organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

tert-Butyl 2-(1H-imidazol-1-yl)acetate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 9 January 2012; accepted 10 January 2012; online 18 January 2012)

In the title compound, C9H14N2O2, the imidazole ring and the acetate O—C=O plane make a dihedral angle of 80.54 (12)°. In the crystal, mol­ecules are connected via pairs of C—H⋯O hydrogen bonds, forming centrosymmetric dimers.

Related literature

For related structures, see: Pak et al. (2003[Pak, J. K., Benny, P., Spingler, B., Ortner, K. & Alberto, R. (2003). Chem. Eur. J. 9, 2053-2061.]); Wang et al. (2010[Wang, H.-Y., Zou, P., Xie, M.-H., He, Y.-J. & Wu, J. (2010). Acta Cryst. E66, o2606.]).

[Scheme 1]

Experimental

Crystal data
  • C9H14N2O2

  • Mr = 182.22

  • Monoclinic, P 21 /n

  • a = 10.558 (2) Å

  • b = 9.287 (2) Å

  • c = 11.047 (2) Å

  • β = 117.157 (4)°

  • V = 963.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.33 × 0.27 × 0.05 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.971, Tmax = 0.996

  • 6535 measured reflections

  • 2208 independent reflections

  • 1688 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.097

  • S = 1.05

  • 2208 reflections

  • 121 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4B⋯O2i 0.99 2.56 3.3768 (18) 140
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound was obtained through the condensation reaction of imidazole with tert-butyl chloroacetate. The imidazole ring and the plane passing through C5/O1/O2, make a dihedral angle of 80.54 (12)°. This value is comparable to those calculated for some similar structures (Pak et al., 2003; Wang et al., 2010). In the crystal, each two molecules are connected via a pair of C—H···O bonds around a center of inversion.

Related literature top

For related structures, see: Pak et al. (2003); Wang et al. (2010).

Experimental top

Sodium hydroxide (1.32 g, 0.033 mol) was added to a solution of imidazole (1.5 g, 0.022 mol) in DMF (20 ml), followed by addition of tert-butyl chloroacetate (3.15 ml, 0.022 mol). The mixture was refluxed for 1 h. The reaction mass was quenched with cold water (50 ml) and extracted by dichloromethane (3 × 25 ml). The combined organic layers was washed with cold water and brine and dried over anhydrous sodium sulfate. The solvent was evaporated under vacuum and the formed amorphous solid was stirred in n-hexane (30 ml) at room temperature. The solid was filtered, washed with hexane (2 × 20 ml), and recrystallized from ethyl acetate to afford off-white crystals of the title compound (melting point = 384–386 K).

Refinement top

H atoms were placed at calculated positions and refined in riding mode, with C—H distances of 0.95 (imidazole), 0.98 (methyl) and 0.99 (methylene) Å, and with Uiso(H) set to 1.2 (1.5 for methyl) Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing displacement ellipsoids at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
tert-Butyl 2-(1H-imidazol-1-yl)acetate top
Crystal data top
C9H14N2O2F(000) = 392
Mr = 182.22Dx = 1.256 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 771 reflections
a = 10.558 (2) Åθ = 3.0–29.0°
b = 9.287 (2) ŵ = 0.09 mm1
c = 11.047 (2) ÅT = 100 K
β = 117.157 (4)°Plate, colorless
V = 963.9 (4) Å30.33 × 0.27 × 0.05 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2208 independent reflections
Radiation source: fine-focus sealed tube1688 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1013
Tmin = 0.971, Tmax = 0.996k = 1212
6535 measured reflectionsl = 1411
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0352P)2 + 0.2973P]
where P = (Fo2 + 2Fc2)/3
2208 reflections(Δ/σ)max < 0.001
121 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C9H14N2O2V = 963.9 (4) Å3
Mr = 182.22Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.558 (2) ŵ = 0.09 mm1
b = 9.287 (2) ÅT = 100 K
c = 11.047 (2) Å0.33 × 0.27 × 0.05 mm
β = 117.157 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
2208 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1688 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.996Rint = 0.035
6535 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.05Δρmax = 0.23 e Å3
2208 reflectionsΔρmin = 0.27 e Å3
121 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.58413 (11)0.82030 (11)0.21337 (11)0.0244 (3)
O20.42983 (10)0.63596 (10)0.11631 (10)0.0177 (2)
N11.01459 (13)0.74927 (14)0.30780 (13)0.0250 (3)
N20.79333 (12)0.67798 (12)0.17766 (12)0.0164 (3)
C10.91215 (15)0.66189 (16)0.29694 (15)0.0210 (3)
H10.92070.59490.36530.025*
C20.95672 (16)0.82623 (16)0.18788 (16)0.0231 (3)
H21.00550.89890.16500.028*
C30.82115 (15)0.78441 (15)0.10713 (15)0.0197 (3)
H30.75840.82110.01980.024*
C40.65738 (15)0.60761 (15)0.13621 (15)0.0188 (3)
H4A0.67200.51660.18760.023*
H4B0.61550.58350.03820.023*
C50.55466 (15)0.70313 (15)0.16122 (14)0.0169 (3)
C60.30955 (14)0.69930 (15)0.13399 (14)0.0178 (3)
C70.35240 (16)0.71586 (17)0.28396 (15)0.0228 (3)
H7A0.39160.62470.33080.034*
H7B0.26880.74200.29570.034*
H7C0.42450.79160.32250.034*
C80.26438 (16)0.84140 (16)0.05766 (16)0.0230 (3)
H8A0.33930.91330.10280.035*
H8B0.17610.87470.05720.035*
H8C0.24870.82780.03620.035*
C90.19439 (15)0.58562 (16)0.06881 (15)0.0230 (3)
H9A0.16880.57750.02810.034*
H9B0.11020.61340.07900.034*
H9C0.22990.49270.11350.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0231 (6)0.0202 (5)0.0320 (6)0.0045 (4)0.0144 (5)0.0086 (4)
O20.0141 (5)0.0182 (5)0.0222 (5)0.0015 (4)0.0096 (4)0.0035 (4)
N10.0185 (7)0.0306 (7)0.0238 (7)0.0012 (5)0.0077 (6)0.0052 (6)
N20.0143 (6)0.0174 (6)0.0177 (6)0.0016 (5)0.0075 (5)0.0027 (5)
C10.0195 (7)0.0230 (7)0.0192 (7)0.0036 (6)0.0076 (6)0.0006 (6)
C20.0199 (7)0.0233 (7)0.0290 (8)0.0039 (6)0.0138 (7)0.0026 (6)
C30.0213 (8)0.0209 (7)0.0191 (7)0.0001 (6)0.0111 (6)0.0010 (6)
C40.0159 (7)0.0177 (7)0.0241 (8)0.0026 (5)0.0102 (6)0.0037 (6)
C50.0163 (7)0.0188 (7)0.0148 (7)0.0015 (5)0.0064 (6)0.0003 (5)
C60.0147 (7)0.0191 (7)0.0210 (7)0.0024 (5)0.0094 (6)0.0002 (6)
C70.0218 (8)0.0268 (8)0.0216 (8)0.0020 (6)0.0116 (6)0.0015 (6)
C80.0216 (8)0.0222 (7)0.0259 (8)0.0028 (6)0.0114 (7)0.0028 (6)
C90.0165 (8)0.0241 (7)0.0288 (8)0.0011 (6)0.0107 (7)0.0011 (6)
Geometric parameters (Å, º) top
O1—C51.2039 (17)C4—H4B0.9900
O2—C51.3325 (16)C6—C71.513 (2)
O2—C61.4910 (16)C6—C91.5207 (19)
N1—C11.3131 (19)C6—C81.5209 (19)
N1—C21.379 (2)C7—H7A0.9800
N2—C11.3503 (18)C7—H7B0.9800
N2—C31.3709 (18)C7—H7C0.9800
N2—C41.4482 (17)C8—H8A0.9800
C1—H10.9500C8—H8B0.9800
C2—C31.353 (2)C8—H8C0.9800
C2—H20.9500C9—H9A0.9800
C3—H30.9500C9—H9B0.9800
C4—C51.5208 (19)C9—H9C0.9800
C4—H4A0.9900
C5—O2—C6121.56 (10)O2—C6—C9102.05 (11)
C1—N1—C2104.32 (12)C7—C6—C9111.34 (12)
C1—N2—C3106.85 (12)O2—C6—C8109.88 (11)
C1—N2—C4127.15 (12)C7—C6—C8112.35 (12)
C3—N2—C4125.75 (12)C9—C6—C8111.06 (12)
N1—C1—N2112.36 (13)C6—C7—H7A109.5
N1—C1—H1123.8C6—C7—H7B109.5
N2—C1—H1123.8H7A—C7—H7B109.5
C3—C2—N1110.88 (13)C6—C7—H7C109.5
C3—C2—H2124.6H7A—C7—H7C109.5
N1—C2—H2124.6H7B—C7—H7C109.5
C2—C3—N2105.60 (13)C6—C8—H8A109.5
C2—C3—H3127.2C6—C8—H8B109.5
N2—C3—H3127.2H8A—C8—H8B109.5
N2—C4—C5111.43 (11)C6—C8—H8C109.5
N2—C4—H4A109.3H8A—C8—H8C109.5
C5—C4—H4A109.3H8B—C8—H8C109.5
N2—C4—H4B109.3C6—C9—H9A109.5
C5—C4—H4B109.3C6—C9—H9B109.5
H4A—C4—H4B108.0H9A—C9—H9B109.5
O1—C5—O2126.65 (13)C6—C9—H9C109.5
O1—C5—C4124.35 (13)H9A—C9—H9C109.5
O2—C5—C4108.99 (11)H9B—C9—H9C109.5
O2—C6—C7109.68 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···O2i0.992.563.3768 (18)140
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC9H14N2O2
Mr182.22
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)10.558 (2), 9.287 (2), 11.047 (2)
β (°) 117.157 (4)
V3)963.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.33 × 0.27 × 0.05
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.971, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
6535, 2208, 1688
Rint0.035
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.097, 1.05
No. of reflections2208
No. of parameters121
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.27

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···O2i0.992.563.3768 (18)139.8
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

The authors thank the University of Malaya for funding this study (FRGS grant No. FP001/2010 A).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPak, J. K., Benny, P., Spingler, B., Ortner, K. & Alberto, R. (2003). Chem. Eur. J. 9, 2053–2061.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H.-Y., Zou, P., Xie, M.-H., He, Y.-J. & Wu, J. (2010). Acta Cryst. E66, o2606.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds