organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Eth­­oxy-1,3,4-thia­diazole-2(3H)-thione

aDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

(Received 15 January 2012; accepted 17 January 2012; online 21 January 2012)

In the title compound, C4H6N2OS2, the dihedral angle between the five-membered heterocyclic ring and the plane of the eth­oxy group is 4.9 (2)°. The 1,3,4-thiadiazole-2-thione unit is planar, with an r.m.s. deviation of 0.011 Å from the corresponding squares plane defined by the seven constituent atoms. In the crystal, pairs of N—H⋯S hydrogen bonds link the mol­ecules into inversion dimers.

Related literature

For the synthesis and reactivity of thia­diazole derivatives, see: Hildebrandt et al. (2011[Hildebrandt, A., Schaarschmidt, D., van As, L., Swarts, J. C. & Lang, H. (2011). Inorg. Chim. Acta, 374, 112-118.]); Zhan et al. (2009[Zhan, P., Liu, X., Fang, Z., Li, Z., Pannecouque, C. & De Clercq, E. (2009). Eur. J. Med. Chem. 44, 4648-4653.]); Cho et al. (1998[Cho, N. S., Park, C. K., Kim, H. S., Choi, E. S. & Kang, S. K. (1998). Bull. Korean Chem. Soc. 19, 103-106.]); Squillacote & Felippis (1994[Squillacote, M. & Felippis, J. D. (1994). J. Org. Chem. 59, 3564-3571.]); Antolini et al. (1993[Antolini, L., Cornia, A., Fabretti, A. C. & Schenetti, L. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 417-420.]).

[Scheme 1]

Experimental

Crystal data
  • C4H6N2OS2

  • Mr = 162.23

  • Triclinic, [P \overline 1]

  • a = 6.0308 (12) Å

  • b = 8.1171 (16) Å

  • c = 8.7616 (18) Å

  • α = 116.55 (4)°

  • β = 93.70 (3)°

  • γ = 106.10 (3)°

  • V = 359.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.66 mm−1

  • T = 296 K

  • 0.16 × 0.12 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.905, Tmax = 0.951

  • 10973 measured reflections

  • 1329 independent reflections

  • 1020 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.106

  • S = 1.03

  • 1329 reflections

  • 86 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯S6i 0.76 (2) 2.57 (2) 3.317 (3) 170 (3)
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Thiadiazole derivatives have recently attracted attention in synthesis and biological activities (Hildebrandt et al., 2011; Zhan et al., 2009). 1,2,4-Thiadiazolidine-3,5-dione is a 5-membered analog of uracil on the basis of the well known subject between a –CH=CH– group in benzenoid hydrocarbons and the divalent sulfur in its sulfur containing counterparts. 5-Thioxo-1,3,4-thiadiazolidin-2-one is an analog of 1,2,4-thiadiazolidine-3,5-dione (Squillacote & Felippis, 1994; Antolini et al., 1993). Derivatives of 5-thioxo-1,3,4-thiadiazolidin-2-one have potential to have biological activities. The title compound, 5-ethoxy-3H-1,3,4-thiadiazoline-2-thione (I) is an intermediate to prepare 3-thioxo-1,3,4-thiadiazolidin-2-one through hydrolysis. However, the hydrolysis afforded bis(2-oxo-3H-1,3,4-thiadiazolinyl)-5,5'-disulfide which is a oxidative dimer of 5-thioxo-1,3,4-thiadiazolidin-2-one (Cho et al., 1998)

The 1,3,4-thiadiazole-2-thione unit is planar, with an r.m.s. deviation of 0.011 Å from the corresponding squares plane defined by the seven constituent atoms. The bond distance of N4—C5 [1.293 (3) Å] is shorter than that of C2—N3 [1.325 (3) Å], which is consistent with double bond character. The intermolecular N3—H3···S6i [symmetry code: (i) -x, -y + 1, -z + 1] hydrogen bonds link two molecules into a centrosymmetric dimer (Fig. 2 and Table 1), which stabilize the crystal structure.

Related literature top

For the synthesis and reactivity of thiadiazole derivatives, see: Hildebrandt et al. (2011); Zhan et al. (2009); Cho et al. (1998); Squillacote & Felippis (1994); Antolini et al. (1993).

Experimental top

Ethyl thiocarbazinate (11.6 g, 0.1 mol) was dissolved in CS2 (6.5 ml, 0.11 mol). KOH (0.86 g, 18 mmol) in 20 ml of methyl alcohol was added to the above solution and it was refluxed for 6 h. The reaction mixture was cooled to room temperature and distilled off the solvent under reduced pressure. The resulting residue was dispersed in 20 ml water and acidified with c-HCl (9 ml). Product was collected (8.0 g, 51% yield) and recrystallized in benzene to obtain the analytical sample. Colourless crystals of (I) were obtained from its ethanol solution by slow evaporation of the solvent at room temperature. mp 128–130 °C, Rf, 0.48 (hexane: ethyl acetate = 7: 3 v/v); IR (KBr, cm-1) 3100 (NH), 2850 (CH), 1560 (C=N), 1350. 1H NMR (CDCl3, p.p.m.) 13.7 (1H, b, NH), 4.4 (2H, q, CH2), 1.4 (3H, t, CH3).; 13C NMR (CDCl3, p.p.m.) 184.2 (C=S), 165.6 (C—O), 69.0 (CH2), 14.0 (CH3). Anal. Calcd. for C4H6N2OS2: C 29.62, H 3.73, N 17.27. Found: C 29.75, H 3.58, N 16.56.

Refinement top

Atom H3 of the NH group was located in a difference Fourier map and refined freely. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.97 or 0.96 Å, and with Uiso(H) = 1.2Ueq(carrier C) for methylene or 1.5Ueq(carrier C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-numbering scheme and 30% probability ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, showing molecules linked by intermolecular N—H···S hydrogen bonds (dashed lines).
5-Ethoxy-1,3,4-thiadiazole-2(3H)-thione top
Crystal data top
C4H6N2OS2Z = 2
Mr = 162.23F(000) = 168
Triclinic, P1Dx = 1.498 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.0308 (12) ÅCell parameters from 3632 reflections
b = 8.1171 (16) Åθ = 2.9–24.6°
c = 8.7616 (18) ŵ = 0.66 mm1
α = 116.55 (4)°T = 296 K
β = 93.70 (3)°Block, colourless
γ = 106.10 (3)°0.16 × 0.12 × 0.08 mm
V = 359.7 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
1020 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
ϕ and ω scansθmax = 25.4°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 77
Tmin = 0.905, Tmax = 0.951k = 99
10973 measured reflectionsl = 1010
1329 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0692P)2]
where P = (Fo2 + 2Fc2)/3
1329 reflections(Δ/σ)max < 0.001
86 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C4H6N2OS2γ = 106.10 (3)°
Mr = 162.23V = 359.7 (2) Å3
Triclinic, P1Z = 2
a = 6.0308 (12) ÅMo Kα radiation
b = 8.1171 (16) ŵ = 0.66 mm1
c = 8.7616 (18) ÅT = 296 K
α = 116.55 (4)°0.16 × 0.12 × 0.08 mm
β = 93.70 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1329 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1020 reflections with I > 2σ(I)
Tmin = 0.905, Tmax = 0.951Rint = 0.078
10973 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.34 e Å3
1329 reflectionsΔρmin = 0.25 e Å3
86 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.58072 (11)0.69466 (8)0.86851 (8)0.0633 (3)
C20.3257 (4)0.6379 (3)0.7233 (3)0.0478 (5)
N30.2660 (4)0.4510 (3)0.6039 (3)0.0522 (5)
H30.158 (4)0.408 (4)0.531 (3)0.055 (8)*
N40.3981 (3)0.3405 (3)0.6130 (3)0.0523 (5)
C50.5704 (4)0.4537 (3)0.7487 (3)0.0500 (6)
S60.18884 (11)0.79469 (9)0.73697 (8)0.0591 (3)
O70.7344 (3)0.4010 (2)0.8031 (2)0.0623 (5)
C80.7080 (5)0.1955 (3)0.7051 (3)0.0572 (6)
H8A0.72180.16070.58570.069*
H8B0.55440.11420.70270.069*
C90.9014 (5)0.1656 (4)0.7956 (4)0.0711 (7)
H9A0.890.03060.73380.107*
H9B0.88530.19990.91330.107*
H9C1.05240.24710.79740.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0619 (4)0.0459 (4)0.0679 (4)0.0255 (3)0.0096 (3)0.0151 (3)
C20.0472 (12)0.0499 (13)0.0521 (12)0.0229 (10)0.0101 (10)0.0260 (10)
N30.0476 (11)0.0498 (11)0.0560 (12)0.0221 (9)0.0011 (10)0.0215 (9)
N40.0525 (11)0.0445 (10)0.0592 (11)0.0241 (9)0.0025 (9)0.0216 (9)
C50.0480 (13)0.0453 (12)0.0593 (14)0.0223 (10)0.0042 (11)0.0249 (11)
S60.0597 (4)0.0531 (4)0.0668 (4)0.0319 (3)0.0059 (3)0.0248 (3)
O70.0583 (10)0.0458 (9)0.0739 (11)0.0241 (8)0.0102 (8)0.0214 (8)
C80.0620 (15)0.0471 (13)0.0634 (14)0.0263 (11)0.0047 (11)0.0243 (11)
C90.0803 (19)0.0673 (17)0.0799 (18)0.0429 (14)0.0091 (14)0.0382 (14)
Geometric parameters (Å, º) top
S1—C51.738 (2)O7—C81.449 (3)
S1—C21.740 (2)C8—C91.502 (3)
C2—N31.325 (3)C8—H8A0.97
C2—S61.665 (2)C8—H8B0.97
N3—N41.377 (3)C9—H9A0.96
N3—H30.76 (2)C9—H9B0.96
N4—C51.293 (3)C9—H9C0.96
C5—O71.321 (2)
C5—S1—C289.00 (11)O7—C8—C9107.07 (19)
N3—C2—S6127.91 (18)O7—C8—H8A110.3
N3—C2—S1107.12 (17)C9—C8—H8A110.3
S6—C2—S1124.97 (15)O7—C8—H8B110.3
C2—N3—N4120.52 (19)C9—C8—H8B110.3
C2—N3—H3118 (2)H8A—C8—H8B108.6
N4—N3—H3121 (2)C8—C9—H9A109.5
C5—N4—N3107.33 (18)C8—C9—H9B109.5
N4—C5—O7125.7 (2)H9A—C9—H9B109.5
N4—C5—S1116.01 (17)C8—C9—H9C109.5
O7—C5—S1118.33 (16)H9A—C9—H9C109.5
C5—O7—C8115.95 (17)H9B—C9—H9C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···S6i0.76 (2)2.57 (2)3.317 (3)170 (3)
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC4H6N2OS2
Mr162.23
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.0308 (12), 8.1171 (16), 8.7616 (18)
α, β, γ (°)116.55 (4), 93.70 (3), 106.10 (3)
V3)359.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.66
Crystal size (mm)0.16 × 0.12 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.905, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
10973, 1329, 1020
Rint0.078
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.106, 1.03
No. of reflections1329
No. of parameters86
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.25

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···S6i0.76 (2)2.57 (2)3.317 (3)170 (3)
Symmetry code: (i) x, y+1, z+1.
 

References

First citationAntolini, L., Cornia, A., Fabretti, A. C. & Schenetti, L. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 417–420.  CrossRef Google Scholar
First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCho, N. S., Park, C. K., Kim, H. S., Choi, E. S. & Kang, S. K. (1998). Bull. Korean Chem. Soc. 19, 103–106.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHildebrandt, A., Schaarschmidt, D., van As, L., Swarts, J. C. & Lang, H. (2011). Inorg. Chim. Acta, 374, 112–118.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSquillacote, M. & Felippis, J. D. (1994). J. Org. Chem. 59, 3564–3571.  CrossRef CAS Web of Science Google Scholar
First citationZhan, P., Liu, X., Fang, Z., Li, Z., Pannecouque, C. & De Clercq, E. (2009). Eur. J. Med. Chem. 44, 4648–4653.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds