organic compounds
5-Isopropylimidazolidine-2,4-dione monohydrate
aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
In the title compound, C6H10N2O2·H2O, the imidazole ring is essentially planar, with a maximum deviation of 0.012 (2) Å. In the crystal, molecules are connected via N—H⋯O and O—H⋯O hydrogen bonds, forming a supramolecular tape along the a axis.
Related literature
For details and applications of hydantoins, see: El-Deeb et al. (2010); Rajic et al. (2006); Carmi et al. (2006); Sergent et al., (2008); Yu et al. (2004). For related structues, see: Delgado et al. (2007); Ciechanowicz-Rutkowska et al. (1994). For the synthetic procedure, see: Abdel-Aziz (2007). For a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536812002838/is5056sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812002838/is5056Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812002838/is5056Isup3.cml
The DPPOX (1.5 equiv) was added to the equimolar solution of L-valine and urea in MeCN in addition to Et3N (1.5 equiv) and the mixture was stirred at 50°C for 60 min. After removal of the solvent, the residue was taken up in organic solvent EtOAc, and washed successively with HCl aq and NaHCO3 aq. Evaporation of the dried organic solvent gave the title compound. The colourless single-crystals suitable for X-ray analysis was obtained by recrystallization from ethanol (m.p. 145–147 °C; yield: 95%).
Atoms H1N1, H1N2, H1W1 and H2W2 were located in a difference Fourier map and refined freely [N—H = 0.80 (2)–0.87 (3) Å; O—H = 0.82 (4)–0.87 (4) Å]. The remaining H atoms were positioned geometrically [C—H = 0.96 or 0.98 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl groups. Even though there is sufficient
to find the as the compound crystallize out in a and Cu radiation was used, this was unsuccessful as the crystal is a [BASF ratio of 0.8 (3):0.2 (3)].Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C6H10N2O2·H2O | F(000) = 344 |
Mr = 160.18 | Dx = 1.239 Mg m−3 |
Orthorhombic, P212121 | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 2281 reflections |
a = 6.2688 (3) Å | θ = 5.6–65.9° |
b = 9.2387 (4) Å | µ = 0.84 mm−1 |
c = 14.8280 (7) Å | T = 296 K |
V = 858.77 (7) Å3 | Needle, colourless |
Z = 4 | 0.90 × 0.21 × 0.16 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 1497 independent reflections |
Radiation source: fine-focus sealed tube | 1378 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
ϕ and ω scans | θmax = 67.3°, θmin = 5.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −7→5 |
Tmin = 0.518, Tmax = 0.879 | k = −11→10 |
5702 measured reflections | l = −17→17 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.098 | w = 1/[σ2(Fo2) + (0.0552P)2 + 0.0813P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max = 0.001 |
1497 reflections | Δρmax = 0.12 e Å−3 |
117 parameters | Δρmin = −0.18 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 592 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.2 (3) |
C6H10N2O2·H2O | V = 858.77 (7) Å3 |
Mr = 160.18 | Z = 4 |
Orthorhombic, P212121 | Cu Kα radiation |
a = 6.2688 (3) Å | µ = 0.84 mm−1 |
b = 9.2387 (4) Å | T = 296 K |
c = 14.8280 (7) Å | 0.90 × 0.21 × 0.16 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 1497 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 1378 reflections with I > 2σ(I) |
Tmin = 0.518, Tmax = 0.879 | Rint = 0.027 |
5702 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.098 | Δρmax = 0.12 e Å−3 |
S = 1.09 | Δρmin = −0.18 e Å−3 |
1497 reflections | Absolute structure: Flack (1983), 592 Friedel pairs |
117 parameters | Absolute structure parameter: 0.2 (3) |
0 restraints |
Experimental. 1H NMR (DMSO–d6): 10.54 (s, 1H, NH), 7.87 (s, 1H, NH), 3.89 (s, 1H), 2.01–1.97 (m, 1H), 0.94–0.92 (d, 3H, J = 7.0 Hz), 0.80–0.78 (d, 3H, J = 6.5 Hz). 13C NMR (DMSO–d6): 175.87, 158.28, 63.22, 30.01, 18.93, 16.31. |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.6583 (2) | 0.56794 (15) | 0.46328 (11) | 0.0679 (5) | |
O2 | 1.2150 (2) | 0.27203 (15) | 0.39487 (11) | 0.0590 (4) | |
N1 | 0.6703 (3) | 0.34173 (17) | 0.39871 (11) | 0.0472 (4) | |
N2 | 0.9719 (2) | 0.44507 (16) | 0.43611 (11) | 0.0503 (4) | |
C1 | 0.7524 (3) | 0.46070 (19) | 0.43523 (13) | 0.0481 (4) | |
C2 | 1.0337 (3) | 0.31526 (19) | 0.40226 (13) | 0.0440 (4) | |
C3 | 0.8324 (3) | 0.23514 (18) | 0.37618 (12) | 0.0436 (4) | |
H3A | 0.8156 | 0.1507 | 0.4156 | 0.052* | |
C4 | 0.8317 (3) | 0.1851 (2) | 0.27789 (14) | 0.0534 (5) | |
H4A | 0.9533 | 0.1196 | 0.2701 | 0.064* | |
C5 | 0.6312 (4) | 0.0986 (3) | 0.25796 (19) | 0.0828 (8) | |
H5A | 0.6202 | 0.0197 | 0.2998 | 0.124* | |
H5B | 0.6381 | 0.0613 | 0.1976 | 0.124* | |
H5C | 0.5086 | 0.1602 | 0.2639 | 0.124* | |
C6 | 0.8624 (5) | 0.3102 (3) | 0.21256 (16) | 0.0810 (7) | |
H6A | 0.9926 | 0.3600 | 0.2266 | 0.122* | |
H6B | 0.7446 | 0.3760 | 0.2177 | 0.122* | |
H6C | 0.8694 | 0.2736 | 0.1520 | 0.122* | |
H1N1 | 0.543 (4) | 0.329 (2) | 0.3981 (13) | 0.045 (5)* | |
H1N2 | 1.059 (5) | 0.509 (3) | 0.4591 (17) | 0.078 (8)* | |
O1W | 0.2489 (3) | 0.63212 (17) | 0.52044 (13) | 0.0665 (4) | |
H1W1 | 0.374 (6) | 0.617 (3) | 0.507 (2) | 0.096 (11)* | |
H2W2 | 0.214 (6) | 0.721 (4) | 0.531 (3) | 0.122 (13)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0438 (9) | 0.0566 (8) | 0.1033 (12) | 0.0068 (6) | −0.0017 (7) | −0.0302 (8) |
O2 | 0.0292 (8) | 0.0607 (8) | 0.0871 (11) | 0.0039 (6) | −0.0030 (6) | −0.0086 (7) |
N1 | 0.0246 (8) | 0.0507 (8) | 0.0662 (10) | −0.0020 (6) | −0.0013 (6) | −0.0127 (7) |
N2 | 0.0309 (9) | 0.0475 (8) | 0.0725 (11) | −0.0035 (6) | −0.0045 (7) | −0.0147 (8) |
C1 | 0.0372 (10) | 0.0474 (9) | 0.0597 (12) | 0.0028 (8) | −0.0024 (8) | −0.0079 (8) |
C2 | 0.0312 (9) | 0.0468 (9) | 0.0541 (10) | −0.0018 (7) | −0.0011 (7) | −0.0001 (8) |
C3 | 0.0323 (9) | 0.0394 (8) | 0.0591 (10) | −0.0025 (6) | 0.0003 (7) | −0.0028 (7) |
C4 | 0.0443 (11) | 0.0491 (9) | 0.0667 (12) | −0.0016 (8) | 0.0028 (8) | −0.0161 (8) |
C5 | 0.0645 (16) | 0.0895 (17) | 0.0945 (18) | −0.0206 (13) | −0.0049 (14) | −0.0376 (14) |
C6 | 0.098 (2) | 0.0838 (16) | 0.0617 (14) | −0.0079 (15) | 0.0041 (13) | −0.0044 (12) |
O1W | 0.0438 (10) | 0.0557 (8) | 0.1000 (12) | −0.0042 (7) | −0.0067 (8) | −0.0203 (8) |
O1—C1 | 1.226 (2) | C4—C5 | 1.518 (3) |
O2—C2 | 1.210 (2) | C4—C6 | 1.520 (3) |
N1—C1 | 1.329 (2) | C4—H4A | 0.9800 |
N1—C3 | 1.454 (2) | C5—H5A | 0.9600 |
N1—H1N1 | 0.80 (2) | C5—H5B | 0.9600 |
N2—C2 | 1.357 (2) | C5—H5C | 0.9600 |
N2—C1 | 1.383 (3) | C6—H6A | 0.9600 |
N2—H1N2 | 0.87 (3) | C6—H6B | 0.9600 |
C2—C3 | 1.513 (2) | C6—H6C | 0.9600 |
C3—C4 | 1.529 (3) | O1W—H1W1 | 0.82 (4) |
C3—H3A | 0.9800 | O1W—H2W2 | 0.87 (4) |
C1—N1—C3 | 112.51 (15) | C5—C4—C3 | 110.30 (17) |
C1—N1—H1N1 | 120.6 (15) | C6—C4—C3 | 112.16 (16) |
C3—N1—H1N1 | 126.2 (15) | C5—C4—H4A | 107.2 |
C2—N2—C1 | 111.89 (15) | C6—C4—H4A | 107.2 |
C2—N2—H1N2 | 124.4 (19) | C3—C4—H4A | 107.2 |
C1—N2—H1N2 | 123.6 (19) | C4—C5—H5A | 109.5 |
O1—C1—N1 | 128.32 (19) | C4—C5—H5B | 109.5 |
O1—C1—N2 | 124.05 (17) | H5A—C5—H5B | 109.5 |
N1—C1—N2 | 107.63 (16) | C4—C5—H5C | 109.5 |
O2—C2—N2 | 126.42 (17) | H5A—C5—H5C | 109.5 |
O2—C2—C3 | 126.79 (16) | H5B—C5—H5C | 109.5 |
N2—C2—C3 | 106.79 (15) | C4—C6—H6A | 109.5 |
N1—C3—C2 | 101.12 (13) | C4—C6—H6B | 109.5 |
N1—C3—C4 | 114.95 (15) | H6A—C6—H6B | 109.5 |
C2—C3—C4 | 113.19 (15) | C4—C6—H6C | 109.5 |
N1—C3—H3A | 109.1 | H6A—C6—H6C | 109.5 |
C2—C3—H3A | 109.1 | H6B—C6—H6C | 109.5 |
C4—C3—H3A | 109.1 | H1W1—O1W—H2W2 | 116 (3) |
C5—C4—C6 | 112.4 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N1···O2i | 0.81 (2) | 2.12 (2) | 2.927 (2) | 174.0 (19) |
N2—H1N2···O1Wii | 0.87 (3) | 1.88 (3) | 2.751 (2) | 173 (2) |
O1W—H1W1···O1 | 0.82 (4) | 1.95 (4) | 2.767 (2) | 173 (3) |
O1W—H2W2···O1iii | 0.86 (4) | 1.98 (4) | 2.839 (2) | 171 (4) |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z; (iii) x−1/2, −y+3/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C6H10N2O2·H2O |
Mr | 160.18 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 296 |
a, b, c (Å) | 6.2688 (3), 9.2387 (4), 14.8280 (7) |
V (Å3) | 858.77 (7) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.84 |
Crystal size (mm) | 0.90 × 0.21 × 0.16 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.518, 0.879 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5702, 1497, 1378 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.598 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.098, 1.09 |
No. of reflections | 1497 |
No. of parameters | 117 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.12, −0.18 |
Absolute structure | Flack (1983), 592 Friedel pairs |
Absolute structure parameter | 0.2 (3) |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N1···O2i | 0.81 (2) | 2.12 (2) | 2.927 (2) | 174.0 (19) |
N2—H1N2···O1Wii | 0.87 (3) | 1.88 (3) | 2.751 (2) | 173 (2) |
O1W—H1W1···O1 | 0.82 (4) | 1.95 (4) | 2.767 (2) | 173 (3) |
O1W—H2W2···O1iii | 0.86 (4) | 1.98 (4) | 2.839 (2) | 171 (4) |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z; (iii) x−1/2, −y+3/2, −z+1. |
Footnotes
‡Also at: College of Pharmacy (Visiting Professor), King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia. Thomson Reuters ResearcherID: A-3561-2009.
Acknowledgements
AAA, ASE and AMA thank Universiti Sains Malaysia and King Saud University for supporting this study. MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a postdoctoral research fellowship.
References
Abdel-Aziz, A. A.-M. (2007). Eur. J. Med. Chem. 42, 614–626. Web of Science PubMed CAS Google Scholar
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Carmi, C., Cavazzoni, A., Zuliani, V., Lodola, A., Bordi, F., Plazzi, P. V., Alfieri, R. R., Petronini, P. G. & Mor, M. (2006). Bioorg. Med. Chem. Lett. 16, 4021–4025. Web of Science CrossRef PubMed CAS Google Scholar
Ciechanowicz-Rutkowska, M., Kieć-Kononowicz, K., Howard, S. T., Lieberman, H. & Hursthouse, M. B. (1994). Acta Cryst. B50, 86–96. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Delgado, G. E., Mora, A. J., Uzcátegui, J., Bahsas, A. & Briceño, A. (2007). Acta Cryst. C63, o448-o450. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
El-Deeb, I. M., Bayoumi, S. M., El-Sherbeny, M. A. & Abdel-Aziz, A. A.-M. (2010). Eur. J. Med. Chem. 45, 2516–2530. Web of Science CAS PubMed Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Rajic, Z., Zorc, B., Raic-Malic, S., Ester, K., Kralj, M., Pavelic, K., Balzarini, J., De Clercq, E. & Mintas, M. (2006). Molecules, 11, 837–848. Web of Science CrossRef PubMed CAS Google Scholar
Sergent, D., Wang, Q., Sasaki, N. A. & Ouazzani, J. (2008). Bioorg. Med. Chem. Lett. 18, 4332–4335. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yu, F.-L., Schwalbe, C. H. & Watkin, D. J. (2004). Acta Cryst. C60, o714–o717. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Hydantoins (imidazolidine-2,4-dione) are important classes of compounds which have long attracted attention, owing to their remarkable biological and pharmacological properties, such as antitumor activity, antiviral activity, insulinotropic properties and EGFR inhibitors (El-Deeb et al., 2010; Rajic et al., 2006; Carmi et al., 2006; Sergent et al., 2008). The crystal structures of (S)-5-Benzylimidazolidine-2,4-dione monohydrate (Delgado et al., 2007) and diphenylhydantoin derivatives (Ciechanowicz-Rutkowska et al., 1994) have been reported in the literature. The title compound was successfully obtained in an optical active form without racemization by dehydrative cyclization in one-pot reaction of L-valine and urea in the presence of DPPOX as catalyst (Abdel-Aziz, 2007).
The asymmetric unit contains one (S)-5-isopropylimidazolidine-2,4-dione molecule and one water molecule as shown in Fig. 1. The imidazole (N1,N2/C1–C3) ring is essentially planar, with maximum deviations of 0.012 (2) Å for atom C3. The N1—C1—O1 [128.32 (19)°] angle is greater than the N2—C1—O1 [124.05 (17)°] angle. This difference is also observed in the hydantoin molecule (Yu et al., 2004) and 50 other hydantoin derivatives reported in the Cambridge Structural Database (Version 5.28; Allen, 2002) with both unsubstituted NH groups and sp3-hybridization at C3. In the crystal structure (Fig. 2), the molecules are connected via N—H···O and O—H···O hydrogen bonds (Table 1), forming a supramolecular tape along the a axis.