organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,10-Bis[2-(prop-1-en­yl)phen­­oxy]deca­ne

aBaku State University, Z. Khalilov St. 23, Baku AZ-1148, Azerbaijan
*Correspondence e-mail: mehdiyeva_gm@mail.ru

(Received 26 November 2011; accepted 21 December 2011; online 7 January 2012)

The complete molecule of the title compound, C28H38O2, is generated by a crystallographic centre of symmetry. The molecular conformation displays an intra­molecular C—H⋯π inter­action.

Related literature

For general background to the synthesis, see: Wadher et al. (2009)[Wadher, S. J., Puranik, M. P., Karande, N. A. & Yeole, P. G. (2009). Int. J. Pharm. Tech. Res. 1, 22-33.]. For the use of cross-linked polymers in the synthesis of multifunctional monomers, see: Starvin & Rao (2004)[Starvin, A. M. & Rao, T. P. (2004). Talanta, 63, 225-232.]. For their applications as polymeric sorbents and in the preparation of laser composites, see: Kazuya et al. (2000[Kazuya, U., Yutaka, A. & Koji, S. (2000). Jpn Patent No. 1117002.]); Ryusuke & Kazufumi (2001)[Ryusuke, U. & Kazufumi, S. (2001). US Patent No 6284430.]. For a related structure, see: Bayramov et al. (2011[Bayramov, M. R., Maharramov, A. M., Mehdiyeva, G. M., Hoseinzadeh, S. B. & Askerov, R. K. (2011). Acta Cryst. E67, o1478.]).

[Scheme 1]

Experimental

Crystal data
  • C28H38O2

  • Mr = 406.58

  • Monoclinic, P 21 /c

  • a = 5.4084 (6) Å

  • b = 12.2076 (14) Å

  • c = 19.391 (2) Å

  • β = 92.025 (2)°

  • V = 1279.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.981, Tmax = 0.987

  • 13946 measured reflections

  • 3057 independent reflections

  • 1914 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.245

  • S = 1.00

  • 3057 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7BCg1 0.97 2.65 2.396 (3) 143

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; program(s) used to refine structure: SHELXTL[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Operational cross-linked polymers have been used for synthesis of multifunctional monomers (Starvin et al. (2004). These polymers are useful in many applications such as polymeric sorbents and preparing the laser composites (Kazuya et al., 2000); Ryusuke & Kazufumi (2001). In practice, for obtaining polymers of improved functional properties, polymerical transformations are carried out. However, preparation of such cross-linked copolymers have some difficulties related to monomers high reactivity (for example, divinybenzene) and other physico-chemical properties. Therefore, synthesis of multifunctional monomers based on the alkenylphenols is rather important. The authors were synthesised the multifunctional monomers (Bayramov et al., 2011), that can be used in preparation of cross-linked copolymers as a sorbent for heavy metals.

The molecule of title compound, C28H38O2, (I), reveals a crystallographic inversion centre at the mid-point of the central C—C bond (Fig. 1). An asymmetric unit comprises a half of the molecule. The crystal packing displays intramolecular C—H···O hydrogen bonds and C—H···π interaction (Fig. 2, Table 1). The molecule has long chain of (CH2) groups, and so, the polymers based on this monomer are capable to adsorbed heavy metal ions.

Related literature top

For general background to the synthesis, see: Wadher et al. (2009). For the use of operational cross-linked polymers in the synthesis of multifunctional monomers, see: Starvin & Rao (2004). For their applications as polymeric sorbents and in the preparation of the laser composites, see: Kazuya et al. (2000); Ryusuke & Kazufumi (2001). For a related structure, see: Bayramov et al. (2011).

Experimental top

2-Propenylphenol (0.015 mol, 2 g) and KOH (0.015 mol, 0.84 g) were dissolved in 6 mL of 2-propanol, then 1,10-dibromedecane (0.006 mol, 1.8 g) was added to this solution. This mixture was stirred at 353 K for 30 m. The desired compounds with yield 2.43 g (99.1%) was filtered and washed with acetone and recrystallised to obtain colourless crystals. Tmp = 326 K. The structure of the reported compound - 1,10-bis{2(1-propenyl)phenoxy}decane, was also proved by NMR-spectroscopy. FT-NMR (acetone-d6, p.p.m.), 1H: 1.92 d (6H,CH3); 2.05 t (4H, CH2); 4.16 t (4H, OCH2); 6.13 m (2H, CH=); 6.67–7.2 m (8H, 2Ar); 7.3 d (2H,CH=). 13C: 18.5; 26.1; 67.1; 112.3; 121.4; 124.4; 126.0; 127.1; 127.3; 127.5; 156.0.

Refinement top

The hydrogen atoms were placed at calculated positions and refined in the riding mode with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing of chains in the unit cell.
1,10-Bis[2-(prop-1-enyl)phenoxy]decane top
Crystal data top
C28H38O2F(000) = 444
Mr = 406.58Dx = 1.055 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3093 reflections
a = 5.4084 (6) Åθ = 2.7–25.5°
b = 12.2076 (14) ŵ = 0.06 mm1
c = 19.391 (2) ÅT = 296 K
β = 92.025 (2)°Prism, colourless
V = 1279.5 (3) Å30.30 × 0.20 × 0.20 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
3057 independent reflections
Radiation source: fine-focus sealed tube1914 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
phi and ω scansθmax = 28.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 77
Tmin = 0.981, Tmax = 0.987k = 1616
13946 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: difference Fourier map
wR(F2) = 0.245H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1494P)2 + 0.1404P]
where P = (Fo2 + 2Fc2)/3
3057 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C28H38O2V = 1279.5 (3) Å3
Mr = 406.58Z = 2
Monoclinic, P21/cMo Kα radiation
a = 5.4084 (6) ŵ = 0.06 mm1
b = 12.2076 (14) ÅT = 296 K
c = 19.391 (2) Å0.30 × 0.20 × 0.20 mm
β = 92.025 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3057 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
1914 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.987Rint = 0.025
13946 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.245H-atom parameters constrained
S = 1.00Δρmax = 0.60 e Å3
3057 reflectionsΔρmin = 0.26 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3626 (3)0.30774 (11)0.33897 (7)0.0679 (4)
C10.5218 (3)0.32178 (16)0.28696 (10)0.0594 (5)
C20.6858 (4)0.41008 (15)0.29461 (11)0.0623 (5)
C30.8580 (4)0.42419 (19)0.24299 (13)0.0759 (6)
H3A0.97060.48160.24700.091*
C40.8663 (5)0.3562 (2)0.18664 (13)0.0807 (7)
H4A0.98320.36750.15330.097*
C50.7018 (5)0.2721 (2)0.18001 (12)0.0801 (7)
H5A0.70520.22650.14170.096*
C60.5292 (4)0.25403 (19)0.23007 (10)0.0709 (6)
H6A0.41820.19610.22530.085*
C70.2015 (3)0.21479 (15)0.33632 (10)0.0583 (5)
H7A0.29770.14800.33360.070*
H7B0.09170.21900.29580.070*
C80.0534 (3)0.21399 (15)0.40044 (10)0.0569 (5)
H8A0.04700.27970.40180.068*
H8B0.16490.21420.44070.068*
C90.1122 (3)0.11440 (15)0.40254 (9)0.0573 (5)
H9A0.01010.04920.40080.069*
H9B0.22110.11450.36170.069*
C100.2681 (3)0.10799 (15)0.46559 (10)0.0572 (5)
H10A0.37720.17100.46610.069*
H10B0.16020.11160.50660.069*
C110.4231 (3)0.00446 (16)0.46864 (10)0.0590 (5)
H11A0.53200.00150.42790.071*
H11B0.31370.05840.46730.071*
C120.6767 (5)0.48117 (17)0.35572 (13)0.0801 (7)
H12A0.53160.47800.38000.096*
C130.8412 (7)0.5460 (2)0.37940 (17)0.1110 (10)
H13A0.98980.55050.35690.133*
C140.8081 (10)0.6169 (3)0.4428 (2)0.1568 (18)
H14A0.95480.65960.45160.235*
H14B0.77910.57100.48190.235*
H14C0.66930.66490.43500.235*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0720 (9)0.0654 (8)0.0673 (9)0.0168 (7)0.0141 (7)0.0044 (6)
C10.0610 (11)0.0573 (10)0.0602 (10)0.0039 (8)0.0041 (8)0.0110 (8)
C20.0671 (11)0.0512 (10)0.0685 (11)0.0033 (8)0.0004 (9)0.0138 (8)
C30.0764 (13)0.0648 (12)0.0871 (15)0.0092 (10)0.0102 (11)0.0256 (11)
C40.0881 (16)0.0832 (15)0.0720 (14)0.0012 (12)0.0210 (12)0.0203 (11)
C50.0949 (17)0.0840 (15)0.0622 (12)0.0005 (13)0.0131 (11)0.0034 (10)
C60.0767 (13)0.0731 (13)0.0631 (12)0.0117 (10)0.0051 (10)0.0010 (9)
C70.0580 (10)0.0544 (10)0.0625 (10)0.0083 (8)0.0034 (8)0.0039 (8)
C80.0544 (10)0.0550 (10)0.0613 (10)0.0001 (8)0.0049 (8)0.0041 (8)
C90.0514 (10)0.0606 (10)0.0599 (10)0.0024 (8)0.0044 (8)0.0050 (8)
C100.0482 (9)0.0611 (10)0.0626 (10)0.0007 (8)0.0062 (8)0.0055 (8)
C110.0486 (10)0.0647 (11)0.0640 (11)0.0019 (8)0.0066 (8)0.0067 (8)
C120.0940 (17)0.0545 (11)0.0915 (16)0.0099 (11)0.0002 (13)0.0077 (10)
C130.122 (2)0.0941 (19)0.116 (2)0.0182 (18)0.0054 (19)0.0093 (16)
C140.229 (5)0.101 (2)0.137 (3)0.006 (3)0.048 (3)0.037 (2)
Geometric parameters (Å, º) top
O1—C11.360 (2)C8—H8B0.9700
O1—C71.430 (2)C9—C101.511 (2)
C1—C61.380 (3)C9—H9A0.9700
C1—C21.401 (3)C9—H9B0.9700
C2—C31.402 (3)C10—C111.519 (3)
C2—C121.471 (3)C10—H10A0.9700
C3—C41.374 (4)C10—H10B0.9700
C3—H3A0.9300C11—C11i1.502 (4)
C4—C51.361 (4)C11—H11A0.9700
C4—H4A0.9300C11—H11B0.9700
C5—C61.388 (3)C12—C131.265 (4)
C5—H5A0.9300C12—H12A0.9300
C6—H6A0.9300C13—C141.519 (5)
C7—C81.503 (3)C13—H13A0.9300
C7—H7A0.9700C14—H14A0.9600
C7—H7B0.9700C14—H14B0.9600
C8—C91.511 (3)C14—H14C0.9600
C8—H8A0.9700
C1—O1—C7118.31 (15)C8—C9—C10114.29 (16)
O1—C1—C6123.66 (17)C8—C9—H9A108.7
O1—C1—C2115.70 (17)C10—C9—H9A108.7
C6—C1—C2120.63 (18)C8—C9—H9B108.7
C1—C2—C3116.96 (19)C10—C9—H9B108.7
C1—C2—C12120.00 (19)H9A—C9—H9B107.6
C3—C2—C12123.02 (19)C9—C10—C11113.51 (16)
C4—C3—C2122.3 (2)C9—C10—H10A108.9
C4—C3—H3A118.8C11—C10—H10A108.9
C2—C3—H3A118.8C9—C10—H10B108.9
C5—C4—C3119.4 (2)C11—C10—H10B108.9
C5—C4—H4A120.3H10A—C10—H10B107.7
C3—C4—H4A120.3C11i—C11—C10114.5 (2)
C4—C5—C6120.5 (2)C11i—C11—H11A108.6
C4—C5—H5A119.8C10—C11—H11A108.6
C6—C5—H5A119.8C11i—C11—H11B108.6
C1—C6—C5120.2 (2)C10—C11—H11B108.6
C1—C6—H6A119.9H11A—C11—H11B107.6
C5—C6—H6A119.9C13—C12—C2128.2 (3)
O1—C7—C8108.50 (15)C13—C12—H12A115.9
O1—C7—H7A110.0C2—C12—H12A115.9
C8—C7—H7A110.0C12—C13—C14123.3 (4)
O1—C7—H7B110.0C12—C13—H13A118.4
C8—C7—H7B110.0C14—C13—H13A118.4
H7A—C7—H7B108.4C13—C14—H14A109.5
C7—C8—C9111.18 (16)C13—C14—H14B109.5
C7—C8—H8A109.4H14A—C14—H14B109.5
C9—C8—H8A109.4C13—C14—H14C109.5
C7—C8—H8B109.4H14A—C14—H14C109.5
C9—C8—H8B109.4H14B—C14—H14C109.5
H8A—C8—H8B108.0
C7—O1—C1—C63.0 (3)C2—C1—C6—C50.7 (3)
C7—O1—C1—C2176.00 (16)C4—C5—C6—C10.4 (4)
O1—C1—C2—C3177.78 (17)C1—O1—C7—C8177.33 (15)
C6—C1—C2—C31.3 (3)O1—C7—C8—C9177.21 (15)
O1—C1—C2—C120.6 (3)C7—C8—C9—C10179.81 (15)
C6—C1—C2—C12179.6 (2)C8—C9—C10—C11176.97 (15)
C1—C2—C3—C40.8 (3)C9—C10—C11—C11i179.19 (18)
C12—C2—C3—C4179.1 (2)C1—C2—C12—C13161.6 (3)
C2—C3—C4—C50.3 (4)C3—C2—C12—C1316.7 (4)
C3—C4—C5—C60.9 (4)C2—C12—C13—C14179.0 (3)
O1—C1—C6—C5178.27 (19)
Symmetry code: (i) x1, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···O10.93 (3)2.40 (3)2.727 (3)101 (3)
C7—H7B···Cg10.972.652.396 (3)143

Experimental details

Crystal data
Chemical formulaC28H38O2
Mr406.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)5.4084 (6), 12.2076 (14), 19.391 (2)
β (°) 92.025 (2)
V3)1279.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.06
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.981, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
13946, 3057, 1914
Rint0.025
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.245, 1.00
No. of reflections3057
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.26

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···O10.93 (3)2.40 (3)2.727 (3)101 (3)
C7—H7B···Cg10.97002.65002.396 (3)143
 

References

First citationBayramov, M. R., Maharramov, A. M., Mehdiyeva, G. M., Hoseinzadeh, S. B. & Askerov, R. K. (2011). Acta Cryst. E67, o1478.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKazuya, U., Yutaka, A. & Koji, S. (2000). Jpn Patent No. 1117002.  Google Scholar
First citationRyusuke, U. & Kazufumi, S. (2001). US Patent No 6284430.  Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarvin, A. M. & Rao, T. P. (2004). Talanta, 63, 225–232.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWadher, S. J., Puranik, M. P., Karande, N. A. & Yeole, P. G. (2009). Int. J. Pharm. Tech. Res. 1, 22–33.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds