organic compounds
1,10-Bis[2-(prop-1-enyl)phenoxy]decane
aBaku State University, Z. Khalilov St. 23, Baku AZ-1148, Azerbaijan
*Correspondence e-mail: mehdiyeva_gm@mail.ru
The complete molecule of the title compound, C28H38O2, is generated by a crystallographic centre of symmetry. The displays an intramolecular C—H⋯π interaction.
Related literature
For general background to the synthesis, see: Wadher et al. (2009). For the use of cross-linked polymers in the synthesis of multifunctional monomers, see: Starvin & Rao (2004). For their applications as polymeric sorbents and in the preparation of laser composites, see: Kazuya et al. (2000); Ryusuke & Kazufumi (2001). For a related structure, see: Bayramov et al. (2011).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2005); cell SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811055061/kp2373sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811055061/kp2373Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811055061/kp2373Isup3.cml
2-Propenylphenol (0.015 mol, 2 g) and KOH (0.015 mol, 0.84 g) were dissolved in 6 mL of 2-propanol, then 1,10-dibromedecane (0.006 mol, 1.8 g) was added to this solution. This mixture was stirred at 353 K for 30 m. The desired compounds with yield 2.43 g (99.1%) was filtered and washed with acetone and recrystallised to obtain colourless crystals. Tmp = 326 K. The structure of the reported compound - 1,10-bis{2(1-propenyl)phenoxy}decane, was also proved by NMR-spectroscopy. FT-NMR (acetone-d6, p.p.m.), 1H: 1.92 d (6H,CH3); 2.05 t (4H, CH2); 4.16 t (4H, OCH2); 6.13 m (2H, CH=); 6.67–7.2 m (8H, 2Ar); 7.3 d (2H,CH=). 13C: 18.5; 26.1; 67.1; 112.3; 121.4; 124.4; 126.0; 127.1; 127.3; 127.5; 156.0.
The hydrogen atoms were placed at calculated positions and refined in the riding mode with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].
Data collection: APEX2 (Bruker, 2005); cell
SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level. | |
Fig. 2. Packing of chains in the unit cell. |
C28H38O2 | F(000) = 444 |
Mr = 406.58 | Dx = 1.055 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3093 reflections |
a = 5.4084 (6) Å | θ = 2.7–25.5° |
b = 12.2076 (14) Å | µ = 0.06 mm−1 |
c = 19.391 (2) Å | T = 296 K |
β = 92.025 (2)° | Prism, colourless |
V = 1279.5 (3) Å3 | 0.30 × 0.20 × 0.20 mm |
Z = 2 |
Bruker APEXII CCD diffractometer | 3057 independent reflections |
Radiation source: fine-focus sealed tube | 1914 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
phi and ω scans | θmax = 28.0°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1998) | h = −7→7 |
Tmin = 0.981, Tmax = 0.987 | k = −16→16 |
13946 measured reflections | l = −25→25 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.069 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.245 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.1494P)2 + 0.1404P] where P = (Fo2 + 2Fc2)/3 |
3057 reflections | (Δ/σ)max < 0.001 |
136 parameters | Δρmax = 0.60 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
C28H38O2 | V = 1279.5 (3) Å3 |
Mr = 406.58 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 5.4084 (6) Å | µ = 0.06 mm−1 |
b = 12.2076 (14) Å | T = 296 K |
c = 19.391 (2) Å | 0.30 × 0.20 × 0.20 mm |
β = 92.025 (2)° |
Bruker APEXII CCD diffractometer | 3057 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1998) | 1914 reflections with I > 2σ(I) |
Tmin = 0.981, Tmax = 0.987 | Rint = 0.025 |
13946 measured reflections |
R[F2 > 2σ(F2)] = 0.069 | 0 restraints |
wR(F2) = 0.245 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.60 e Å−3 |
3057 reflections | Δρmin = −0.26 e Å−3 |
136 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.3626 (3) | 0.30774 (11) | 0.33897 (7) | 0.0679 (4) | |
C1 | 0.5218 (3) | 0.32178 (16) | 0.28696 (10) | 0.0594 (5) | |
C2 | 0.6858 (4) | 0.41008 (15) | 0.29461 (11) | 0.0623 (5) | |
C3 | 0.8580 (4) | 0.42419 (19) | 0.24299 (13) | 0.0759 (6) | |
H3A | 0.9706 | 0.4816 | 0.2470 | 0.091* | |
C4 | 0.8663 (5) | 0.3562 (2) | 0.18664 (13) | 0.0807 (7) | |
H4A | 0.9832 | 0.3675 | 0.1533 | 0.097* | |
C5 | 0.7018 (5) | 0.2721 (2) | 0.18001 (12) | 0.0801 (7) | |
H5A | 0.7052 | 0.2265 | 0.1417 | 0.096* | |
C6 | 0.5292 (4) | 0.25403 (19) | 0.23007 (10) | 0.0709 (6) | |
H6A | 0.4182 | 0.1961 | 0.2253 | 0.085* | |
C7 | 0.2015 (3) | 0.21479 (15) | 0.33632 (10) | 0.0583 (5) | |
H7A | 0.2977 | 0.1480 | 0.3336 | 0.070* | |
H7B | 0.0917 | 0.2190 | 0.2958 | 0.070* | |
C8 | 0.0534 (3) | 0.21399 (15) | 0.40044 (10) | 0.0569 (5) | |
H8A | −0.0470 | 0.2797 | 0.4018 | 0.068* | |
H8B | 0.1649 | 0.2142 | 0.4407 | 0.068* | |
C9 | −0.1122 (3) | 0.11440 (15) | 0.40254 (9) | 0.0573 (5) | |
H9A | −0.0101 | 0.0492 | 0.4008 | 0.069* | |
H9B | −0.2211 | 0.1145 | 0.3617 | 0.069* | |
C10 | −0.2681 (3) | 0.10799 (15) | 0.46559 (10) | 0.0572 (5) | |
H10A | −0.3772 | 0.1710 | 0.4661 | 0.069* | |
H10B | −0.1602 | 0.1116 | 0.5066 | 0.069* | |
C11 | −0.4231 (3) | 0.00446 (16) | 0.46864 (10) | 0.0590 (5) | |
H11A | −0.5320 | 0.0015 | 0.4279 | 0.071* | |
H11B | −0.3137 | −0.0584 | 0.4673 | 0.071* | |
C12 | 0.6767 (5) | 0.48117 (17) | 0.35572 (13) | 0.0801 (7) | |
H12A | 0.5316 | 0.4780 | 0.3800 | 0.096* | |
C13 | 0.8412 (7) | 0.5460 (2) | 0.37940 (17) | 0.1110 (10) | |
H13A | 0.9898 | 0.5505 | 0.3569 | 0.133* | |
C14 | 0.8081 (10) | 0.6169 (3) | 0.4428 (2) | 0.1568 (18) | |
H14A | 0.9548 | 0.6596 | 0.4516 | 0.235* | |
H14B | 0.7791 | 0.5710 | 0.4819 | 0.235* | |
H14C | 0.6693 | 0.6649 | 0.4350 | 0.235* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0720 (9) | 0.0654 (8) | 0.0673 (9) | −0.0168 (7) | 0.0141 (7) | −0.0044 (6) |
C1 | 0.0610 (11) | 0.0573 (10) | 0.0602 (10) | −0.0039 (8) | 0.0041 (8) | 0.0110 (8) |
C2 | 0.0671 (11) | 0.0512 (10) | 0.0685 (11) | −0.0033 (8) | 0.0004 (9) | 0.0138 (8) |
C3 | 0.0764 (13) | 0.0648 (12) | 0.0871 (15) | −0.0092 (10) | 0.0102 (11) | 0.0256 (11) |
C4 | 0.0881 (16) | 0.0832 (15) | 0.0720 (14) | 0.0012 (12) | 0.0210 (12) | 0.0203 (11) |
C5 | 0.0949 (17) | 0.0840 (15) | 0.0622 (12) | −0.0005 (13) | 0.0131 (11) | 0.0034 (10) |
C6 | 0.0767 (13) | 0.0731 (13) | 0.0631 (12) | −0.0117 (10) | 0.0051 (10) | 0.0010 (9) |
C7 | 0.0580 (10) | 0.0544 (10) | 0.0625 (10) | −0.0083 (8) | 0.0034 (8) | 0.0039 (8) |
C8 | 0.0544 (10) | 0.0550 (10) | 0.0613 (10) | −0.0001 (8) | 0.0049 (8) | 0.0041 (8) |
C9 | 0.0514 (10) | 0.0606 (10) | 0.0599 (10) | −0.0024 (8) | 0.0044 (8) | 0.0050 (8) |
C10 | 0.0482 (9) | 0.0611 (10) | 0.0626 (10) | −0.0007 (8) | 0.0062 (8) | 0.0055 (8) |
C11 | 0.0486 (10) | 0.0647 (11) | 0.0640 (11) | −0.0019 (8) | 0.0066 (8) | 0.0067 (8) |
C12 | 0.0940 (17) | 0.0545 (11) | 0.0915 (16) | −0.0099 (11) | 0.0002 (13) | 0.0077 (10) |
C13 | 0.122 (2) | 0.0941 (19) | 0.116 (2) | −0.0182 (18) | −0.0054 (19) | −0.0093 (16) |
C14 | 0.229 (5) | 0.101 (2) | 0.137 (3) | −0.006 (3) | −0.048 (3) | −0.037 (2) |
O1—C1 | 1.360 (2) | C8—H8B | 0.9700 |
O1—C7 | 1.430 (2) | C9—C10 | 1.511 (2) |
C1—C6 | 1.380 (3) | C9—H9A | 0.9700 |
C1—C2 | 1.401 (3) | C9—H9B | 0.9700 |
C2—C3 | 1.402 (3) | C10—C11 | 1.519 (3) |
C2—C12 | 1.471 (3) | C10—H10A | 0.9700 |
C3—C4 | 1.374 (4) | C10—H10B | 0.9700 |
C3—H3A | 0.9300 | C11—C11i | 1.502 (4) |
C4—C5 | 1.361 (4) | C11—H11A | 0.9700 |
C4—H4A | 0.9300 | C11—H11B | 0.9700 |
C5—C6 | 1.388 (3) | C12—C13 | 1.265 (4) |
C5—H5A | 0.9300 | C12—H12A | 0.9300 |
C6—H6A | 0.9300 | C13—C14 | 1.519 (5) |
C7—C8 | 1.503 (3) | C13—H13A | 0.9300 |
C7—H7A | 0.9700 | C14—H14A | 0.9600 |
C7—H7B | 0.9700 | C14—H14B | 0.9600 |
C8—C9 | 1.511 (3) | C14—H14C | 0.9600 |
C8—H8A | 0.9700 | ||
C1—O1—C7 | 118.31 (15) | C8—C9—C10 | 114.29 (16) |
O1—C1—C6 | 123.66 (17) | C8—C9—H9A | 108.7 |
O1—C1—C2 | 115.70 (17) | C10—C9—H9A | 108.7 |
C6—C1—C2 | 120.63 (18) | C8—C9—H9B | 108.7 |
C1—C2—C3 | 116.96 (19) | C10—C9—H9B | 108.7 |
C1—C2—C12 | 120.00 (19) | H9A—C9—H9B | 107.6 |
C3—C2—C12 | 123.02 (19) | C9—C10—C11 | 113.51 (16) |
C4—C3—C2 | 122.3 (2) | C9—C10—H10A | 108.9 |
C4—C3—H3A | 118.8 | C11—C10—H10A | 108.9 |
C2—C3—H3A | 118.8 | C9—C10—H10B | 108.9 |
C5—C4—C3 | 119.4 (2) | C11—C10—H10B | 108.9 |
C5—C4—H4A | 120.3 | H10A—C10—H10B | 107.7 |
C3—C4—H4A | 120.3 | C11i—C11—C10 | 114.5 (2) |
C4—C5—C6 | 120.5 (2) | C11i—C11—H11A | 108.6 |
C4—C5—H5A | 119.8 | C10—C11—H11A | 108.6 |
C6—C5—H5A | 119.8 | C11i—C11—H11B | 108.6 |
C1—C6—C5 | 120.2 (2) | C10—C11—H11B | 108.6 |
C1—C6—H6A | 119.9 | H11A—C11—H11B | 107.6 |
C5—C6—H6A | 119.9 | C13—C12—C2 | 128.2 (3) |
O1—C7—C8 | 108.50 (15) | C13—C12—H12A | 115.9 |
O1—C7—H7A | 110.0 | C2—C12—H12A | 115.9 |
C8—C7—H7A | 110.0 | C12—C13—C14 | 123.3 (4) |
O1—C7—H7B | 110.0 | C12—C13—H13A | 118.4 |
C8—C7—H7B | 110.0 | C14—C13—H13A | 118.4 |
H7A—C7—H7B | 108.4 | C13—C14—H14A | 109.5 |
C7—C8—C9 | 111.18 (16) | C13—C14—H14B | 109.5 |
C7—C8—H8A | 109.4 | H14A—C14—H14B | 109.5 |
C9—C8—H8A | 109.4 | C13—C14—H14C | 109.5 |
C7—C8—H8B | 109.4 | H14A—C14—H14C | 109.5 |
C9—C8—H8B | 109.4 | H14B—C14—H14C | 109.5 |
H8A—C8—H8B | 108.0 | ||
C7—O1—C1—C6 | 3.0 (3) | C2—C1—C6—C5 | 0.7 (3) |
C7—O1—C1—C2 | −176.00 (16) | C4—C5—C6—C1 | 0.4 (4) |
O1—C1—C2—C3 | 177.78 (17) | C1—O1—C7—C8 | 177.33 (15) |
C6—C1—C2—C3 | −1.3 (3) | O1—C7—C8—C9 | −177.21 (15) |
O1—C1—C2—C12 | −0.6 (3) | C7—C8—C9—C10 | −179.81 (15) |
C6—C1—C2—C12 | −179.6 (2) | C8—C9—C10—C11 | −176.97 (15) |
C1—C2—C3—C4 | 0.8 (3) | C9—C10—C11—C11i | 179.19 (18) |
C12—C2—C3—C4 | 179.1 (2) | C1—C2—C12—C13 | 161.6 (3) |
C2—C3—C4—C5 | 0.3 (4) | C3—C2—C12—C13 | −16.7 (4) |
C3—C4—C5—C6 | −0.9 (4) | C2—C12—C13—C14 | 179.0 (3) |
O1—C1—C6—C5 | −178.27 (19) |
Symmetry code: (i) −x−1, −y, −z+1. |
Cg1 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12···O1 | 0.93 (3) | 2.40 (3) | 2.727 (3) | 101 (3) |
C7—H7B···Cg1 | 0.97 | 2.65 | 2.396 (3) | 143 |
Experimental details
Crystal data | |
Chemical formula | C28H38O2 |
Mr | 406.58 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 5.4084 (6), 12.2076 (14), 19.391 (2) |
β (°) | 92.025 (2) |
V (Å3) | 1279.5 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.06 |
Crystal size (mm) | 0.30 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1998) |
Tmin, Tmax | 0.981, 0.987 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13946, 3057, 1914 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.661 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.069, 0.245, 1.00 |
No. of reflections | 3057 |
No. of parameters | 136 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.60, −0.26 |
Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2001), SHELXTL (Sheldrick, 2008).
Cg1 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12···O1 | 0.93 (3) | 2.40 (3) | 2.727 (3) | 101 (3) |
C7—H7B···Cg1 | 0.9700 | 2.6500 | 2.396 (3) | 143 |
References
Bayramov, M. R., Maharramov, A. M., Mehdiyeva, G. M., Hoseinzadeh, S. B. & Askerov, R. K. (2011). Acta Cryst. E67, o1478. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Kazuya, U., Yutaka, A. & Koji, S. (2000). Jpn Patent No. 1117002. Google Scholar
Ryusuke, U. & Kazufumi, S. (2001). US Patent No 6284430. Google Scholar
Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Starvin, A. M. & Rao, T. P. (2004). Talanta, 63, 225–232. Web of Science CrossRef PubMed CAS Google Scholar
Wadher, S. J., Puranik, M. P., Karande, N. A. & Yeole, P. G. (2009). Int. J. Pharm. Tech. Res. 1, 22–33. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Operational cross-linked polymers have been used for synthesis of multifunctional monomers (Starvin et al. (2004). These polymers are useful in many applications such as polymeric sorbents and preparing the laser composites (Kazuya et al., 2000); Ryusuke & Kazufumi (2001). In practice, for obtaining polymers of improved functional properties, polymerical transformations are carried out. However, preparation of such cross-linked copolymers have some difficulties related to monomers high reactivity (for example, divinybenzene) and other physico-chemical properties. Therefore, synthesis of multifunctional monomers based on the alkenylphenols is rather important. The authors were synthesised the multifunctional monomers (Bayramov et al., 2011), that can be used in preparation of cross-linked copolymers as a sorbent for heavy metals.
The molecule of title compound, C28H38O2, (I), reveals a crystallographic inversion centre at the mid-point of the central C—C bond (Fig. 1). An asymmetric unit comprises a half of the molecule. The crystal packing displays intramolecular C—H···O hydrogen bonds and C—H···π interaction (Fig. 2, Table 1). The molecule has long chain of (CH2) groups, and so, the polymers based on this monomer are capable to adsorbed heavy metal ions.