organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o547-o548

2-Amino-N-[3-(2-chloro­benzo­yl)-5-ethyl­thio­phen-2-yl]acetamide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and dR. L. Fine Chem, Bangalore 560 064, India
*Correspondence e-mail: hkfun@usm.my

(Received 24 January 2012; accepted 25 January 2012; online 31 January 2012)

In the title compound, C15H15ClN2O2S, the 2-amino­acetamide N—C(=O)—C—N unit is approximately planar, with an r.m.s. deviation of 0.020 (4) Å. The central thio­phene ring makes dihedral angles of 7.84 (11) and 88.11 (11)°, respectively, with the 2-amino­acetamide unit and the 2-chloro­phenyl ring. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal, mol­ecules are linked by an N—H⋯O hydrogen bond and weak C—H⋯O inter­actions into a chain along the c axis. A C—H⋯π inter­action is also present.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related literature on hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For background to and activities of etizolam and thio­phene derivatives, see: Gewald & Schindler (1990[Gewald, K. & Schindler, R. J. (1990). J. Prakt. Chem. 332, 223-228.]); Jagadees Babu et al. (2011[Jagadees Babu, V., Saritha, M., Sreenuvasulu, N., Narasimharao, R. & Kishor Kumar Reddy, K. (2011). J. Pharm. Res. 4, 1553-1555.]); Shafeeque et al. (1999[Shafeeque, S., Mohan, S. & Manjunatha, K. S. (1999). Indian J. Heterocycl. Chem. 8, 297-300.]); Nakamura & Mukasa (1992[Nakamura, J. & Mukasa, H. (1992). Jpn. J. Psychiatry Neurol. 46, 927-931.]); Nakanishi et al. (1973[Nakanishi, M., Tahara, T., Araki, K., Shiroki, M., Tsumagari, T. & Takigawa, Y. (1973). J. Med. Chem. 16, 214-219.]); Ramanathan & Namboothiri (1978[Ramanathan, J. D. & Namboothiri, D. G. (1978). J. Indian Chem. Soc. 8, 822-825.]). For related structures, see: Dockendorff et al. (2006[Dockendorff, C., Lautens, M. & Lough, A. J. (2006). Acta Cryst. E62, o639-o641.]); Ferreira de Lima et al. (2009[Ferreira de Lima, M., de Souza, M. V. N., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3203.]); Nogueira et al. (2010[Nogueira, T. C. M., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o177.]). For the stability of the temperature controller, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15ClN2O2S

  • Mr = 322.80

  • Monoclinic, P 21 /c

  • a = 13.9784 (11) Å

  • b = 13.5565 (11) Å

  • c = 8.3334 (7) Å

  • β = 91.233 (1)°

  • V = 1578.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 293 K

  • 0.56 × 0.41 × 0.28 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.817, Tmax = 0.902

  • 16034 measured reflections

  • 4184 independent reflections

  • 3180 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.163

  • S = 1.05

  • 4184 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the thio­phene C8/C9/S1/C10/C11 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1 0.83 2.15 2.771 (2) 132
N2—H2N2⋯O2i 0.87 2.48 3.118 (3) 131
C15—H15B⋯O2i 0.97 2.37 3.120 (3) 134
C15—H15ACg1ii 0.97 2.75 3.530 (2) 238
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound is an intermediate in the synthesis of a drug known as "etizolam" which possesses potent hypnotic properties (Nakamura & Mukasa, 1992). Thiophenes and their biheterocycles have received considerable attention during last two decades as they are endowed with variety of biological activities and have wide range of therapeutic properties (Gewald & Schindler, 1990; Ramanathan & Namboothiri, 1978). Thiophene derivatives possess different pharmacological and biological properties, of which the more potent properties are the anticonvulsant, anti-inflammatory and antibacterial activities (Jagadees Babu et al., 2011; Shafeeque et al., 1999). In view of the importance of thiophenes, the crystal structure of the title compound (I) is reported.

In the molecule of (I), C15H15ClN2O2S, the central thiophene ring makes a dihedral angle of 88.11 (11)° with the 2-chlorophenyl ring. The 2-aminoacetamide moiety is co-planar with the thiophene ring with an r.m.s. deviation of 0.067 (2) Å for the ten non-H atoms (C8–C11/C14-C15, S1, O2 N1 and N2) (Fig. 1) and with torsion angles C9–N1–C14–O2 = -1.6 (3)°, C9–N1–C14–C15 = 178.49 (18)° and N1–C14–C15–N2 = -6.9 (3)°. The orientation of the ethyl group with respect to the thiophene ring can be reflected by the torsion angle C11–C10–C12–C13 = 118.6 (4)° which indicates the (+)-anti-clinal conformation. An intramolecular N1—H1N1···O1 hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995). Bond distances of (I) are in normal range (Allen et al., 1987) and comparable with the related structures (Dockendorff et al., 2006; Ferreira de Lima et al., 2009; Nogueira et al., 2010).

In the crystal packing (Fig. 2), the molecules are linked by intermolecular N—H···O(acetamide) hydrogen bonds and weak C—H···O(acetamide) interactions (Table 1) into chains along the c axis. Weak C—H···π interactions are present (Table1).

Related literature top

For bond-length data, see: Allen et al. (1987). For related literature on hydrogen-bond motifs, see: Bernstein et al. (1995). For background to and activities of etizolam and thiophene derivatives, see: Gewald & Schindler (1990); Jagadees Babu et al. (2011); Shafeeque et al. (1999); Nakamura & Mukasa (1992); Nakanishi et al. (1973); Ramanathan & Namboothiri (1978). For related structures, see: Dockendorff et al. (2006); Ferreira de Lima et al. (2009); Nogueira et al. (2010). For the stability of the temperature controller, see: Cosier & Glazer (1986).

Experimental top

The title compound was synthesized by the literature method (Nakanishi et al., 1973). Yellow block-shaped single crystals of the title compound suitable for X-ray structure determination were recrystalized from C2H5OH/DMSO (1:1 v/v) by slow evaporation of the solvent at room temperature after several days (m.p. 417–419 K).

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(N—H) = 0.83 Å for NH, 0.87 Å for NH2, and d(C—H) = 0.93 Å for aromatic, 0.97 Å for CH2 and 0.96 Å for CH3 groups. The Uiso(H) values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atom-numbering scheme. The intramolecular N—H···O hydrogen bond is shown as a dash line.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis, showing a chain running along the c axis. Hydrogen bonds are shown as dashed lines.
2-Amino-N-[3-(2-chlorobenzoyl)-5-ethylthiophen-2-yl]acetamide top
Crystal data top
C15H15ClN2O2SF(000) = 672
Mr = 322.80Dx = 1.358 Mg m3
Monoclinic, P21/cMelting point = 417–419 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.9784 (11) ÅCell parameters from 4184 reflections
b = 13.5565 (11) Åθ = 1.5–29.0°
c = 8.3334 (7) ŵ = 0.38 mm1
β = 91.233 (1)°T = 293 K
V = 1578.8 (2) Å3Block, yellow
Z = 40.56 × 0.41 × 0.28 mm
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
4184 independent reflections
Radiation source: sealed tube3180 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 29.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1819
Tmin = 0.817, Tmax = 0.902k = 1817
16034 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.079P)2 + 0.4642P]
where P = (Fo2 + 2Fc2)/3
4184 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C15H15ClN2O2SV = 1578.8 (2) Å3
Mr = 322.80Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.9784 (11) ŵ = 0.38 mm1
b = 13.5565 (11) ÅT = 293 K
c = 8.3334 (7) Å0.56 × 0.41 × 0.28 mm
β = 91.233 (1)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
4184 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3180 reflections with I > 2σ(I)
Tmin = 0.817, Tmax = 0.902Rint = 0.020
16034 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.05Δρmax = 0.47 e Å3
4184 reflectionsΔρmin = 0.28 e Å3
191 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.44203 (5)0.00271 (7)0.78182 (12)0.1059 (3)
S10.12494 (4)0.13080 (4)1.17920 (6)0.06549 (19)
O10.19142 (11)0.04825 (14)0.72869 (17)0.0736 (5)
O20.03578 (13)0.17865 (14)1.0035 (2)0.0834 (5)
N10.06864 (11)0.08376 (12)0.87282 (19)0.0516 (4)
H1N10.08450.05970.78640.062*
N20.02762 (16)0.09813 (17)0.5929 (3)0.0771 (5)
H1N20.08040.07350.54960.093*
H2N20.00660.14160.52620.093*
C10.40677 (15)0.11245 (19)0.8517 (3)0.0658 (5)
C20.47451 (19)0.1860 (3)0.8745 (3)0.0863 (8)
H2A0.53870.17410.85430.104*
C30.4451 (2)0.2771 (2)0.9274 (3)0.0897 (8)
H3A0.48990.32740.94020.108*
C40.3506 (2)0.2951 (2)0.9617 (3)0.0834 (7)
H4A0.33190.35660.99880.100*
C50.28426 (17)0.22083 (18)0.9404 (3)0.0694 (6)
H5A0.22060.23240.96450.083*
C60.31130 (13)0.12879 (15)0.8834 (2)0.0545 (4)
C70.23554 (13)0.05129 (16)0.8577 (2)0.0540 (4)
C80.21449 (13)0.01234 (14)0.9924 (2)0.0506 (4)
C90.13424 (13)0.07179 (14)0.9968 (2)0.0497 (4)
C100.23183 (18)0.07790 (18)1.2498 (3)0.0677 (6)
C110.26932 (16)0.01788 (16)1.1402 (2)0.0606 (5)
H11A0.32580.01711.15800.073*
C120.2683 (3)0.1027 (3)1.4170 (3)0.1028 (10)
H12A0.22030.08291.49300.123*
H12B0.32530.06391.43940.123*
C130.2909 (3)0.2061 (3)1.4438 (5)0.1304 (15)
H13A0.31600.21471.55100.196*
H13B0.23390.24501.42960.196*
H13C0.33780.22701.36840.196*
C140.01269 (14)0.13727 (14)0.8807 (3)0.0568 (4)
C150.07268 (15)0.14234 (17)0.7292 (3)0.0642 (5)
H15A0.13310.10920.74680.077*
H15B0.08650.21090.70500.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0672 (4)0.1184 (7)0.1321 (7)0.0118 (4)0.0012 (4)0.0488 (5)
S10.0777 (4)0.0644 (3)0.0544 (3)0.0016 (2)0.0008 (2)0.0138 (2)
O10.0712 (9)0.1004 (12)0.0487 (7)0.0291 (9)0.0113 (6)0.0111 (7)
O20.0772 (11)0.0864 (12)0.0864 (11)0.0238 (9)0.0016 (9)0.0235 (10)
N10.0509 (8)0.0529 (9)0.0509 (8)0.0057 (7)0.0018 (6)0.0039 (6)
N20.0811 (13)0.0784 (13)0.0710 (12)0.0116 (11)0.0191 (10)0.0050 (10)
C10.0517 (10)0.0825 (15)0.0631 (12)0.0085 (10)0.0008 (9)0.0073 (11)
C20.0599 (13)0.119 (2)0.0801 (16)0.0295 (14)0.0003 (11)0.0058 (16)
C30.095 (2)0.0887 (19)0.0849 (17)0.0402 (16)0.0130 (14)0.0049 (15)
C40.099 (2)0.0647 (14)0.0851 (17)0.0086 (13)0.0192 (14)0.0007 (12)
C50.0655 (13)0.0703 (14)0.0720 (13)0.0003 (10)0.0114 (10)0.0000 (11)
C60.0497 (9)0.0654 (12)0.0483 (9)0.0070 (8)0.0045 (7)0.0031 (8)
C70.0470 (9)0.0654 (11)0.0494 (9)0.0045 (8)0.0027 (7)0.0002 (8)
C80.0477 (9)0.0560 (10)0.0478 (9)0.0027 (7)0.0047 (7)0.0009 (7)
C90.0518 (9)0.0492 (9)0.0480 (9)0.0050 (7)0.0003 (7)0.0030 (7)
C100.0822 (14)0.0698 (13)0.0505 (10)0.0120 (11)0.0132 (10)0.0024 (9)
C110.0608 (11)0.0649 (12)0.0555 (10)0.0065 (9)0.0135 (9)0.0017 (9)
C120.129 (3)0.121 (2)0.0574 (13)0.024 (2)0.0235 (15)0.0127 (15)
C130.131 (3)0.144 (3)0.114 (3)0.016 (2)0.040 (2)0.072 (3)
C140.0534 (10)0.0485 (10)0.0686 (12)0.0021 (8)0.0015 (9)0.0005 (9)
C150.0538 (11)0.0601 (12)0.0784 (14)0.0042 (9)0.0054 (9)0.0132 (10)
Geometric parameters (Å, º) top
Cl1—C11.741 (3)C5—C61.390 (3)
S1—C91.7248 (18)C5—H5A0.9300
S1—C101.748 (3)C6—C71.504 (3)
O1—C71.229 (2)C7—C81.451 (3)
O2—C141.217 (3)C8—C91.382 (3)
N1—C141.351 (2)C8—C111.438 (3)
N1—C91.376 (2)C10—C111.338 (3)
N1—H1N10.8253C10—C121.511 (3)
N2—C151.441 (3)C11—H11A0.9300
N2—H1N20.8805C12—C131.454 (5)
N2—H2N20.8655C12—H12A0.9700
C1—C61.384 (3)C12—H12B0.9700
C1—C21.386 (3)C13—H13A0.9600
C2—C31.376 (5)C13—H13B0.9600
C2—H2A0.9300C13—H13C0.9600
C3—C41.379 (4)C14—C151.502 (3)
C3—H3A0.9300C15—H15A0.9700
C4—C51.378 (3)C15—H15B0.9700
C4—H4A0.9300
C9—S1—C1091.49 (10)N1—C9—C8125.22 (16)
C14—N1—C9125.06 (17)N1—C9—S1123.04 (14)
C14—N1—H1N1119.8C8—C9—S1111.74 (13)
C9—N1—H1N1114.9C11—C10—C12129.4 (3)
C15—N2—H1N296.0C11—C10—S1111.37 (15)
C15—N2—H2N2112.5C12—C10—S1119.2 (2)
H1N2—N2—H2N2106.7C10—C11—C8114.0 (2)
C6—C1—C2121.2 (2)C10—C11—H11A123.0
C6—C1—Cl1119.25 (17)C8—C11—H11A123.0
C2—C1—Cl1119.6 (2)C13—C12—C10115.1 (3)
C3—C2—C1118.8 (3)C13—C12—H12A108.5
C3—C2—H2A120.6C10—C12—H12A108.5
C1—C2—H2A120.6C13—C12—H12B108.5
C2—C3—C4121.2 (2)C10—C12—H12B108.5
C2—C3—H3A119.4H12A—C12—H12B107.5
C4—C3—H3A119.4C12—C13—H13A109.5
C5—C4—C3119.3 (3)C12—C13—H13B109.5
C5—C4—H4A120.3H13A—C13—H13B109.5
C3—C4—H4A120.3C12—C13—H13C109.5
C4—C5—C6120.8 (2)H13A—C13—H13C109.5
C4—C5—H5A119.6H13B—C13—H13C109.5
C6—C5—H5A119.6O2—C14—N1121.8 (2)
C1—C6—C5118.6 (2)O2—C14—C15122.17 (19)
C1—C6—C7122.7 (2)N1—C14—C15116.03 (18)
C5—C6—C7118.68 (18)N2—C15—C14113.44 (17)
O1—C7—C8123.42 (18)N2—C15—H15A108.9
O1—C7—C6119.14 (18)C14—C15—H15A108.9
C8—C7—C6117.31 (16)N2—C15—H15B108.9
C9—C8—C11111.39 (17)C14—C15—H15B108.9
C9—C8—C7123.05 (16)H15A—C15—H15B107.7
C11—C8—C7125.47 (18)
C6—C1—C2—C31.0 (4)C14—N1—C9—S14.1 (3)
Cl1—C1—C2—C3179.0 (2)C11—C8—C9—N1178.71 (18)
C1—C2—C3—C41.7 (4)C7—C8—C9—N14.8 (3)
C2—C3—C4—C50.9 (4)C11—C8—C9—S11.3 (2)
C3—C4—C5—C60.7 (4)C7—C8—C9—S1175.21 (15)
C2—C1—C6—C50.6 (3)C10—S1—C9—N1178.53 (17)
Cl1—C1—C6—C5179.48 (17)C10—S1—C9—C81.49 (16)
C2—C1—C6—C7179.0 (2)C9—S1—C10—C111.31 (19)
Cl1—C1—C6—C71.0 (3)C9—S1—C10—C12179.3 (2)
C4—C5—C6—C11.4 (3)C12—C10—C11—C8179.9 (3)
C4—C5—C6—C7178.2 (2)S1—C10—C11—C80.8 (3)
C1—C6—C7—O192.5 (3)C9—C8—C11—C100.3 (3)
C5—C6—C7—O187.0 (3)C7—C8—C11—C10176.1 (2)
C1—C6—C7—C891.3 (2)C11—C10—C12—C13118.6 (4)
C5—C6—C7—C889.1 (2)S1—C10—C12—C1362.2 (4)
O1—C7—C8—C910.0 (3)C9—N1—C14—O21.6 (3)
C6—C7—C8—C9166.00 (18)C9—N1—C14—C15178.49 (18)
O1—C7—C8—C11174.0 (2)O2—C14—C15—N2173.2 (2)
C6—C7—C8—C1110.0 (3)N1—C14—C15—N26.9 (3)
C14—N1—C9—C8175.84 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the thiophene C8/C9/S1/C10/C11 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O10.832.152.771 (2)132
N2—H2N2···O2i0.872.483.118 (3)131
C15—H15B···O2i0.972.373.120 (3)134
C15—H15A···Cg1ii0.972.753.530 (2)238
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y, z+2.

Experimental details

Crystal data
Chemical formulaC15H15ClN2O2S
Mr322.80
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.9784 (11), 13.5565 (11), 8.3334 (7)
β (°) 91.233 (1)
V3)1578.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.56 × 0.41 × 0.28
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.817, 0.902
No. of measured, independent and
observed [I > 2σ(I)] reflections
16034, 4184, 3180
Rint0.020
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.163, 1.05
No. of reflections4184
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.28

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the thiophene C8/C9/S1/C10/C11 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O10.832.152.771 (2)132
N2—H2N2···O2i0.872.483.118 (3)131
C15—H15B···O2i0.972.373.120 (3)134
C15—H15A···Cg1ii0.972.753.530 (2)238
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

ASD thanks the University of Mysore for research facilities. SC thanks the Prince of Songkla University for generous support. The authors thank the Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDockendorff, C., Lautens, M. & Lough, A. J. (2006). Acta Cryst. E62, o639–o641.  CrossRef IUCr Journals Google Scholar
First citationFerreira de Lima, M., de Souza, M. V. N., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2009). Acta Cryst. E65, o3203.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGewald, K. & Schindler, R. J. (1990). J. Prakt. Chem. 332, 223–228.  CrossRef CAS Google Scholar
First citationJagadees Babu, V., Saritha, M., Sreenuvasulu, N., Narasimharao, R. & Kishor Kumar Reddy, K. (2011). J. Pharm. Res. 4, 1553–1555.  CAS Google Scholar
First citationNakamura, J. & Mukasa, H. (1992). Jpn. J. Psychiatry Neurol. 46, 927–931.  PubMed CAS Google Scholar
First citationNakanishi, M., Tahara, T., Araki, K., Shiroki, M., Tsumagari, T. & Takigawa, Y. (1973). J. Med. Chem. 16, 214–219.  CrossRef CAS PubMed Google Scholar
First citationNogueira, T. C. M., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o177.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRamanathan, J. D. & Namboothiri, D. G. (1978). J. Indian Chem. Soc. 8, 822–825.  Google Scholar
First citationShafeeque, S., Mohan, S. & Manjunatha, K. S. (1999). Indian J. Heterocycl. Chem. 8, 297–300.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o547-o548
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds