179.6 (2)N2—N3—N4—C11.2 (4)
C4—C5—C6—C70.8 (5)N2—N3—N4—C2179.7 (3)
C4—C5—C6—Cl2178.0 (3)C7—C2—N4—C116.1 (5)
C3—C2—C7—C60.6 (5)C3—C2—N4—C1163.4 (4)
N4—C2—C7—C6180.0 (3)C7—C2—N4—N3162.1 (3)
C5—C6—C7—C20.5 (5)C3—C2—N4—N318.4 (5)
Cl2—C6—C7—C2178.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N2i0.932.613.423 (5)147
C7—H7···N1i0.932.533.424 (5)161
Symmetry code: (i) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC7H4Cl2N4
Mr215.04
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)3.8362 (2), 9.0524 (3), 24.8876 (11)
β (°) 91.956 (4)
V3)863.76 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.70
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.699, 0.869
No. of measured, independent and
observed [I > 2σ(I)] reflections
16772, 1692, 1451
Rint0.048
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.114, 1.17
No. of reflections1692
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.25

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N2i0.932.6093.423 (5)147
C7—H7···N1i0.932.5313.424 (5)161
Symmetry code: (i) x+2, y1/2, z+1/2.
 

Acknowledgements

YTJ is grateful for the support provided by the second stage of BK21 Program. RK thanks the DST, New Delhi, India, for the X-ray data collection facility.

References

First citationBaek, K., Gayathri, D., Gupta, V. K., Kant, R. & Jeong, Y. T. (2012). Acta Cryst. E68, o394.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLyakhov, A. S., Gaponik, P. N., Voitekhovich, S. V., Ivashkevich, L. S., Kulak, A. A. & Ivashkevich, O. A. (2001). Acta Cryst. C57, 1436–1437.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLyakhov, A. S., Ivashkevich, D. O., Gaponik, P. N., Grigoriev, Y. V. & Ivashkevich, L. S. (2000). Acta Cryst. C56, 256–257.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMatsunaga, T., Ohno, Y., Akutsu, Y., Arai, M., Tamura, M. & Iida, M. (1999). Acta Cryst. C55, 129–131.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, W. K., Hong, Z., Shan, W. G. & Zhang, X. X. (2006). Eur. J. Org. Chem. pp. 2723–2726.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds