organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Iso­propyl­imidazolidine-2,4-dione monohydrate

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 18 January 2012; accepted 23 January 2012; online 31 January 2012)

In the title compound, C6H10N2O2·H2O, the imidazole ring is essentially planar, with a maximum deviation of 0.012 (2) Å. In the crystal, mol­ecules are connected via N—H⋯O and O—H⋯O hydrogen bonds, forming a supra­molecular tape along the a axis.

Related literature

For details and applications of hydantoins, see: El-Deeb et al. (2010[El-Deeb, I. M., Bayoumi, S. M., El-Sherbeny, M. A. & Abdel-Aziz, A. A.-M. (2010). Eur. J. Med. Chem. 45, 2516-2530.]); Rajic et al. (2006[Rajic, Z., Zorc, B., Raic-Malic, S., Ester, K., Kralj, M., Pavelic, K., Balzarini, J., De Clercq, E. & Mintas, M. (2006). Molecules, 11, 837-848.]); Carmi et al. (2006[Carmi, C., Cavazzoni, A., Zuliani, V., Lodola, A., Bordi, F., Plazzi, P. V., Alfieri, R. R., Petronini, P. G. & Mor, M. (2006). Bioorg. Med. Chem. Lett. 16, 4021-4025.]); Sergent et al., (2008[Sergent, D., Wang, Q., Sasaki, N. A. & Ouazzani, J. (2008). Bioorg. Med. Chem. Lett. 18, 4332-4335.]); Yu et al. (2004[Yu, F.-L., Schwalbe, C. H. & Watkin, D. J. (2004). Acta Cryst. C60, o714-o717.]). For related structues, see: Delgado et al. (2007[Delgado, G. E., Mora, A. J., Uzcátegui, J., Bahsas, A. & Briceño, A. (2007). Acta Cryst. C63, o448-o450.]); Ciechanowicz-Rutkowska et al. (1994[Ciechanowicz-Rutkowska, M., Kieć-Kononowicz, K., Howard, S. T., Lieberman, H. & Hursthouse, M. B. (1994). Acta Cryst. B50, 86-96.]). For the synthetic procedure, see: Abdel-Aziz (2007[Abdel-Aziz, A. A.-M. (2007). Eur. J. Med. Chem. 42, 614-626.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C6H10N2O2·H2O

  • Mr = 160.18

  • Orthorhombic, P 21 21 21

  • a = 6.2688 (3) Å

  • b = 9.2387 (4) Å

  • c = 14.8280 (7) Å

  • V = 858.77 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.84 mm−1

  • T = 296 K

  • 0.90 × 0.21 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.518, Tmax = 0.879

  • 5702 measured reflections

  • 1497 independent reflections

  • 1378 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.098

  • S = 1.09

  • 1497 reflections

  • 117 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 592 Friedel pairs

  • Flack parameter: 0.2 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O2i 0.81 (2) 2.12 (2) 2.927 (2) 174.0 (19)
N2—H1N2⋯O1Wii 0.87 (3) 1.88 (3) 2.751 (2) 173 (2)
O1W—H1W1⋯O1 0.82 (4) 1.95 (4) 2.767 (2) 173 (3)
O1W—H2W2⋯O1iii 0.86 (4) 1.98 (4) 2.839 (2) 171 (4)
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Hydantoins (imidazolidine-2,4-dione) are important classes of compounds which have long attracted attention, owing to their remarkable biological and pharmacological properties, such as antitumor activity, antiviral activity, insulinotropic properties and EGFR inhibitors (El-Deeb et al., 2010; Rajic et al., 2006; Carmi et al., 2006; Sergent et al., 2008). The crystal structures of (S)-5-Benzylimidazolidine-2,4-dione monohydrate (Delgado et al., 2007) and diphenylhydantoin derivatives (Ciechanowicz-Rutkowska et al., 1994) have been reported in the literature. The title compound was successfully obtained in an optical active form without racemization by dehydrative cyclization in one-pot reaction of L-valine and urea in the presence of DPPOX as catalyst (Abdel-Aziz, 2007).

The asymmetric unit contains one (S)-5-isopropylimidazolidine-2,4-dione molecule and one water molecule as shown in Fig. 1. The imidazole (N1,N2/C1–C3) ring is essentially planar, with maximum deviations of 0.012 (2) Å for atom C3. The N1—C1—O1 [128.32 (19)°] angle is greater than the N2—C1—O1 [124.05 (17)°] angle. This difference is also observed in the hydantoin molecule (Yu et al., 2004) and 50 other hydantoin derivatives reported in the Cambridge Structural Database (Version 5.28; Allen, 2002) with both unsubstituted NH groups and sp3-hybridization at C3. In the crystal structure (Fig. 2), the molecules are connected via N—H···O and O—H···O hydrogen bonds (Table 1), forming a supramolecular tape along the a axis.

Related literature top

For details and applications of hydantoins, see: El-Deeb et al. (2010); Rajic et al. (2006); Carmi et al. (2006); Sergent et al., (2008); Yu et al. (2004). For related structues, see: Delgado et al. (2007); Ciechanowicz-Rutkowska et al. (1994). For the synthetic procedure, see: Abdel-Aziz (2007). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

The DPPOX (1.5 equiv) was added to the equimolar solution of L-valine and urea in MeCN in addition to Et3N (1.5 equiv) and the mixture was stirred at 50°C for 60 min. After removal of the solvent, the residue was taken up in organic solvent EtOAc, and washed successively with HCl aq and NaHCO3 aq. Evaporation of the dried organic solvent gave the title compound. The colourless single-crystals suitable for X-ray analysis was obtained by recrystallization from ethanol (m.p. 145–147 °C; yield: 95%).

Refinement top

Atoms H1N1, H1N2, H1W1 and H2W2 were located in a difference Fourier map and refined freely [N—H = 0.80 (2)–0.87 (3) Å; O—H = 0.82 (4)–0.87 (4) Å]. The remaining H atoms were positioned geometrically [C—H = 0.96 or 0.98 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl groups. Even though there is sufficient anomalous dispersion to find the absolute configuration as the compound crystallize out in a chiral space group and Cu radiation was used, this was unsuccessful as the crystal is a inversion twin [BASF ratio of 0.8 (3):0.2 (3)].

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids. The O—H···O hydrogen bond is shown by a dashed line.
[Figure 2] Fig. 2. A partial packing view of the title compound. The hydrogen bonds are shown by dashed lines.
5-Isopropylimidazolidine-2,4-dione monohydrate top
Crystal data top
C6H10N2O2·H2OF(000) = 344
Mr = 160.18Dx = 1.239 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 2281 reflections
a = 6.2688 (3) Åθ = 5.6–65.9°
b = 9.2387 (4) ŵ = 0.84 mm1
c = 14.8280 (7) ÅT = 296 K
V = 858.77 (7) Å3Needle, colourless
Z = 40.90 × 0.21 × 0.16 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1497 independent reflections
Radiation source: fine-focus sealed tube1378 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 67.3°, θmin = 5.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 75
Tmin = 0.518, Tmax = 0.879k = 1110
5702 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0552P)2 + 0.0813P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
1497 reflectionsΔρmax = 0.12 e Å3
117 parametersΔρmin = 0.18 e Å3
0 restraintsAbsolute structure: Flack (1983), 592 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.2 (3)
Crystal data top
C6H10N2O2·H2OV = 858.77 (7) Å3
Mr = 160.18Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 6.2688 (3) ŵ = 0.84 mm1
b = 9.2387 (4) ÅT = 296 K
c = 14.8280 (7) Å0.90 × 0.21 × 0.16 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1497 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1378 reflections with I > 2σ(I)
Tmin = 0.518, Tmax = 0.879Rint = 0.027
5702 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098Δρmax = 0.12 e Å3
S = 1.09Δρmin = 0.18 e Å3
1497 reflectionsAbsolute structure: Flack (1983), 592 Friedel pairs
117 parametersAbsolute structure parameter: 0.2 (3)
0 restraints
Special details top

Experimental. 1H NMR (DMSO–d6): 10.54 (s, 1H, NH), 7.87 (s, 1H, NH), 3.89 (s, 1H), 2.01–1.97 (m, 1H), 0.94–0.92 (d, 3H, J = 7.0 Hz), 0.80–0.78 (d, 3H, J = 6.5 Hz). 13C NMR (DMSO–d6): 175.87, 158.28, 63.22, 30.01, 18.93, 16.31.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6583 (2)0.56794 (15)0.46328 (11)0.0679 (5)
O21.2150 (2)0.27203 (15)0.39487 (11)0.0590 (4)
N10.6703 (3)0.34173 (17)0.39871 (11)0.0472 (4)
N20.9719 (2)0.44507 (16)0.43611 (11)0.0503 (4)
C10.7524 (3)0.46070 (19)0.43523 (13)0.0481 (4)
C21.0337 (3)0.31526 (19)0.40226 (13)0.0440 (4)
C30.8324 (3)0.23514 (18)0.37618 (12)0.0436 (4)
H3A0.81560.15070.41560.052*
C40.8317 (3)0.1851 (2)0.27789 (14)0.0534 (5)
H4A0.95330.11960.27010.064*
C50.6312 (4)0.0986 (3)0.25796 (19)0.0828 (8)
H5A0.62020.01970.29980.124*
H5B0.63810.06130.19760.124*
H5C0.50860.16020.26390.124*
C60.8624 (5)0.3102 (3)0.21256 (16)0.0810 (7)
H6A0.99260.36000.22660.122*
H6B0.74460.37600.21770.122*
H6C0.86940.27360.15200.122*
H1N10.543 (4)0.329 (2)0.3981 (13)0.045 (5)*
H1N21.059 (5)0.509 (3)0.4591 (17)0.078 (8)*
O1W0.2489 (3)0.63212 (17)0.52044 (13)0.0665 (4)
H1W10.374 (6)0.617 (3)0.507 (2)0.096 (11)*
H2W20.214 (6)0.721 (4)0.531 (3)0.122 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0438 (9)0.0566 (8)0.1033 (12)0.0068 (6)0.0017 (7)0.0302 (8)
O20.0292 (8)0.0607 (8)0.0871 (11)0.0039 (6)0.0030 (6)0.0086 (7)
N10.0246 (8)0.0507 (8)0.0662 (10)0.0020 (6)0.0013 (6)0.0127 (7)
N20.0309 (9)0.0475 (8)0.0725 (11)0.0035 (6)0.0045 (7)0.0147 (8)
C10.0372 (10)0.0474 (9)0.0597 (12)0.0028 (8)0.0024 (8)0.0079 (8)
C20.0312 (9)0.0468 (9)0.0541 (10)0.0018 (7)0.0011 (7)0.0001 (8)
C30.0323 (9)0.0394 (8)0.0591 (10)0.0025 (6)0.0003 (7)0.0028 (7)
C40.0443 (11)0.0491 (9)0.0667 (12)0.0016 (8)0.0028 (8)0.0161 (8)
C50.0645 (16)0.0895 (17)0.0945 (18)0.0206 (13)0.0049 (14)0.0376 (14)
C60.098 (2)0.0838 (16)0.0617 (14)0.0079 (15)0.0041 (13)0.0044 (12)
O1W0.0438 (10)0.0557 (8)0.1000 (12)0.0042 (7)0.0067 (8)0.0203 (8)
Geometric parameters (Å, º) top
O1—C11.226 (2)C4—C51.518 (3)
O2—C21.210 (2)C4—C61.520 (3)
N1—C11.329 (2)C4—H4A0.9800
N1—C31.454 (2)C5—H5A0.9600
N1—H1N10.80 (2)C5—H5B0.9600
N2—C21.357 (2)C5—H5C0.9600
N2—C11.383 (3)C6—H6A0.9600
N2—H1N20.87 (3)C6—H6B0.9600
C2—C31.513 (2)C6—H6C0.9600
C3—C41.529 (3)O1W—H1W10.82 (4)
C3—H3A0.9800O1W—H2W20.87 (4)
C1—N1—C3112.51 (15)C5—C4—C3110.30 (17)
C1—N1—H1N1120.6 (15)C6—C4—C3112.16 (16)
C3—N1—H1N1126.2 (15)C5—C4—H4A107.2
C2—N2—C1111.89 (15)C6—C4—H4A107.2
C2—N2—H1N2124.4 (19)C3—C4—H4A107.2
C1—N2—H1N2123.6 (19)C4—C5—H5A109.5
O1—C1—N1128.32 (19)C4—C5—H5B109.5
O1—C1—N2124.05 (17)H5A—C5—H5B109.5
N1—C1—N2107.63 (16)C4—C5—H5C109.5
O2—C2—N2126.42 (17)H5A—C5—H5C109.5
O2—C2—C3126.79 (16)H5B—C5—H5C109.5
N2—C2—C3106.79 (15)C4—C6—H6A109.5
N1—C3—C2101.12 (13)C4—C6—H6B109.5
N1—C3—C4114.95 (15)H6A—C6—H6B109.5
C2—C3—C4113.19 (15)C4—C6—H6C109.5
N1—C3—H3A109.1H6A—C6—H6C109.5
C2—C3—H3A109.1H6B—C6—H6C109.5
C4—C3—H3A109.1H1W1—O1W—H2W2116 (3)
C5—C4—C6112.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2i0.81 (2)2.12 (2)2.927 (2)174.0 (19)
N2—H1N2···O1Wii0.87 (3)1.88 (3)2.751 (2)173 (2)
O1W—H1W1···O10.82 (4)1.95 (4)2.767 (2)173 (3)
O1W—H2W2···O1iii0.86 (4)1.98 (4)2.839 (2)171 (4)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC6H10N2O2·H2O
Mr160.18
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)6.2688 (3), 9.2387 (4), 14.8280 (7)
V3)858.77 (7)
Z4
Radiation typeCu Kα
µ (mm1)0.84
Crystal size (mm)0.90 × 0.21 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.518, 0.879
No. of measured, independent and
observed [I > 2σ(I)] reflections
5702, 1497, 1378
Rint0.027
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.098, 1.09
No. of reflections1497
No. of parameters117
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.12, 0.18
Absolute structureFlack (1983), 592 Friedel pairs
Absolute structure parameter0.2 (3)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2i0.81 (2)2.12 (2)2.927 (2)174.0 (19)
N2—H1N2···O1Wii0.87 (3)1.88 (3)2.751 (2)173 (2)
O1W—H1W1···O10.82 (4)1.95 (4)2.767 (2)173 (3)
O1W—H2W2···O1iii0.86 (4)1.98 (4)2.839 (2)171 (4)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x1/2, y+3/2, z+1.
 

Footnotes

Also at: College of Pharmacy (Visiting Professor), King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

AAA, ASE and AMA thank Universiti Sains Malaysia and King Saud University for supporting this study. MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

References

First citationAbdel-Aziz, A. A.-M. (2007). Eur. J. Med. Chem. 42, 614–626.  Web of Science PubMed CAS Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarmi, C., Cavazzoni, A., Zuliani, V., Lodola, A., Bordi, F., Plazzi, P. V., Alfieri, R. R., Petronini, P. G. & Mor, M. (2006). Bioorg. Med. Chem. Lett. 16, 4021–4025.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCiechanowicz-Rutkowska, M., Kieć-Kononowicz, K., Howard, S. T., Lieberman, H. & Hursthouse, M. B. (1994). Acta Cryst. B50, 86–96.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDelgado, G. E., Mora, A. J., Uzcátegui, J., Bahsas, A. & Briceño, A. (2007). Acta Cryst. C63, o448-o450.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEl-Deeb, I. M., Bayoumi, S. M., El-Sherbeny, M. A. & Abdel-Aziz, A. A.-M. (2010). Eur. J. Med. Chem. 45, 2516–2530.  Web of Science CAS PubMed Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRajic, Z., Zorc, B., Raic-Malic, S., Ester, K., Kralj, M., Pavelic, K., Balzarini, J., De Clercq, E. & Mintas, M. (2006). Molecules, 11, 837–848.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSergent, D., Wang, Q., Sasaki, N. A. & Ouazzani, J. (2008). Bioorg. Med. Chem. Lett. 18, 4332–4335.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, F.-L., Schwalbe, C. H. & Watkin, D. J. (2004). Acta Cryst. C60, o714–o717.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds