metal-organic compounds
Bis{μ-2-[(dimethylamino)methyl]benzenetellurolato}bis[chloridopalladium(II)] dichloromethane hemisolvate
aDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA, and bDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
*Correspondence e-mail: rbutcher99@yahoo.com
The 2(C9H12NTe)2Cl2]·0.5CH2Cl2, contains two half-molecules, each lying on a twofold rotation axis; each molecule is chiral and of the same enantiomer. This is only possible as the molecule has a hinged cis arrangement about the Pd2+ coordination spheres. For this hinged dimeric structure, the angles between the two coordination planes in each molecule are 21.59 (4) and 22.10 (4)°. This hinged cis arrangement also allows the two molecules to form pairs linked by secondary interactions between the Pd and Te atoms of an adjoining molecule, leading to a tetrameric overall structure. C—H⋯Cl interactions consolidate the crystal packing.
of the title compound, [PdRelated literature
For related structures of bridged dimers of palladium mediated by Se, see: Brown & Corrigan (2004); Chakraborty et al. (2011); Dey et al. (2006); Ford et al. (2004); Kaur et al. (2009); Morley et al. (2006); Nakata et al. (2009); Oilunkaniemi et al. (1999, 2001). For Se/Te-bridged Pd dimeric structures which exhibit either a hinged or cis arrangement of ligands about the bridging plane, see: Kaur et al. (2009); Oilunkaniemi et al. (2000); Chakravorty et al. (2012). For the synthesis of the title compound, see: Chakraborty et al. (2011).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812000104/jj2116sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812000104/jj2116Isup2.hkl
The ligand and complex were prepared using previously reported methods (Chakraborty et al., 2011). The reaction time for the synthesis of the tellurolate complex was 2 h and it was crystallized from chloroform/hexane as reported earlier. However, when the reaction was run for 30 min following the reported procedure and crystallized from dichloromethane/hexane (2:1) at ambient temperature the complex crystallized in a different
which is chiral.H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.95 - 0.97 Å [Uiso(H) = 1.2Ueq(CH, CH2) [Uiso(H) = 1.5Ueq(CH3)].
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The structure of one of the two molecules of the asymmetric unit showing the hinged cis arrangement of the two Pd coordination planes. The two halves of the molecule are related by 1 - x, 1 - y, z. | |
Fig. 2. Shows the association of two dimeric units into a tetramer via matching and complementary secondary interactions between the Pd and Te of adjoining units. These interactions are shown by dashed lines. | |
Fig. 3. Packing diagram of the title compound viewed along the b axis. Te—Pd and C—H···Cl secondary interactions shown by dashed lines. |
[Pd2(C9H12NTe)2Cl2]·0.5CH2Cl2 | F(000) = 1588 |
Mr = 1699.51 | Dx = 2.200 Mg m−3 |
Orthorhombic, P21212 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2 2ab | Cell parameters from 9437 reflections |
a = 14.035 (2) Å | θ = 2.7–26.9° |
b = 14.842 (2) Å | µ = 3.95 mm−1 |
c = 12.3188 (16) Å | T = 100 K |
V = 2566.0 (6) Å3 | Prism, yellow-orange |
Z = 2 | 0.32 × 0.26 × 0.18 mm |
Bruker APEXII CCD area-detector diffractometer | 5506 independent reflections |
Radiation source: fine-focus sealed tube | 5148 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.050 |
ω scans | θmax = 27.0°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −17→17 |
Tmin = 0.615, Tmax = 0.746 | k = −18→18 |
36521 measured reflections | l = −15→11 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.102 | w = 1/[σ2(Fo2) + (0.0501P)2 + 22.7234P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
5506 reflections | Δρmax = 2.12 e Å−3 |
254 parameters | Δρmin = −0.90 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 2355 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.06 (4) |
[Pd2(C9H12NTe)2Cl2]·0.5CH2Cl2 | V = 2566.0 (6) Å3 |
Mr = 1699.51 | Z = 2 |
Orthorhombic, P21212 | Mo Kα radiation |
a = 14.035 (2) Å | µ = 3.95 mm−1 |
b = 14.842 (2) Å | T = 100 K |
c = 12.3188 (16) Å | 0.32 × 0.26 × 0.18 mm |
Bruker APEXII CCD area-detector diffractometer | 5506 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 5148 reflections with I > 2σ(I) |
Tmin = 0.615, Tmax = 0.746 | Rint = 0.050 |
36521 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.102 | w = 1/[σ2(Fo2) + (0.0501P)2 + 22.7234P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | Δρmax = 2.12 e Å−3 |
5506 reflections | Δρmin = −0.90 e Å−3 |
254 parameters | Absolute structure: Flack (1983), 2355 Friedel pairs |
0 restraints | Absolute structure parameter: 0.06 (4) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Pd1A | 0.54346 (4) | 0.37839 (4) | 0.59921 (5) | 0.01520 (13) | |
Te1A | 0.61163 (3) | 0.53491 (4) | 0.62387 (4) | 0.01511 (12) | |
Cl1A | 0.45795 (17) | 0.24470 (15) | 0.5665 (2) | 0.0284 (5) | |
N1A | 0.6857 (5) | 0.3197 (5) | 0.5763 (6) | 0.0184 (15) | |
C1A | 0.6689 (6) | 0.5129 (6) | 0.4639 (6) | 0.0177 (18) | |
C2A | 0.6399 (6) | 0.5658 (6) | 0.3784 (7) | 0.0206 (17) | |
H2AA | 0.5937 | 0.6120 | 0.3876 | 0.025* | |
C3A | 0.6813 (7) | 0.5486 (6) | 0.2777 (7) | 0.025 (2) | |
H3AA | 0.6611 | 0.5822 | 0.2163 | 0.030* | |
C4A | 0.7500 (7) | 0.4848 (6) | 0.2654 (8) | 0.028 (2) | |
H4AA | 0.7786 | 0.4756 | 0.1964 | 0.034* | |
C5A | 0.7784 (6) | 0.4330 (6) | 0.3537 (7) | 0.0226 (18) | |
H5AA | 0.8267 | 0.3886 | 0.3456 | 0.027* | |
C6A | 0.7354 (6) | 0.4470 (6) | 0.4537 (6) | 0.0169 (17) | |
C7A | 0.7615 (6) | 0.3882 (7) | 0.5500 (7) | 0.0237 (19) | |
H7AA | 0.8219 | 0.3565 | 0.5341 | 0.028* | |
H7AB | 0.7721 | 0.4270 | 0.6142 | 0.028* | |
C8A | 0.7109 (7) | 0.2750 (7) | 0.6799 (8) | 0.032 (2) | |
H8AA | 0.7769 | 0.2536 | 0.6764 | 0.047* | |
H8AB | 0.6681 | 0.2238 | 0.6921 | 0.047* | |
H8AC | 0.7044 | 0.3181 | 0.7397 | 0.047* | |
C9A | 0.6846 (7) | 0.2495 (7) | 0.4917 (8) | 0.027 (2) | |
H9AA | 0.7483 | 0.2230 | 0.4850 | 0.040* | |
H9AB | 0.6660 | 0.2763 | 0.4222 | 0.040* | |
H9AC | 0.6389 | 0.2024 | 0.5116 | 0.040* | |
Pd1B | 0.37084 (4) | 0.45871 (4) | 0.90101 (5) | 0.01594 (14) | |
Te1B | 0.53688 (4) | 0.39525 (3) | 0.87669 (4) | 0.01555 (12) | |
Cl1B | 0.22964 (17) | 0.54079 (18) | 0.9375 (2) | 0.0370 (6) | |
N1B | 0.3072 (5) | 0.3220 (5) | 0.9235 (6) | 0.0207 (15) | |
C1B | 0.5141 (6) | 0.3441 (6) | 1.0358 (6) | 0.0175 (17) | |
C2B | 0.5672 (6) | 0.3731 (6) | 1.1223 (7) | 0.0244 (19) | |
H2BA | 0.6144 | 0.4182 | 1.1127 | 0.029* | |
C3B | 0.5510 (7) | 0.3351 (7) | 1.2270 (7) | 0.026 (2) | |
H3BA | 0.5845 | 0.3568 | 1.2887 | 0.032* | |
C4B | 0.4853 (6) | 0.2656 (6) | 1.2371 (7) | 0.025 (2) | |
H4BA | 0.4775 | 0.2366 | 1.3052 | 0.030* | |
C5B | 0.4308 (7) | 0.2378 (7) | 1.1491 (8) | 0.030 (2) | |
H5BA | 0.3850 | 0.1913 | 1.1583 | 0.035* | |
C6B | 0.4430 (6) | 0.2783 (6) | 1.0454 (7) | 0.0217 (18) | |
C7B | 0.3803 (7) | 0.2521 (6) | 0.9532 (7) | 0.025 (2) | |
H7BA | 0.3471 | 0.1954 | 0.9721 | 0.030* | |
H7BB | 0.4206 | 0.2400 | 0.8889 | 0.030* | |
C8B | 0.2650 (8) | 0.2964 (7) | 0.8194 (7) | 0.029 (2) | |
H8BA | 0.2382 | 0.2356 | 0.8250 | 0.043* | |
H8BB | 0.3142 | 0.2975 | 0.7630 | 0.043* | |
H8BC | 0.2143 | 0.3391 | 0.8007 | 0.043* | |
C9B | 0.2331 (7) | 0.3257 (7) | 1.0054 (7) | 0.025 (2) | |
H9BA | 0.2028 | 0.2665 | 1.0119 | 0.038* | |
H9BB | 0.1853 | 0.3705 | 0.9844 | 0.038* | |
H9BC | 0.2612 | 0.3427 | 1.0753 | 0.038* | |
Cl1S | −0.0241 (2) | 0.5950 (2) | 1.1834 (4) | 0.0643 (10) | |
C1S | 0.0000 | 0.5000 | 1.0976 (13) | 0.044 (4) | |
H1SA | 0.0542 | 0.5111 | 1.0521 | 0.052* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pd1A | 0.0164 (3) | 0.0155 (3) | 0.0137 (3) | 0.0010 (2) | −0.0010 (2) | 0.0024 (2) |
Te1A | 0.0151 (2) | 0.0183 (2) | 0.0119 (2) | −0.00024 (19) | 0.00035 (18) | −0.0012 (2) |
Cl1A | 0.0258 (10) | 0.0191 (10) | 0.0401 (12) | −0.0044 (9) | −0.0013 (10) | −0.0009 (9) |
N1A | 0.019 (3) | 0.023 (4) | 0.013 (3) | 0.007 (3) | 0.000 (3) | 0.001 (3) |
C1A | 0.018 (4) | 0.026 (5) | 0.009 (3) | −0.007 (3) | 0.001 (3) | −0.001 (3) |
C2A | 0.023 (4) | 0.017 (4) | 0.021 (4) | −0.004 (3) | 0.007 (4) | 0.005 (3) |
C3A | 0.041 (5) | 0.014 (4) | 0.020 (4) | −0.008 (4) | 0.000 (4) | 0.007 (3) |
C4A | 0.033 (5) | 0.031 (5) | 0.021 (4) | −0.006 (4) | 0.010 (4) | −0.001 (4) |
C5A | 0.026 (4) | 0.023 (4) | 0.019 (4) | 0.005 (4) | 0.002 (4) | −0.004 (3) |
C6A | 0.017 (4) | 0.022 (5) | 0.012 (4) | −0.001 (3) | 0.000 (3) | −0.003 (3) |
C7A | 0.020 (4) | 0.031 (5) | 0.020 (4) | 0.011 (4) | 0.002 (3) | −0.001 (4) |
C8A | 0.033 (5) | 0.035 (6) | 0.027 (5) | 0.016 (4) | −0.007 (4) | 0.014 (4) |
C9A | 0.032 (5) | 0.020 (4) | 0.028 (5) | 0.008 (4) | 0.007 (4) | −0.009 (4) |
Pd1B | 0.0185 (3) | 0.0145 (3) | 0.0147 (3) | −0.0018 (2) | 0.0007 (2) | −0.0024 (2) |
Te1B | 0.0207 (2) | 0.0142 (2) | 0.0117 (2) | −0.0004 (2) | 0.0012 (2) | 0.00052 (19) |
Cl1B | 0.0274 (11) | 0.0253 (12) | 0.0584 (16) | 0.0041 (10) | 0.0144 (11) | −0.0036 (12) |
N1B | 0.029 (4) | 0.017 (4) | 0.016 (3) | −0.003 (3) | 0.004 (3) | −0.001 (3) |
C1B | 0.016 (4) | 0.028 (4) | 0.009 (3) | 0.002 (3) | 0.003 (3) | 0.005 (3) |
C2B | 0.021 (4) | 0.035 (5) | 0.017 (4) | 0.006 (4) | 0.000 (3) | 0.020 (4) |
C3B | 0.022 (4) | 0.042 (5) | 0.015 (4) | −0.001 (4) | −0.001 (4) | 0.005 (4) |
C4B | 0.025 (5) | 0.034 (5) | 0.015 (4) | 0.008 (4) | 0.006 (3) | 0.013 (4) |
C5B | 0.030 (5) | 0.031 (5) | 0.027 (5) | 0.002 (4) | 0.005 (4) | 0.012 (4) |
C6B | 0.024 (5) | 0.021 (4) | 0.020 (4) | 0.006 (4) | 0.004 (3) | 0.002 (3) |
C7B | 0.036 (5) | 0.023 (5) | 0.018 (4) | 0.004 (4) | 0.011 (4) | 0.003 (4) |
C8B | 0.042 (6) | 0.027 (5) | 0.018 (4) | −0.023 (4) | −0.002 (4) | −0.004 (4) |
C9B | 0.028 (5) | 0.028 (5) | 0.019 (4) | −0.002 (4) | 0.007 (4) | −0.002 (4) |
Cl1S | 0.0516 (19) | 0.0396 (15) | 0.102 (3) | −0.0078 (15) | 0.0240 (18) | 0.0024 (18) |
C1S | 0.034 (7) | 0.062 (10) | 0.034 (8) | 0.002 (7) | 0.000 | 0.000 |
Pd1A—N1A | 2.196 (7) | Pd1B—Te1B | 2.5313 (8) |
Pd1A—Cl1A | 2.354 (2) | Pd1B—Te1Bi | 2.5427 (8) |
Pd1A—Te1A | 2.5305 (8) | Pd1B—Te1Ai | 3.4241 (9) |
Pd1A—Te1Ai | 2.5467 (8) | Te1B—C1B | 2.126 (8) |
Pd1A—Te1B | 3.4286 (9) | Te1B—Pd1Bi | 2.5427 (8) |
Te1A—C1A | 2.154 (8) | N1B—C9B | 1.449 (11) |
Te1A—Pd1Ai | 2.5467 (8) | N1B—C8B | 1.462 (11) |
N1A—C9A | 1.474 (12) | N1B—C7B | 1.504 (12) |
N1A—C8A | 1.480 (11) | C1B—C2B | 1.370 (12) |
N1A—C7A | 1.508 (12) | C1B—C6B | 1.402 (13) |
C1A—C6A | 1.357 (13) | C2B—C3B | 1.426 (11) |
C1A—C2A | 1.375 (12) | C2B—H2BA | 0.9500 |
C2A—C3A | 1.393 (12) | C3B—C4B | 1.389 (13) |
C2A—H2AA | 0.9500 | C3B—H3BA | 0.9500 |
C3A—C4A | 1.360 (13) | C4B—C5B | 1.389 (14) |
C3A—H3AA | 0.9500 | C4B—H4BA | 0.9500 |
C4A—C5A | 1.390 (13) | C5B—C6B | 1.422 (12) |
C4A—H4AA | 0.9500 | C5B—H5BA | 0.9500 |
C5A—C6A | 1.388 (11) | C6B—C7B | 1.488 (13) |
C5A—H5AA | 0.9500 | C7B—H7BA | 0.9900 |
C6A—C7A | 1.517 (12) | C7B—H7BB | 0.9900 |
C7A—H7AA | 0.9900 | C8B—H8BA | 0.9800 |
C7A—H7AB | 0.9900 | C8B—H8BB | 0.9800 |
C8A—H8AA | 0.9800 | C8B—H8BC | 0.9800 |
C8A—H8AB | 0.9800 | C9B—H9BA | 0.9800 |
C8A—H8AC | 0.9800 | C9B—H9BB | 0.9800 |
C9A—H9AA | 0.9800 | C9B—H9BC | 0.9800 |
C9A—H9AB | 0.9800 | Cl1S—C1S | 1.794 (10) |
C9A—H9AC | 0.9800 | C1S—Cl1Sii | 1.794 (10) |
Pd1B—N1B | 2.235 (7) | C1S—H1SA | 0.9600 |
Pd1B—Cl1B | 2.369 (2) | ||
N1A—Pd1A—Cl1A | 96.1 (2) | N1B—Pd1B—Te1Bi | 172.9 (2) |
N1A—Pd1A—Te1A | 92.1 (2) | Cl1B—Pd1B—Te1Bi | 90.58 (7) |
Cl1A—Pd1A—Te1A | 170.82 (7) | Te1B—Pd1B—Te1Bi | 80.46 (3) |
N1A—Pd1A—Te1Ai | 173.0 (2) | N1B—Pd1B—Te1Ai | 100.24 (19) |
Cl1A—Pd1A—Te1Ai | 90.61 (6) | Cl1B—Pd1B—Te1Ai | 103.60 (7) |
Te1A—Pd1A—Te1Ai | 81.08 (2) | Te1B—Pd1B—Te1Ai | 79.99 (2) |
N1A—Pd1A—Te1B | 100.45 (18) | Te1Bi—Pd1B—Te1Ai | 79.77 (2) |
Cl1A—Pd1A—Te1B | 102.63 (6) | C1B—Te1B—Pd1B | 83.4 (2) |
Te1A—Pd1A—Te1B | 79.84 (2) | C1B—Te1B—Pd1Bi | 105.8 (2) |
Te1Ai—Pd1A—Te1B | 79.70 (2) | Pd1B—Te1B—Pd1Bi | 97.92 (3) |
C1A—Te1A—Pd1A | 83.8 (2) | C1B—Te1B—Pd1A | 153.8 (2) |
C1A—Te1A—Pd1Ai | 106.7 (2) | Pd1B—Te1B—Pd1A | 99.78 (2) |
Pd1A—Te1A—Pd1Ai | 97.26 (3) | Pd1Bi—Te1B—Pd1A | 99.55 (2) |
C9A—N1A—C8A | 107.2 (7) | C9B—N1B—C8B | 109.2 (8) |
C9A—N1A—C7A | 109.4 (7) | C9B—N1B—C7B | 110.3 (7) |
C8A—N1A—C7A | 108.6 (7) | C8B—N1B—C7B | 108.1 (7) |
C9A—N1A—Pd1A | 111.2 (6) | C9B—N1B—Pd1B | 109.8 (6) |
C8A—N1A—Pd1A | 106.5 (5) | C8B—N1B—Pd1B | 106.8 (5) |
C7A—N1A—Pd1A | 113.7 (5) | C7B—N1B—Pd1B | 112.5 (6) |
C6A—C1A—C2A | 123.0 (8) | C2B—C1B—C6B | 122.7 (8) |
C6A—C1A—Te1A | 116.8 (6) | C2B—C1B—Te1B | 121.6 (6) |
C2A—C1A—Te1A | 120.2 (6) | C6B—C1B—Te1B | 115.7 (6) |
C1A—C2A—C3A | 116.9 (8) | C1B—C2B—C3B | 119.5 (8) |
C1A—C2A—H2AA | 121.5 | C1B—C2B—H2BA | 120.2 |
C3A—C2A—H2AA | 121.5 | C3B—C2B—H2BA | 120.2 |
C4A—C3A—C2A | 121.5 (9) | C4B—C3B—C2B | 118.7 (9) |
C4A—C3A—H3AA | 119.2 | C4B—C3B—H3BA | 120.6 |
C2A—C3A—H3AA | 119.2 | C2B—C3B—H3BA | 120.6 |
C3A—C4A—C5A | 120.1 (9) | C5B—C4B—C3B | 121.1 (8) |
C3A—C4A—H4AA | 120.0 | C5B—C4B—H4BA | 119.4 |
C5A—C4A—H4AA | 120.0 | C3B—C4B—H4BA | 119.4 |
C6A—C5A—C4A | 119.1 (8) | C4B—C5B—C6B | 120.6 (9) |
C6A—C5A—H5AA | 120.5 | C4B—C5B—H5BA | 119.7 |
C4A—C5A—H5AA | 120.5 | C6B—C5B—H5BA | 119.7 |
C1A—C6A—C5A | 119.3 (8) | C1B—C6B—C5B | 117.2 (8) |
C1A—C6A—C7A | 120.5 (7) | C1B—C6B—C7B | 122.5 (8) |
C5A—C6A—C7A | 120.1 (8) | C5B—C6B—C7B | 120.3 (8) |
N1A—C7A—C6A | 112.7 (7) | C6B—C7B—N1B | 114.1 (7) |
N1A—C7A—H7AA | 109.0 | C6B—C7B—H7BA | 108.7 |
C6A—C7A—H7AA | 109.0 | N1B—C7B—H7BA | 108.7 |
N1A—C7A—H7AB | 109.0 | C6B—C7B—H7BB | 108.7 |
C6A—C7A—H7AB | 109.0 | N1B—C7B—H7BB | 108.7 |
H7AA—C7A—H7AB | 107.8 | H7BA—C7B—H7BB | 107.6 |
N1A—C8A—H8AA | 109.5 | N1B—C8B—H8BA | 109.5 |
N1A—C8A—H8AB | 109.5 | N1B—C8B—H8BB | 109.5 |
H8AA—C8A—H8AB | 109.5 | H8BA—C8B—H8BB | 109.5 |
N1A—C8A—H8AC | 109.5 | N1B—C8B—H8BC | 109.5 |
H8AA—C8A—H8AC | 109.5 | H8BA—C8B—H8BC | 109.5 |
H8AB—C8A—H8AC | 109.5 | H8BB—C8B—H8BC | 109.5 |
N1A—C9A—H9AA | 109.5 | N1B—C9B—H9BA | 109.5 |
N1A—C9A—H9AB | 109.5 | N1B—C9B—H9BB | 109.5 |
H9AA—C9A—H9AB | 109.5 | H9BA—C9B—H9BB | 109.5 |
N1A—C9A—H9AC | 109.5 | N1B—C9B—H9BC | 109.5 |
H9AA—C9A—H9AC | 109.5 | H9BA—C9B—H9BC | 109.5 |
H9AB—C9A—H9AC | 109.5 | H9BB—C9B—H9BC | 109.5 |
N1B—Pd1B—Cl1B | 96.3 (2) | Cl1S—C1S—Cl1Sii | 107.8 (9) |
N1B—Pd1B—Te1B | 92.6 (2) | Cl1S—C1S—H1SA | 111.0 |
Cl1B—Pd1B—Te1B | 169.67 (7) | Cl1Sii—C1S—H1SA | 109.2 |
N1A—Pd1A—Te1A—C1A | 58.9 (3) | Cl1B—Pd1B—Te1B—Pd1A | −117.7 (4) |
Cl1A—Pd1A—Te1A—C1A | −94.4 (5) | Te1Bi—Pd1B—Te1B—Pd1A | −87.59 (2) |
Te1Ai—Pd1A—Te1A—C1A | −119.8 (2) | Te1Ai—Pd1B—Te1B—Pd1A | −6.410 (18) |
Te1B—Pd1A—Te1A—C1A | 159.2 (2) | N1A—Pd1A—Te1B—C1B | −83.5 (5) |
N1A—Pd1A—Te1A—Pd1Ai | 164.97 (18) | Cl1A—Pd1A—Te1B—C1B | 15.3 (5) |
Cl1A—Pd1A—Te1A—Pd1Ai | 11.6 (4) | Te1A—Pd1A—Te1B—C1B | −173.7 (5) |
Te1Ai—Pd1A—Te1A—Pd1Ai | −13.74 (4) | Te1Ai—Pd1A—Te1B—C1B | 103.6 (5) |
Te1B—Pd1A—Te1A—Pd1Ai | −94.78 (2) | N1A—Pd1A—Te1B—Pd1B | −178.4 (2) |
Cl1A—Pd1A—N1A—C9A | 34.8 (6) | Cl1A—Pd1A—Te1B—Pd1B | −79.66 (7) |
Te1A—Pd1A—N1A—C9A | −141.0 (6) | Te1A—Pd1A—Te1B—Pd1B | 91.32 (3) |
Te1Ai—Pd1A—N1A—C9A | −130.5 (14) | Te1Ai—Pd1A—Te1B—Pd1B | 8.64 (2) |
Te1B—Pd1A—N1A—C9A | 138.9 (6) | N1A—Pd1A—Te1B—Pd1Bi | 81.7 (2) |
Cl1A—Pd1A—N1A—C8A | −81.7 (6) | Cl1A—Pd1A—Te1B—Pd1Bi | −179.49 (6) |
Te1A—Pd1A—N1A—C8A | 102.5 (6) | Te1A—Pd1A—Te1B—Pd1Bi | −8.52 (2) |
Te1Ai—Pd1A—N1A—C8A | 113.0 (15) | Te1Ai—Pd1A—Te1B—Pd1Bi | −91.20 (3) |
Te1B—Pd1A—N1A—C8A | 22.4 (6) | Cl1B—Pd1B—N1B—C9B | −32.5 (6) |
Cl1A—Pd1A—N1A—C7A | 158.8 (5) | Te1B—Pd1B—N1B—C9B | 142.1 (6) |
Te1A—Pd1A—N1A—C7A | −17.1 (5) | Te1Bi—Pd1B—N1B—C9B | 133.0 (14) |
Te1Ai—Pd1A—N1A—C7A | −6.5 (19) | Te1Ai—Pd1B—N1B—C9B | −137.6 (6) |
Te1B—Pd1A—N1A—C7A | −97.1 (5) | Cl1B—Pd1B—N1B—C8B | 85.8 (6) |
Pd1A—Te1A—C1A—C6A | −65.8 (6) | Te1B—Pd1B—N1B—C8B | −99.6 (6) |
Pd1Ai—Te1A—C1A—C6A | −161.5 (6) | Te1Bi—Pd1B—N1B—C8B | −108.7 (15) |
Pd1A—Te1A—C1A—C2A | 115.9 (7) | Te1Ai—Pd1B—N1B—C8B | −19.3 (6) |
Pd1Ai—Te1A—C1A—C2A | 20.1 (7) | Cl1B—Pd1B—N1B—C7B | −155.8 (5) |
C6A—C1A—C2A—C3A | 0.7 (13) | Te1B—Pd1B—N1B—C7B | 18.8 (5) |
Te1A—C1A—C2A—C3A | 178.9 (6) | Te1Bi—Pd1B—N1B—C7B | 9.7 (19) |
C1A—C2A—C3A—C4A | −2.5 (13) | Te1Ai—Pd1B—N1B—C7B | 99.1 (5) |
C2A—C3A—C4A—C5A | 2.0 (14) | Pd1B—Te1B—C1B—C2B | −114.6 (7) |
C3A—C4A—C5A—C6A | 0.4 (14) | Pd1Bi—Te1B—C1B—C2B | −18.2 (8) |
C2A—C1A—C6A—C5A | 1.6 (13) | Pd1A—Te1B—C1B—C2B | 146.7 (6) |
Te1A—C1A—C6A—C5A | −176.7 (6) | Pd1B—Te1B—C1B—C6B | 66.6 (6) |
C2A—C1A—C6A—C7A | −177.4 (8) | Pd1Bi—Te1B—C1B—C6B | 163.0 (6) |
Te1A—C1A—C6A—C7A | 4.3 (11) | Pd1A—Te1B—C1B—C6B | −32.2 (10) |
C4A—C5A—C6A—C1A | −2.2 (13) | C6B—C1B—C2B—C3B | 0.5 (14) |
C4A—C5A—C6A—C7A | 176.9 (8) | Te1B—C1B—C2B—C3B | −178.3 (7) |
C9A—N1A—C7A—C6A | 71.5 (9) | C1B—C2B—C3B—C4B | 3.7 (14) |
C8A—N1A—C7A—C6A | −171.9 (7) | C2B—C3B—C4B—C5B | −4.8 (14) |
Pd1A—N1A—C7A—C6A | −53.5 (8) | C3B—C4B—C5B—C6B | 1.8 (14) |
C1A—C6A—C7A—N1A | 74.3 (10) | C2B—C1B—C6B—C5B | −3.4 (13) |
C5A—C6A—C7A—N1A | −104.7 (9) | Te1B—C1B—C6B—C5B | 175.4 (7) |
N1B—Pd1B—Te1B—C1B | −60.2 (3) | C2B—C1B—C6B—C7B | 175.1 (8) |
Cl1B—Pd1B—Te1B—C1B | 88.6 (5) | Te1B—C1B—C6B—C7B | −6.1 (11) |
Te1Bi—Pd1B—Te1B—C1B | 118.7 (2) | C4B—C5B—C6B—C1B | 2.3 (13) |
Te1Ai—Pd1B—Te1B—C1B | −160.1 (2) | C4B—C5B—C6B—C7B | −176.2 (8) |
N1B—Pd1B—Te1B—Pd1Bi | −165.28 (19) | C1B—C6B—C7B—N1B | −72.2 (11) |
Cl1B—Pd1B—Te1B—Pd1Bi | −16.5 (4) | C5B—C6B—C7B—N1B | 106.3 (10) |
Te1Bi—Pd1B—Te1B—Pd1Bi | 13.59 (4) | C9B—N1B—C7B—C6B | −72.4 (10) |
Te1Ai—Pd1B—Te1B—Pd1Bi | 94.77 (2) | C8B—N1B—C7B—C6B | 168.3 (7) |
N1B—Pd1B—Te1B—Pd1A | 93.54 (19) | Pd1B—N1B—C7B—C6B | 50.6 (8) |
Symmetry codes: (i) −x+1, −y+1, z; (ii) −x, −y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1S—H1SA···Cl1B | 0.96 | 2.87 | 3.827 (9) | 173 |
C5A—H5AA···Cl1Aiii | 0.95 | 2.91 | 3.778 (9) | 152 |
C7A—H7AA···Cl1Aiii | 0.99 | 2.73 | 3.681 (9) | 162 |
C9A—H9AC···Cl1A | 0.98 | 2.70 | 3.313 (10) | 121 |
C7B—H7BA···Cl1Biv | 0.99 | 2.77 | 3.746 (10) | 169 |
C7B—H7BB···Cl1Siv | 0.99 | 2.75 | 3.514 (10) | 135 |
C9B—H9BB···Cl1B | 0.98 | 2.67 | 3.300 (11) | 123 |
Symmetry codes: (iii) x+1/2, −y+1/2, −z+1; (iv) −x+1/2, y−1/2, −z+2. |
Experimental details
Crystal data | |
Chemical formula | [Pd2(C9H12NTe)2Cl2]·0.5CH2Cl2 |
Mr | 1699.51 |
Crystal system, space group | Orthorhombic, P21212 |
Temperature (K) | 100 |
a, b, c (Å) | 14.035 (2), 14.842 (2), 12.3188 (16) |
V (Å3) | 2566.0 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 3.95 |
Crystal size (mm) | 0.32 × 0.26 × 0.18 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.615, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 36521, 5506, 5148 |
Rint | 0.050 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.102, 1.06 |
No. of reflections | 5506 |
No. of parameters | 254 |
H-atom treatment | H-atom parameters constrained |
w = 1/[σ2(Fo2) + (0.0501P)2 + 22.7234P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 2.12, −0.90 |
Absolute structure | Flack (1983), 2355 Friedel pairs |
Absolute structure parameter | 0.06 (4) |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C1S—H1SA···Cl1B | 0.96 | 2.87 | 3.827 (9) | 173.4 |
C5A—H5AA···Cl1Ai | 0.95 | 2.91 | 3.778 (9) | 152.1 |
C7A—H7AA···Cl1Ai | 0.99 | 2.73 | 3.681 (9) | 162.1 |
C9A—H9AC···Cl1A | 0.98 | 2.70 | 3.313 (10) | 120.9 |
C7B—H7BA···Cl1Bii | 0.99 | 2.77 | 3.746 (10) | 169.2 |
C7B—H7BB···Cl1Sii | 0.99 | 2.75 | 3.514 (10) | 134.8 |
C9B—H9BB···Cl1B | 0.98 | 2.67 | 3.300 (11) | 122.7 |
Symmetry codes: (i) x+1/2, −y+1/2, −z+1; (ii) −x+1/2, y−1/2, −z+2. |
Acknowledgements
HBS acknowledges the DST, New Delhi, for financial support. TC acknowledges the CSIR, New Delhi, for a fellowship. RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer.
References
Brown, M. J. & Corrigan, J. F. (2004). J. Organomet. Chem. 689, 2872–2879. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chakraborty, T., Srivastava, K., Singh, H. B. & Butcher, R. J. (2011). J. Organomet. Chem. 696, 2782–2788. Web of Science CSD CrossRef CAS Google Scholar
Chakravorty, T., Singh, H. B. & Butcher, R. J. (2012). Acta Cryst. E68, m113–m114. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Dey, S., Jain, V. K., Varghese, B., Schurr, T., Niemeyer, M., Kaim, W. & Butcher, R. J. (2006). Inorg. Chim. Acta, 359, 1449–1457. Web of Science CSD CrossRef CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Ford, S., Morley, C. P. & Di Viara, M. (2004). Inorg. Chem. 43, 7101–7110. Web of Science CSD CrossRef PubMed CAS Google Scholar
Kaur, R., Menon, S. C., Panda, S., Singh, H. B., Patel, R. P. & Butcher, R. J. (2009). Organometallics, 28, 2363–2371. Web of Science CSD CrossRef CAS Google Scholar
Morley, C. P., Webster, C. A. & Di Vaira, M. (2006). J. Organomet. Chem. 691, 4244–4249. Web of Science CSD CrossRef CAS Google Scholar
Nakata, N., Uchiumi, R., Yoshino, T., Ikeda, T., Kamon, H. & Ishii, A. (2009). Organometallics, 28, 1981–1984. Web of Science CSD CrossRef CAS Google Scholar
Oilunkaniemi, R., Laitinen, R. S. & Ahlgrén, M. (1999). J. Organomet. Chem. 587, 200–206. Web of Science CSD CrossRef CAS Google Scholar
Oilunkaniemi, R., Laitinen, R. S. & Ahlgrén, M. (2000). J. Organomet. Chem. 595, 232–240. Web of Science CSD CrossRef CAS Google Scholar
Oilunkaniemi, R., Laitinen, R. S. & Ahlgrén, M. (2001). J. Organomet. Chem. 623, 168–175. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The coordination chemistry of transition metal complexes with both organoselenato and organotellurato ligands is a rapidly growing area due to the ability of the resulting complexes to find applications in materials science (Morley et al., 2006; Ford et al., 2004), and investigations of oxidation additive to low valent transition metal centers. In addition to this, organotellurium compounds have been used in catalytic carbon-carbon formation. Bridged dimers of palladium mediated by Se (Nakata et al., 2009; Chakraborty et al., 2011; Oilunkaniemi et al., 1999; Oilunkaniemi et al., 2001; Brown & Corrigan, 2004; Dey et al., 2006,) or Te (Oilunkaniemi et al., 2000; Kaur et al., 2009; Dey et al., 2006; Chakravorty et al., 2012) have been previously reported. Such dimers involving two square planar coordination spheres can adopt either a coplanar or hinged arrangement. The arrangement of the donor ligands with respect to the bridging plane can be cis or trans. In the case of a hinged cis arrangement the possibility of chirality exists. While the majority of previously determined Se/Te bridged Pd dimeric structures are both coplanar and trans, there have been a small number which exhibit either a hinged or cis arrangement of ligands about the bridging plane (Kaur et al., 2009; Oilunkaniemi et al., 2000, Chakravorty et al., 2012). Of these, only that by Chakravorty et al., 2012, which is the Se analog of the title complex, has resulted in a chiral complex.
The title compound, bis[µ-2-tellurolatobenzyldimethylaminochloropalladium(II)], hemi(dichloromethane) solvate, C18H24Cl2N2Pd2Te2 0.5(CHCl2), crystallizes in the chiral orthorhombic space group, P21212. The asymmetric unit contains 2 half molecules, each lying on a 2-fold axis and each molecule is chiral and of the same enantiomer. This is only possible as the molecule has a hinged cis arrangement about the Pd coordination spheres. For this hinged dimeric structure the angles between the two coordination planes in each molecule are 21.59 (4) and 22.10 (4)° respectively. This hinged cis arrangement also allows the two molecules to form pairs linked by secondary interactions between the Pd and Te of an adjoining molecule leading to a tetrameric overall structure. This hinged cis arrangement also allows the two molecules to form pairs linked by secondary interactions between the Pd and Te of an adjoining molecule (Fig. 2) leading to a tetrameric overall structure. Apart from this the Pd—Te, Pd—Cl and Pd—N bond lengths are in the normal ranges.
A previous polymorph of the title compound has been previously published (Kaur et al., 2009). While this crystallized in the non-centrosymmetric space group, P-421c, it did not result in an enantiomerically pure compound as the symmetry of the space group generated the other enantiomer. Thus this is the first example of a chiral dimeric tellurium bridged palladium compound to be structurally characterized. In both instances, however, the asymmetric unit is chiral. We believe that it is the desire of the dimers to associate which then requries the molecule to adopt the cis hinged structure which has lead to this inherent chirality.