metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m150-m151

Di-μ2-acetato-di-μ2-azido-di-μ3-methanol-tetra­kis­{μ-2-[(2-methyl-1-oxidopropan-2-yl)imino­meth­yl]-6-meth­­oxy­phenolato}tetra­nickel(II) methanol disolvate

aSchool of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China, and bDepartment of Chemistry and Chemical Engineering, Ordos College of Inner Mongolia University, Erdos 017000, People's Republic of China
*Correspondence e-mail: ndchfei@imu.edu.cn

(Received 13 November 2011; accepted 22 December 2011; online 14 January 2012)

In the centrosymmetric tetra­nuclear title complex, [Ni4(C12H15NO3)2(CH3COO)2(N3)2(CH3OH)2]·2CH3OH, the asymmetric unit comprises half of a complex mol­ecule and a methanol solvent mol­ecule. The NiII ions display two different coordination environments: (i) two O atoms from the Schiff base ligand, two O atoms from symmetry-related methanol mol­ecules and an O atom from an acetate group, one N atom from the azide group, and (ii) two O atoms and one N atom from the Schiff base, one O atom from methanol, one O atom from the acetate anion, and one N atom from the azide group. Four coplanar NiII ions are connected by two μ2-bridging O atoms from the two deprotonated Schiff bases, two μ3-O atoms from methanol mol­ecules, two μ1,1-N atoms from two azide ions, and four O atoms from acetate groups. The shortest Ni⋯Ni distance in the tetra­nuclear unit is 2.962 (2) Å. O—H⋯O hydrogen bonds between the methanol solvent mol­ecule and an acetate O atom feature in the crystal packing.

Related literature

For applications of transition metal complexes with luminescent and magnetic properties, see: Pasatoiu, Sutter et al. (2011[Pasatoiu, T. D., Sutter, J. P., Madalan, A. M., Fellah, F. Z. C., Duhayon, C. & Andruh, M. (2011). Inorg. Chem. 50, 5890-5898.]); Pasatoiu, Tiseanu et al. (2011[Pasatoiu, T. D., Tiseanu, C., Madalan, A. M., Jurca, B., Duhayon, C., Sutter, J. P. & Andruh, M. (2011). Inorg. Chem. 50, 5879-5889.]); Sasmal, Hazra et al. (2011[Sasmal, S., Hazra, S., Kundu, P., Dutta, S., Rajaraman, G., Sanudo, E. C. & Mohanta, S. (2011). Inorg. Chem. 50, 7257-7267.]); Sasmal, Sarkar et al. (2011[Sasmal, S., Sarkar, S., Alcalde, A. N. & Mohanta, S. (2011). Inorg. Chem. 50, 5687-5695.]). For the preparation of the 2-[[(2-hy­droxy-1,1-dimethyl­eth­yl)imino]­meth­yl]-6-meth­oxy-phenol ligand, see: Rao et al. (1998[Rao, C. P., Sreedhara, A., Rao, P. V., Verghese, M. B., Rissanen, K., Kolehmainen, E., Lokanath, N. K., Sridhar, M. A. & Prasad, J. S. (1998). J. Chem. Soc. Dalton Trans. pp. 2383-2393.]). For related structures, see: Oshio et al. (2005[Oshio, H., Nihei, M., Koizumi, S., Shiga, T., Nojiri, H., Nakano, M., Shirakawa, N. & Akatsu, M. (2005). J. Am. Chem. Soc. 127, 4568-4569.]); Nihei et al. (2007[Nihei, M., Yoshida, A., Koizumi, S. & Oshio, H. (2007). Polyhedron, 26, 1997-2007.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni4(C12H15NO3)2(C2H3O2)2(N3)2(CH4O)2]·2(CH4O)

  • Mr = 1007.56

  • Monoclinic, P 21 /c

  • a = 9.5635 (14) Å

  • b = 11.8971 (16) Å

  • c = 18.845 (3) Å

  • β = 94.581 (2)°

  • V = 2137.3 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.81 mm−1

  • T = 296 K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS, SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.697, Tmax = 0.704

  • 15395 measured reflections

  • 5277 independent reflections

  • 4584 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.110

  • S = 0.84

  • 5277 reflections

  • 269 parameters

  • H-atom parameters constrained

  • Δρmax = 1.47 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O2 2.0052 (16)
Ni1—O3 2.0103 (18)
Ni1—O6i 2.0312 (17)
Ni1—N2 2.0720 (19)
Ni1—O6 2.0743 (16)
Ni1—O1 2.2897 (18)
Ni2—O2 1.9699 (16)
Ni2—N1 2.018 (2)
Ni2—O6 2.0282 (16)
Ni2—O5 2.0608 (18)
Ni2—O4 2.1709 (19)
Ni2—N2i 2.209 (2)
Symmetry code: (i) -x, -y+1, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O4ii 0.82 1.88 2.698 (3) 175
Symmetry code: (ii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SADABS, SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SADABS, SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Multidentate Schiff base ligands play an important role in assembly of metal coordination complexes. There is increasing interest in transition metal complexes with multidentate Schiff base ligands because of their potential applications in in luminescent and magnetic properties (Pasatoiu et al., 2011; Sasmal, et al., 2011). Herein, we report the synthesis and crystal structure of a tetranuclearnickel(II) complex (Fig. 1, Table 1) with a tridentate Schiff base ligand 2-[(3-methoxysalicylidene)amino]-2-methyl-1-propanol with the azide coligand. The tetranuclear complex is centrosymmetric and a half of the molecule comprises an asymmetric unit which reveals two different coordiantion environments; Ni1 is coordinated by two O atoms (O1 and O2) of the ligand, one O atom from acetato group (O3), two O atoms from methanol (O6 and O6i) and N from azido group (N2), whereas Ni2 is coordinated by the two O and one N atoms from the ligand (O2, O5,N1), one O atom from acetato group (O4), one O from methanol (O6), and N from azido group (N2)(Figs.1 and 2, Table 1). The solvent methanol molecule acts as a proton donor to acetato group (O4) (Table 2, Fig. 2).

Related literature top

For applications of transition metal complexes with luminescent and magnetic properties, see: Pasatoiu, Sutter et al. (2011); Pasatoiu, Tiseanu et al. (20115); Sasmal, Hazra et al. (2011); Sasmal, Sarkar et al. (2011). For the preparation of the 2-[[(2-hydroxy-1,1-dimethylethyl)imino]methyl]-6-methoxy-phenol ligand, see: Rao et al. (1998). For related structures, see: Oshio et al. (2005); Nihei et al. (2007).

Experimental top

2-[(3-Methoxysalicylidene)amino]-2-methyl-1-propanol (0.1 mmol) in 15 mL of methyl alcohol is stirred for 30 m at room temperature. Then triethylamine(0.2 mmol) was added and stirred. After 10 m nickel(II) acetate tetrahydrate (0.15 mmol), sodium azide (0.1 mmol) were added and stirred for another 10 m. The resulting solution was filtered and left to evaporate slowly at room temperature for 4 days, giving green block crystals of the title complex for X-ray structure analysis.

Refinement top

The H atom of the coordinating methanol molecule could not be located and was excluded from the model. The other H atoms were placed at geometrically idealised positions (C—H = 0.93–0.97Å and O—H = 0.82 Å), with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with atom labels and 30% probability displacement ellipsoids. H ydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. The structural unit is a tetranuclear complex which is generated from the asymmetric unit by an inversion symmetry operation -x, -y+1, -z. Hydrogen bonds are shown as dashed lines.
Di-µ2-acetato-di-µ2-azido-di-µ3-methanol-tetrakis{µ-2-[(2-methyl-1- oxidopropan-2-yl)iminomethyl]-6-methoxyphenolato}tetranickel(II) methanol disolvate top
Crystal data top
[Ni4(C12H15NO3)2(C2H3O2)2(N3)2(CH4O)2]·2(CH4O)F(000) = 1044.0
Mr = 1007.56Dx = 1.563 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8404 reflections
a = 9.5635 (14) Åθ = 2.7–28.2°
b = 11.8971 (16) ŵ = 1.81 mm1
c = 18.845 (3) ÅT = 296 K
β = 94.581 (2)°Block, green
V = 2137.3 (5) Å30.2 × 0.2 × 0.2 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
5277 independent reflections
Radiation source: sealed tube4584 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1212
Tmin = 0.697, Tmax = 0.704k = 1315
15395 measured reflectionsl = 2523
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 0.84 w = 1/[σ2(Fo2) + (0.0832P)2 + 2.6493P]
where P = (Fo2 + 2Fc2)/3
5277 reflections(Δ/σ)max = 0.001
269 parametersΔρmax = 1.47 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Ni4(C12H15NO3)2(C2H3O2)2(N3)2(CH4O)2]·2(CH4O)V = 2137.3 (5) Å3
Mr = 1007.56Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.5635 (14) ŵ = 1.81 mm1
b = 11.8971 (16) ÅT = 296 K
c = 18.845 (3) Å0.2 × 0.2 × 0.2 mm
β = 94.581 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
5277 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4584 reflections with I > 2σ(I)
Tmin = 0.697, Tmax = 0.704Rint = 0.017
15395 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 0.84Δρmax = 1.47 e Å3
5277 reflectionsΔρmin = 0.55 e Å3
269 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.15407 (3)0.47649 (2)0.012265 (15)0.02862 (10)
Ni20.03379 (3)0.29667 (2)0.057375 (15)0.02882 (10)
C60.3281 (2)0.4368 (2)0.15200 (13)0.0337 (5)
C50.2010 (2)0.37608 (19)0.15074 (12)0.0299 (4)
C70.0623 (3)0.2180 (2)0.20063 (14)0.0388 (5)
H70.05440.17180.23990.047*
C80.1572 (3)0.1358 (2)0.15586 (15)0.0447 (6)
C30.2992 (3)0.2680 (2)0.25272 (14)0.0436 (6)
H30.29010.21300.28710.052*
C40.1870 (3)0.2889 (2)0.20048 (13)0.0337 (5)
C10.4383 (3)0.4150 (2)0.20212 (15)0.0428 (6)
H10.52130.45590.20260.051*
C20.4218 (3)0.3292 (3)0.25254 (16)0.0494 (7)
H20.49520.31350.28640.059*
O20.10001 (16)0.40585 (14)0.10273 (8)0.0309 (3)
O10.32663 (18)0.51793 (15)0.09962 (10)0.0396 (4)
N10.0370 (2)0.21444 (17)0.15087 (11)0.0352 (4)
C110.2605 (4)0.1602 (3)0.08853 (18)0.0558 (8)
H11A0.32390.09710.08010.067*
H11B0.31610.22630.09700.067*
C90.1127 (5)0.0167 (3)0.1622 (4)0.1006 (19)
H9A0.05070.00030.12610.151*
H9B0.19370.03110.15640.151*
H9C0.06500.00420.20830.151*
C100.2433 (4)0.1707 (5)0.2188 (2)0.0819 (13)
H10A0.33410.13600.21330.123*
H10B0.25380.25100.21910.123*
H10C0.19510.14680.26280.123*
C120.2533 (3)0.2440 (2)0.00123 (15)0.0405 (5)
C130.3687 (4)0.1640 (3)0.0181 (3)0.0784 (13)
H13A0.36380.15440.06880.118*
H13B0.35650.09250.00420.118*
H13C0.45850.19460.00190.118*
O40.14558 (19)0.20252 (15)0.02585 (11)0.0402 (4)
O30.27595 (19)0.34597 (15)0.01089 (11)0.0412 (4)
C140.4556 (3)0.5730 (4)0.0879 (2)0.0688 (11)
H14A0.48800.61430.12980.103*
H14B0.44090.62370.04840.103*
H14C0.52460.51790.07770.103*
O50.1839 (2)0.17807 (17)0.02701 (10)0.0444 (4)
O60.02391 (17)0.39361 (13)0.03062 (8)0.0297 (3)
C150.0307 (3)0.3404 (2)0.09846 (13)0.0413 (6)
H15A0.04600.28860.10010.062*
H15B0.02480.39620.13490.062*
H15C0.11780.30050.10620.062*
N20.1997 (2)0.57829 (17)0.07205 (10)0.0321 (4)
N30.2050 (2)0.54193 (18)0.13116 (12)0.0358 (4)
N60.2121 (3)0.5107 (3)0.18836 (15)0.0584 (7)
O70.8278 (3)0.0154 (2)0.93586 (16)0.0720 (7)
H7A0.83920.05130.94550.108*
C160.7350 (7)0.0260 (4)0.8735 (3)0.0965 (16)
H16A0.69000.09820.87330.145*
H16B0.66530.03210.87290.145*
H16C0.78700.01920.83220.145*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02667 (16)0.02808 (16)0.03090 (16)0.00306 (10)0.00100 (11)0.00428 (10)
Ni20.03015 (16)0.02786 (16)0.02811 (16)0.00462 (10)0.00031 (11)0.00272 (10)
C60.0309 (11)0.0338 (11)0.0360 (11)0.0005 (9)0.0006 (9)0.0017 (9)
C50.0304 (10)0.0299 (10)0.0287 (10)0.0007 (8)0.0018 (8)0.0006 (8)
C70.0458 (14)0.0361 (12)0.0340 (12)0.0069 (10)0.0000 (10)0.0060 (9)
C80.0467 (14)0.0461 (14)0.0408 (13)0.0186 (12)0.0000 (11)0.0120 (11)
C30.0437 (14)0.0452 (14)0.0402 (13)0.0021 (11)0.0079 (11)0.0083 (11)
C40.0359 (12)0.0344 (11)0.0298 (11)0.0017 (9)0.0033 (9)0.0044 (9)
C10.0321 (12)0.0489 (15)0.0458 (14)0.0027 (10)0.0066 (10)0.0009 (11)
C20.0413 (14)0.0584 (17)0.0457 (15)0.0002 (13)0.0132 (11)0.0060 (13)
O20.0292 (7)0.0322 (8)0.0302 (7)0.0057 (6)0.0039 (6)0.0051 (6)
O10.0320 (8)0.0405 (9)0.0453 (10)0.0107 (7)0.0027 (7)0.0085 (7)
N10.0394 (11)0.0333 (10)0.0328 (10)0.0077 (8)0.0027 (8)0.0050 (8)
C110.0539 (17)0.0601 (19)0.0527 (17)0.0169 (15)0.0008 (13)0.0054 (14)
C90.068 (3)0.0384 (18)0.192 (6)0.0131 (17)0.010 (3)0.030 (3)
C100.061 (2)0.117 (4)0.070 (2)0.028 (2)0.0204 (19)0.000 (2)
C120.0384 (12)0.0334 (12)0.0500 (14)0.0006 (10)0.0048 (10)0.0017 (10)
C130.056 (2)0.0417 (17)0.143 (4)0.0086 (15)0.040 (2)0.002 (2)
O40.0397 (10)0.0308 (9)0.0506 (11)0.0015 (7)0.0063 (8)0.0009 (7)
O30.0385 (9)0.0331 (9)0.0533 (11)0.0002 (7)0.0114 (8)0.0040 (8)
C140.0458 (17)0.081 (3)0.078 (2)0.0329 (17)0.0057 (15)0.028 (2)
O50.0511 (11)0.0456 (10)0.0362 (9)0.0194 (9)0.0015 (8)0.0011 (8)
O60.0330 (8)0.0305 (8)0.0254 (7)0.0029 (6)0.0002 (6)0.0011 (6)
C150.0497 (14)0.0438 (14)0.0304 (11)0.0052 (11)0.0024 (10)0.0068 (10)
N20.0319 (9)0.0334 (10)0.0315 (9)0.0026 (7)0.0047 (7)0.0037 (8)
N30.0319 (10)0.0362 (10)0.0397 (11)0.0032 (8)0.0051 (8)0.0011 (8)
N60.0670 (18)0.0652 (17)0.0447 (14)0.0091 (14)0.0151 (12)0.0128 (12)
O70.103 (2)0.0377 (12)0.0759 (17)0.0026 (13)0.0132 (15)0.0054 (11)
C160.136 (5)0.079 (3)0.071 (3)0.019 (3)0.007 (3)0.006 (2)
Geometric parameters (Å, º) top
Ni1—O22.0052 (16)C11—O51.436 (4)
Ni1—O32.0103 (18)C11—H11A0.9700
Ni1—O6i2.0312 (17)C11—H11B0.9700
Ni1—N22.0720 (19)C9—H9A0.9600
Ni1—O62.0743 (16)C9—H9B0.9600
Ni1—O12.2897 (18)C9—H9C0.9600
Ni1—Ni1i2.9988 (7)C10—H10A0.9600
Ni2—O21.9699 (16)C10—H10B0.9600
Ni2—N12.018 (2)C10—H10C0.9600
Ni2—O62.0282 (16)C12—O31.256 (3)
Ni2—O52.0608 (18)C12—O41.263 (3)
Ni2—O42.1709 (19)C12—C131.524 (4)
Ni2—N2i2.209 (2)C13—H13A0.9600
C6—O11.380 (3)C13—H13B0.9600
C6—C11.382 (3)C13—H13C0.9600
C6—C51.413 (3)C14—H14A0.9600
C5—O21.318 (3)C14—H14B0.9600
C5—C41.411 (3)C14—H14C0.9600
C7—N11.281 (3)O6—C151.424 (3)
C7—C41.461 (3)O6—Ni1i2.0313 (17)
C7—H70.9300C15—H15A0.9600
C8—C91.481 (5)C15—H15B0.9600
C8—N11.491 (3)C15—H15C0.9600
C8—C101.553 (5)N2—N31.200 (3)
C8—C111.572 (4)N2—Ni2i2.209 (2)
C3—C21.380 (4)N3—N61.147 (3)
C3—C41.419 (3)O7—C161.421 (6)
C3—H30.9300O7—H7A0.8200
C1—C21.412 (4)C16—H16A0.9600
C1—H10.9300C16—H16B0.9600
C2—H20.9300C16—H16C0.9600
O1—C141.429 (3)
O2—Ni1—O393.10 (7)C6—O1—C14118.1 (2)
O2—Ni1—O6i88.34 (7)C6—O1—Ni1109.24 (13)
O3—Ni1—O6i176.78 (7)C14—O1—Ni1124.70 (19)
O2—Ni1—N2168.94 (7)C7—N1—C8120.3 (2)
O3—Ni1—N297.11 (8)C7—N1—Ni2124.16 (17)
O6i—Ni1—N281.68 (7)C8—N1—Ni2115.14 (16)
O2—Ni1—O682.69 (6)O5—C11—C8110.5 (3)
O3—Ni1—O691.16 (7)O5—C11—H11A109.5
O6i—Ni1—O686.16 (7)C8—C11—H11A109.5
N2—Ni1—O6101.29 (7)O5—C11—H11B109.5
O2—Ni1—O172.48 (6)C8—C11—H11B109.5
O3—Ni1—O185.71 (8)H11A—C11—H11B108.1
O6i—Ni1—O197.47 (7)C8—C9—H9A109.5
N2—Ni1—O1103.98 (7)C8—C9—H9B109.5
O6—Ni1—O1154.73 (6)H9A—C9—H9B109.5
O2—Ni1—Ni1i83.82 (5)C8—C9—H9C109.5
O3—Ni1—Ni1i133.65 (6)H9A—C9—H9C109.5
O6i—Ni1—Ni1i43.64 (4)H9B—C9—H9C109.5
N2—Ni1—Ni1i92.14 (6)C8—C10—H10A109.5
O6—Ni1—Ni1i42.52 (5)C8—C10—H10B109.5
O1—Ni1—Ni1i135.53 (5)H10A—C10—H10B109.5
O2—Ni2—N189.73 (7)C8—C10—H10C109.5
O2—Ni2—O684.76 (6)H10A—C10—H10C109.5
N1—Ni2—O6174.03 (7)H10B—C10—H10C109.5
O2—Ni2—O5170.33 (7)O3—C12—O4127.0 (2)
N1—Ni2—O581.47 (8)O3—C12—C13114.9 (2)
O6—Ni2—O5103.84 (7)O4—C12—C13118.1 (3)
O2—Ni2—O487.64 (7)C12—C13—H13A109.5
N1—Ni2—O493.21 (8)C12—C13—H13B109.5
O6—Ni2—O488.87 (7)H13A—C13—H13B109.5
O5—Ni2—O496.82 (8)C12—C13—H13C109.5
O2—Ni2—N2i87.13 (7)H13A—C13—H13C109.5
N1—Ni2—N2i98.98 (8)H13B—C13—H13C109.5
O6—Ni2—N2i78.48 (7)C12—O4—Ni2125.71 (17)
O5—Ni2—N2i90.26 (8)C12—O3—Ni1126.49 (17)
O4—Ni2—N2i166.70 (7)O1—C14—H14A109.5
O1—C6—C1125.7 (2)O1—C14—H14B109.5
O1—C6—C5112.69 (19)H14A—C14—H14B109.5
C1—C6—C5121.6 (2)O1—C14—H14C109.5
O2—C5—C4123.4 (2)H14A—C14—H14C109.5
O2—C5—C6117.2 (2)H14B—C14—H14C109.5
C4—C5—C6119.4 (2)C11—O5—Ni2105.45 (16)
N1—C7—C4125.1 (2)C15—O6—Ni2118.66 (15)
N1—C7—H7117.5C15—O6—Ni1i120.45 (15)
C4—C7—H7117.5Ni2—O6—Ni1i102.96 (7)
C9—C8—N1112.8 (3)C15—O6—Ni1122.57 (15)
C9—C8—C10111.1 (4)Ni2—O6—Ni192.42 (6)
N1—C8—C10109.8 (3)Ni1i—O6—Ni193.84 (7)
C9—C8—C11113.6 (3)O6—C15—H15A109.5
N1—C8—C11105.7 (2)O6—C15—H15B109.5
C10—C8—C11103.3 (3)H15A—C15—H15B109.5
C2—C3—C4120.1 (3)O6—C15—H15C109.5
C2—C3—H3120.0H15A—C15—H15C109.5
C4—C3—H3120.0H15B—C15—H15C109.5
C5—C4—C3118.9 (2)N3—N2—Ni1121.89 (17)
C5—C4—C7123.1 (2)N3—N2—Ni2i116.32 (16)
C3—C4—C7118.0 (2)Ni1—N2—Ni2i95.75 (8)
C6—C1—C2118.4 (2)N6—N3—N2177.6 (3)
C6—C1—H1120.8C16—O7—H7A109.5
C2—C1—H1120.8O7—C16—H16A109.5
C3—C2—C1121.6 (2)O7—C16—H16B109.5
C3—C2—H2119.2H16A—C16—H16B109.5
C1—C2—H2119.2O7—C16—H16C109.5
C5—O2—Ni2122.38 (14)H16A—C16—H16C109.5
C5—O2—Ni1118.15 (14)H16B—C16—H16C109.5
Ni2—O2—Ni196.32 (7)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O4ii0.821.882.698 (3)175
Symmetry code: (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Ni4(C12H15NO3)2(C2H3O2)2(N3)2(CH4O)2]·2(CH4O)
Mr1007.56
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.5635 (14), 11.8971 (16), 18.845 (3)
β (°) 94.581 (2)
V3)2137.3 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.81
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.697, 0.704
No. of measured, independent and
observed [I > 2σ(I)] reflections
15395, 5277, 4584
Rint0.017
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.110, 0.84
No. of reflections5277
No. of parameters269
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.47, 0.55

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—O22.0052 (16)Ni2—O21.9699 (16)
Ni1—O32.0103 (18)Ni2—N12.018 (2)
Ni1—O6i2.0312 (17)Ni2—O62.0282 (16)
Ni1—N22.0720 (19)Ni2—O52.0608 (18)
Ni1—O62.0743 (16)Ni2—O42.1709 (19)
Ni1—O12.2897 (18)Ni2—N2i2.209 (2)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O4ii0.821.882.698 (3)174.9
Symmetry code: (ii) x+1, y, z+1.
 

Acknowledgements

This work was supported by the 211 Project of the postgraduate student programme of Inner Mongolia University, and the Inner Mongolia Natural Science Foundation of China (No. 200408020202).

References

First citationBruker (2004). SADABS, SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNihei, M., Yoshida, A., Koizumi, S. & Oshio, H. (2007). Polyhedron, 26, 1997–2007.  Web of Science CSD CrossRef CAS Google Scholar
First citationOshio, H., Nihei, M., Koizumi, S., Shiga, T., Nojiri, H., Nakano, M., Shirakawa, N. & Akatsu, M. (2005). J. Am. Chem. Soc. 127, 4568–4569.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPasatoiu, T. D., Sutter, J. P., Madalan, A. M., Fellah, F. Z. C., Duhayon, C. & Andruh, M. (2011). Inorg. Chem. 50, 5890–5898.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPasatoiu, T. D., Tiseanu, C., Madalan, A. M., Jurca, B., Duhayon, C., Sutter, J. P. & Andruh, M. (2011). Inorg. Chem. 50, 5879–5889.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRao, C. P., Sreedhara, A., Rao, P. V., Verghese, M. B., Rissanen, K., Kolehmainen, E., Lokanath, N. K., Sridhar, M. A. & Prasad, J. S. (1998). J. Chem. Soc. Dalton Trans. pp. 2383–2393.  Web of Science CSD CrossRef Google Scholar
First citationSasmal, S., Hazra, S., Kundu, P., Dutta, S., Rajaraman, G., Sanudo, E. C. & Mohanta, S. (2011). Inorg. Chem. 50, 7257–7267.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSasmal, S., Sarkar, S., Alcalde, A. N. & Mohanta, S. (2011). Inorg. Chem. 50, 5687–5695.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m150-m151
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds