organic compounds
1,5-Bis(2-methylphenyl)-3-nitroformazan
aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa, bDepartment of Chemistry, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031, South Africa, and cResearch Center for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: veschwkg@ufs.ac.za
In the title compound, C15H15N5O2, the nitro O atoms are disordered over two sets of sites with an occupancy ratio of 0.75 (4):0.25 (4). Amine–imine is observed in the formazan group. This was evident from the similar C—N bond distances in the formazan [1.319 (2) and 1.332 (3) Å], as well as the distribution of the imine proton in the Fourier difference map which refined to a 0.53 (3):0.47 (3) ratio. C—H⋯O and π–π interactions [centroid–centroid distances = 3.4813 (1) and 3.3976 (1) Å] are observed in the crystal packing.
Related literature
For related structures of nitroformazan derivatives, see: Gilroy et al. (2008); Mito et al. (1997) and for a related dithizone structure, see: Laing (1977). For the synthesis and chemistry of nitroformazans, see: Pelkis et al. (1957); Irving (1977). For DFT and electrochemistry studies of dithizones, see: Von Eschwege & Swarts (2010); Von Eschwege et al. (2011).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2011); cell SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536812001171/kp2378sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812001171/kp2378Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812001171/kp2378Isup3.cml
Solvents (AR) purchased from Merck and reagents from Sigma-Aldrich were used without further purification. The ortho-methyl derivative of nitroformazan was prepared according to the procedure reported by Pelkis et al., 1957.
All hydrogen atoms were positioned in geometrically idealized positions with 0.98 Å (methyl), 0.95 Å (aromatic) and C—H = 0.86 Å (imine). All hydrogen atoms were allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq, except for the methyl where Uiso(H) = 1.5Ueq was utilized. The initial positions of methyl hydrogen atoms were located from a Fourier difference map and refined as fixed rotor. The amine hydrogen atom was refined as disordered over N1 and N4. The occupancy was connected to a free variable to add to unity. This refined to a 0.53 (3):0.47 (3) ratio. The NO2 moiety showed large displacement ellipsoids on O1 and O2. These were also treated for disorder. Geometrical (SADI) and displacement (SIMU and DELU) restraints were applied. A free variable, to refine the disordered sites to unity, gave a distribution of 0.75 (4):0.25 (4).
Data collection: APEX2 (Bruker, 2011); cell
SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).C15H15N5O2 | F(000) = 1248 |
Mr = 297.32 | Dx = 1.366 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 8384 reflections |
a = 14.6525 (3) Å | θ = 2.7–28.3° |
b = 10.2523 (3) Å | µ = 0.10 mm−1 |
c = 19.2425 (4) Å | T = 200 K |
V = 2890.64 (12) Å3 | Needle, red |
Z = 8 | 0.43 × 0.19 × 0.19 mm |
Bruker APEXII CCD diffractometer | 3619 independent reflections |
Graphite monochromator | 2487 reflections with I > 2σ(I) |
Detector resolution: 8.4 pixels mm-1 | Rint = 0.028 |
ω and ϕ scans | θmax = 28.4°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −19→19 |
Tmin = 0.960, Tmax = 0.982 | k = −12→13 |
24031 measured reflections | l = −25→25 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.060 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.180 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.070P)2 + 1.8629P] where P = (Fo2 + 2Fc2)/3 |
3619 reflections | (Δ/σ)max < 0.001 |
221 parameters | Δρmax = 0.51 e Å−3 |
48 restraints | Δρmin = −0.21 e Å−3 |
C15H15N5O2 | V = 2890.64 (12) Å3 |
Mr = 297.32 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 14.6525 (3) Å | µ = 0.10 mm−1 |
b = 10.2523 (3) Å | T = 200 K |
c = 19.2425 (4) Å | 0.43 × 0.19 × 0.19 mm |
Bruker APEXII CCD diffractometer | 3619 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 2487 reflections with I > 2σ(I) |
Tmin = 0.960, Tmax = 0.982 | Rint = 0.028 |
24031 measured reflections |
R[F2 > 2σ(F2)] = 0.060 | 48 restraints |
wR(F2) = 0.180 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.51 e Å−3 |
3619 reflections | Δρmin = −0.21 e Å−3 |
221 parameters |
Experimental. The intensity data was collected on a Bruker APEX-II CCD diffractometer using an exposure time of 60 s/frame. A total of 1062 frames were collected with a frame width of 0.5° covering up to θ = 28.40° with 99.6% completeness accomplished. Analytical data: M.p. 154 °C. λmax (dichloromethane) 319, 440 nm. 1H (600 MHz, CDCl3) 14.32 (1 H, 1 × s, 1 × NH), 2.58 (6 H, 1 × s, 2 × CH3), 7.92 – 7.29 (8 H, 2 × m, 2 × C6H4) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N1 | 0.26169 (12) | 0.01378 (16) | 0.07679 (8) | 0.0441 (4) | |
HN1 | 0.2252 | 0.0663 | 0.0999 | 0.053* | 0.53 (3) |
N2 | 0.34854 (12) | 0.01558 (17) | 0.08281 (8) | 0.0458 (4) | |
N3 | 0.35427 (11) | 0.19544 (16) | 0.16744 (8) | 0.0408 (4) | |
N4 | 0.26631 (10) | 0.21162 (16) | 0.17126 (8) | 0.0385 (4) | |
HN4 | 0.2283 | 0.1648 | 0.1462 | 0.046* | 0.47 (3) |
N5 | 0.48561 (13) | 0.0936 (2) | 0.12737 (11) | 0.0580 (5) | |
O1A | 0.5222 (5) | −0.0056 (8) | 0.1083 (9) | 0.094 (3) | 0.75 (4) |
O2A | 0.5302 (5) | 0.1873 (10) | 0.1454 (10) | 0.087 (3) | 0.75 (4) |
O1B | 0.512 (2) | 0.012 (3) | 0.087 (2) | 0.107 (8) | 0.25 (4) |
O2B | 0.5218 (19) | 0.155 (4) | 0.172 (2) | 0.097 (6) | 0.25 (4) |
C1 | 0.07297 (15) | −0.0431 (3) | 0.07535 (13) | 0.0596 (6) | |
H1A | 0.092 | −0.0557 | 0.1237 | 0.089* | |
H1B | 0.0118 | −0.0797 | 0.0687 | 0.089* | |
H1C | 0.072 | 0.0503 | 0.0646 | 0.089* | |
C2 | 0.13763 (15) | −0.1095 (2) | 0.02891 (10) | 0.0485 (5) | |
C3 | 0.10754 (17) | −0.2092 (2) | −0.01616 (11) | 0.0549 (6) | |
H3 | 0.0448 | −0.2327 | −0.0162 | 0.066* | |
C4 | 0.16569 (18) | −0.2723 (2) | −0.05938 (12) | 0.0590 (6) | |
H4 | 0.1436 | −0.3392 | −0.0891 | 0.071* | |
C5 | 0.25748 (19) | −0.2394 (2) | −0.06022 (12) | 0.0629 (6) | |
H5 | 0.2978 | −0.2822 | −0.0915 | 0.075* | |
C6 | 0.28997 (16) | −0.1465 (2) | −0.01666 (11) | 0.0543 (5) | |
H6 | 0.353 | −0.1251 | −0.0169 | 0.065* | |
C7 | 0.22993 (15) | −0.0819 (2) | 0.02888 (10) | 0.0464 (5) | |
C8 | 0.38492 (13) | 0.1033 (2) | 0.12568 (9) | 0.0425 (4) | |
C9 | 0.23522 (12) | 0.30827 (18) | 0.21773 (9) | 0.0375 (4) | |
C10 | 0.29585 (14) | 0.3870 (2) | 0.25478 (10) | 0.0448 (5) | |
H10 | 0.3598 | 0.3751 | 0.2496 | 0.054* | |
C11 | 0.26305 (16) | 0.4823 (2) | 0.29902 (10) | 0.0501 (5) | |
H11 | 0.3043 | 0.5367 | 0.3238 | 0.06* | |
C12 | 0.16987 (16) | 0.4981 (2) | 0.30707 (11) | 0.0510 (5) | |
H12 | 0.1469 | 0.5632 | 0.3375 | 0.061* | |
C13 | 0.11046 (15) | 0.4192 (2) | 0.27091 (11) | 0.0511 (5) | |
H13 | 0.0467 | 0.431 | 0.2771 | 0.061* | |
C14 | 0.14087 (13) | 0.3228 (2) | 0.22551 (10) | 0.0429 (4) | |
C15 | 0.07500 (14) | 0.2388 (3) | 0.18674 (14) | 0.0619 (6) | |
H15A | 0.0125 | 0.2619 | 0.2001 | 0.093* | |
H15B | 0.0864 | 0.147 | 0.198 | 0.093* | |
H15C | 0.0829 | 0.2523 | 0.1367 | 0.093* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0552 (10) | 0.0391 (9) | 0.0381 (8) | −0.0027 (7) | −0.0009 (7) | 0.0037 (7) |
N2 | 0.0527 (9) | 0.0440 (9) | 0.0405 (8) | 0.0019 (8) | 0.0020 (7) | 0.0042 (7) |
N3 | 0.0402 (8) | 0.0431 (9) | 0.0392 (8) | 0.0031 (7) | 0.0009 (6) | 0.0042 (7) |
N4 | 0.0381 (8) | 0.0405 (9) | 0.0369 (7) | 0.0013 (6) | 0.0012 (6) | 0.0042 (6) |
N5 | 0.0436 (10) | 0.0637 (13) | 0.0666 (12) | 0.0095 (9) | 0.0059 (9) | −0.0043 (10) |
O1A | 0.045 (2) | 0.070 (3) | 0.168 (7) | 0.0139 (19) | 0.001 (3) | −0.030 (3) |
O2A | 0.0410 (16) | 0.094 (4) | 0.125 (6) | −0.0035 (18) | −0.004 (3) | −0.048 (4) |
O1B | 0.085 (11) | 0.124 (13) | 0.112 (14) | 0.049 (10) | 0.039 (9) | −0.025 (9) |
O2B | 0.049 (7) | 0.141 (14) | 0.101 (12) | −0.003 (8) | −0.011 (8) | −0.027 (11) |
C1 | 0.0484 (12) | 0.0678 (15) | 0.0626 (13) | −0.0005 (11) | −0.0058 (10) | −0.0057 (12) |
C2 | 0.0552 (12) | 0.0461 (12) | 0.0440 (10) | 0.0007 (9) | 0.0014 (9) | 0.0074 (9) |
C3 | 0.0651 (13) | 0.0518 (13) | 0.0479 (11) | −0.0098 (11) | −0.0066 (10) | 0.0042 (10) |
C4 | 0.0763 (15) | 0.0480 (13) | 0.0528 (12) | −0.0119 (11) | −0.0020 (11) | −0.0008 (10) |
C5 | 0.0755 (16) | 0.0577 (14) | 0.0555 (13) | −0.0040 (12) | 0.0140 (12) | −0.0069 (11) |
C6 | 0.0601 (13) | 0.0548 (13) | 0.0481 (11) | −0.0088 (10) | 0.0075 (9) | −0.0021 (10) |
C7 | 0.0567 (12) | 0.0431 (11) | 0.0394 (9) | −0.0034 (9) | −0.0013 (8) | 0.0056 (8) |
C8 | 0.0400 (9) | 0.0454 (11) | 0.0420 (9) | 0.0042 (8) | 0.0020 (8) | 0.0043 (8) |
C9 | 0.0431 (9) | 0.0360 (9) | 0.0334 (8) | 0.0018 (7) | 0.0008 (7) | 0.0066 (7) |
C10 | 0.0465 (10) | 0.0472 (11) | 0.0407 (9) | −0.0020 (9) | −0.0003 (8) | 0.0031 (8) |
C11 | 0.0625 (13) | 0.0466 (12) | 0.0413 (10) | −0.0026 (10) | −0.0034 (9) | 0.0009 (9) |
C12 | 0.0644 (13) | 0.0438 (12) | 0.0449 (11) | 0.0059 (10) | 0.0036 (9) | −0.0019 (9) |
C13 | 0.0495 (11) | 0.0474 (12) | 0.0564 (12) | 0.0082 (9) | 0.0065 (9) | 0.0001 (10) |
C14 | 0.0438 (10) | 0.0404 (10) | 0.0445 (10) | 0.0035 (8) | 0.0008 (8) | 0.0029 (8) |
C15 | 0.0408 (10) | 0.0639 (15) | 0.0811 (16) | 0.0020 (10) | −0.0016 (10) | −0.0208 (13) |
N1—N2 | 1.278 (2) | C4—C5 | 1.387 (4) |
N1—C7 | 1.424 (3) | C4—H4 | 0.95 |
N1—HN1 | 0.88 | C5—C6 | 1.355 (3) |
N2—C8 | 1.332 (3) | C5—H5 | 0.95 |
N3—N4 | 1.302 (2) | C6—C7 | 1.407 (3) |
N3—C8 | 1.319 (2) | C6—H6 | 0.95 |
N4—C9 | 1.410 (2) | C9—C10 | 1.396 (3) |
N4—HN4 | 0.88 | C9—C14 | 1.399 (3) |
N5—O2B | 1.192 (13) | C10—C11 | 1.382 (3) |
N5—O1A | 1.208 (5) | C10—H10 | 0.95 |
N5—O1B | 1.210 (13) | C11—C12 | 1.384 (3) |
N5—O2A | 1.212 (6) | C11—H11 | 0.95 |
N5—C8 | 1.479 (3) | C12—C13 | 1.377 (3) |
C1—C2 | 1.470 (3) | C12—H12 | 0.95 |
C1—H1A | 0.98 | C13—C14 | 1.392 (3) |
C1—H1B | 0.98 | C13—H13 | 0.95 |
C1—H1C | 0.98 | C14—C15 | 1.494 (3) |
C2—C7 | 1.382 (3) | C15—H15A | 0.98 |
C2—C3 | 1.411 (3) | C15—H15B | 0.98 |
C3—C4 | 1.355 (3) | C15—H15C | 0.98 |
C3—H3 | 0.95 | ||
N2—N1—C7 | 113.21 (17) | C5—C6—C7 | 119.8 (2) |
N2—N1—HN1 | 123.4 | C5—C6—H6 | 120.1 |
C7—N1—HN1 | 123.4 | C7—C6—H6 | 120.1 |
N1—N2—C8 | 117.68 (17) | C2—C7—C6 | 121.0 (2) |
N4—N3—C8 | 117.57 (16) | C2—C7—N1 | 117.44 (19) |
N3—N4—C9 | 116.44 (15) | C6—C7—N1 | 121.53 (19) |
N3—N4—HN4 | 121.8 | N3—C8—N2 | 136.45 (18) |
C9—N4—HN4 | 121.8 | N3—C8—N5 | 111.97 (17) |
O2B—N5—O1A | 117.8 (14) | N2—C8—N5 | 111.57 (17) |
O2B—N5—O1B | 134 (2) | C10—C9—C14 | 120.83 (18) |
O1A—N5—O2A | 121.0 (5) | C10—C9—N4 | 121.64 (17) |
O1B—N5—O2A | 124.2 (14) | C14—C9—N4 | 117.53 (16) |
O2B—N5—C8 | 115.1 (14) | C11—C10—C9 | 120.14 (19) |
O1A—N5—C8 | 119.5 (4) | C11—C10—H10 | 119.9 |
O1B—N5—C8 | 110.4 (16) | C9—C10—H10 | 119.9 |
O2A—N5—C8 | 119.4 (4) | C10—C11—C12 | 119.6 (2) |
C2—C1—H1A | 109.5 | C10—C11—H11 | 120.2 |
C2—C1—H1B | 109.5 | C12—C11—H11 | 120.2 |
H1A—C1—H1B | 109.5 | C13—C12—C11 | 119.9 (2) |
C2—C1—H1C | 109.5 | C13—C12—H12 | 120 |
H1A—C1—H1C | 109.5 | C11—C12—H12 | 120 |
H1B—C1—H1C | 109.5 | C12—C13—C14 | 122.1 (2) |
C7—C2—C3 | 117.0 (2) | C12—C13—H13 | 118.9 |
C7—C2—C1 | 122.4 (2) | C14—C13—H13 | 118.9 |
C3—C2—C1 | 120.5 (2) | C13—C14—C9 | 117.34 (18) |
C4—C3—C2 | 121.8 (2) | C13—C14—C15 | 121.07 (19) |
C4—C3—H3 | 119.1 | C9—C14—C15 | 121.59 (18) |
C2—C3—H3 | 119.1 | C14—C15—H15A | 109.5 |
C3—C4—C5 | 120.0 (2) | C14—C15—H15B | 109.5 |
C3—C4—H4 | 120 | H15A—C15—H15B | 109.5 |
C5—C4—H4 | 120 | C14—C15—H15C | 109.5 |
C6—C5—C4 | 120.3 (2) | H15A—C15—H15C | 109.5 |
C6—C5—H5 | 119.8 | H15B—C15—H15C | 109.5 |
C4—C5—H5 | 119.8 | ||
C7—N1—N2—C8 | 178.96 (16) | O1A—N5—C8—N3 | 159.5 (10) |
C8—N3—N4—C9 | 178.28 (15) | O1B—N5—C8—N3 | −177 (2) |
C7—C2—C3—C4 | −2.2 (3) | O2A—N5—C8—N3 | −23.3 (11) |
C1—C2—C3—C4 | −179.8 (2) | O2B—N5—C8—N2 | −169 (3) |
C2—C3—C4—C5 | −0.1 (4) | O1A—N5—C8—N2 | −19.9 (10) |
C3—C4—C5—C6 | 1.7 (4) | O1B—N5—C8—N2 | 3 (2) |
C4—C5—C6—C7 | −0.9 (4) | O2A—N5—C8—N2 | 157.4 (11) |
C3—C2—C7—C6 | 3.0 (3) | N3—N4—C9—C10 | 3.3 (2) |
C1—C2—C7—C6 | −179.5 (2) | N3—N4—C9—C14 | −176.70 (16) |
C3—C2—C7—N1 | −176.77 (17) | C14—C9—C10—C11 | −1.0 (3) |
C1—C2—C7—N1 | 0.8 (3) | N4—C9—C10—C11 | 178.91 (17) |
C5—C6—C7—C2 | −1.5 (3) | C9—C10—C11—C12 | 0.8 (3) |
C5—C6—C7—N1 | 178.3 (2) | C10—C11—C12—C13 | −0.2 (3) |
N2—N1—C7—C2 | 167.38 (17) | C11—C12—C13—C14 | −0.3 (3) |
N2—N1—C7—C6 | −12.4 (3) | C12—C13—C14—C9 | 0.1 (3) |
N4—N3—C8—N2 | 0.3 (3) | C12—C13—C14—C15 | −179.8 (2) |
N4—N3—C8—N5 | −178.83 (16) | C10—C9—C14—C13 | 0.6 (3) |
N1—N2—C8—N3 | 0.8 (3) | N4—C9—C14—C13 | −179.37 (16) |
N1—N2—C8—N5 | 179.90 (16) | C10—C9—C14—C15 | −179.5 (2) |
O2B—N5—C8—N3 | 11 (3) | N4—C9—C14—C15 | 0.5 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O1Ai | 0.95 | 2.42 | 3.239 (9) | 145 |
Symmetry code: (i) x−1/2, −y−1/2, −z. |
Experimental details
Crystal data | |
Chemical formula | C15H15N5O2 |
Mr | 297.32 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 200 |
a, b, c (Å) | 14.6525 (3), 10.2523 (3), 19.2425 (4) |
V (Å3) | 2890.64 (12) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.43 × 0.19 × 0.19 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.960, 0.982 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 24031, 3619, 2487 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.669 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.060, 0.180, 1.05 |
No. of reflections | 3619 |
No. of parameters | 221 |
No. of restraints | 48 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.51, −0.21 |
Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2008), SAINT and XPREP (Bruker, 2008), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O1Ai | 0.95 | 2.42 | 3.239 (9) | 145 |
Symmetry code: (i) x−1/2, −y−1/2, −z. |
Cg(X)···Cg(Y) | Cg···Cg | Alpha | Beta | Gamma | Cg(X)perp | Cg(X)perp |
Cg1···Cg2i | 3.4813 | 7.215 | 4.85 | 12.04 | 3.4047 | -3.4688 |
Cg1···Cg3i | 3.3976 | 2.589 | 3.11 | 3.37 | -3.3917 | 3.3925 |
For centroids: Cg1 = N1—N2═C8—N3═N4, Cg2 = ring C2 – C7, Cg3 = ring C9 – C14; Symmetry codes: i = 1/2-X,1/2+Y,Z; Alpha = Dihedral angle between Cg(X) and Cg(Y); Cg(X)perp = Perpendicular distance of Cg(X) on ring Y; Cg(X)perp = Perpendicular distance of Cg(Y) on ring X; Beta = Angle Cg(X)···Cg(Y) vector and normal to ring X; Gamma = Angle Cg(I)···Cg(J) vector and normal to plane Y; |
Acknowledgements
Research funds of the Universities of Johannesburg, Free State and Port Elizabeth, and the National Research Foundation of South Africa are gratefully acknowledged.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gilroy, J. B., Otieno, P. O., Ferguson, M. J., McDonald, R. & Hicks, R. G. (2008). Inorg. Chem. 47, 1279–1286. Web of Science CSD CrossRef PubMed CAS Google Scholar
Irving, H. M. N. H. (1977). Dithizone, Analytical Sciences Monographs No. 5. London: The Chemical Society. Google Scholar
Laing, M. (1977). J. Chem. Soc. Perkin Trans. 2, pp. 1248–1252. CSD CrossRef Google Scholar
Mito, M., Takeda, K., Mukai, K., Azuma, N., Gleiter, M. R., Krieger, C. & Neugebaue, F. A. (1997). J. Phys. Chem. B, 101, 9517–9524. CSD CrossRef CAS Web of Science Google Scholar
Pelkis, P. S., Dubenko, R. G. & Pupko, L. S. (1957). J. Org. Chem. USSR, 27, 2190–2194. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Von Eschwege, K. G., Conradie, J. & Kuhn, A. (2011). J. Phys. Chem. A, doi:10.1021/jp208212e. Google Scholar
Von Eschwege, K. G. & Swarts, J. C. (2010). Polyhedron, 29, 1727–1733. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
During synthesis of the versatile trace metal analysis dithizone reagent, aniline is first diazotized and then treated with nitromethane to form the bright orange-red nitroformazan product (Pelkis et al., 1957). Ammonia and hydrogen sulfide gas is used to substitute the nitro group with sulfur towards the formation of dithizone, the chemistry of which is extensively described by Irving, 1977. Single crystal X-ray structures of nitroformazan derivatives were determined by Gilroy et al., 2008; Mito et al.,1997, and the dithizone structure by Laing, 1977, while we performed extensive DFT (Von Eschwege et al., 2011) and electrochemistry studies (Von Eschwege & Swarts, 2010) on the free ligand. We recently embarked on a study during which we synthesized a series of electronically altered dithizones for the purpose of investigating its altered redox and structural properties. During this process orange 1,5-bis(2-methylphenyl)-3-nitroformazan crystals suitable for X-ray structure analysis were grown from an acetone solution overlaid with n-hexane.
The title compound (Fig. 1) crystallises with the 2-methylphenyl moieties in different orientations, i.e. C1—C7 and C9—C15 have dihedral angles of of 12.64 (9)° and 3.27 (9)° respectively with the N—N═ C—N═N backbone. The preferred orientations are probably due to the observed C—H···O interactions as well as the π-stacking of 2-methylphenyl aromatic rings (Tables 1 and 2, Fig. 2) with neighbouring N—N═C—N═N conjugates creating a zigzag packing motif (Fig. 3).
The structure showed large thermal vibrations at the NO2 moiety and was treated for disorder. From the Fourier difference map the imine hydrogen was also detected as being disordered over two nitrogen atoms. Details of these can be found in the refinement section.