metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

μ-1,4-Bis(pyridin-4-ylmeth­yl)piperazine-κ2N:N′-bis­­[aqua­bis­­(3-bromo-5-carb­­oxy­benzoato-κO1)copper(II)]

aLyman Briggs College, Department of Chemistry, Michigan State University, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu

(Received 1 December 2011; accepted 9 January 2012; online 14 January 2012)

In the title compound, [Cu2(C8H4BrO4)4(C16H20N4)(H2O)2], slightly distorted square-planar-coordinated CuII ions are bound by one aqua ligand and two monodentate 3-bromo-5-carb­oxy­benzoate anions, and linked into a centrosymmetric dinuclear mol­ecule by a bridging 1,4-bis­(pyridin-4-ylmeth­yl)piperazine (4-bpmp) ligand. In the crystal, mol­ecules are connected into a supra­molecular two-dimensional network parallel to (131) via O—H⋯O hydrogen bonds involving the aqua ligands and 3-bromo-5-carb­oxy­benzoate carboxyl­ate groups.

Related literature

For other copper coordination polymers containing 4-bpmp ligands, see: Sposato et al. (2010[Sposato, L. K., Nettleman, J. H., Braverman, M. A., Supkowski, R. M. & LaDuca, R. L. (2010). Cryst. Growth Des. 10, 335-343.]); Gandolfo & LaDuca (2011[Gandolfo, C. M. & LaDuca, R. L. (2011). Cryst. Growth Des. 11, 1328-1337.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C8H4BrO4)4(C16H20N4)(H2O)2]

  • Mr = 1407.56

  • Triclinic, [P \overline 1]

  • a = 7.136 (2) Å

  • b = 11.925 (4) Å

  • c = 16.577 (5) Å

  • α = 74.458 (3)°

  • β = 86.358 (4)°

  • γ = 72.908 (3)°

  • V = 1299.0 (7) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 3.97 mm−1

  • T = 173 K

  • 0.37 × 0.26 × 0.11 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.]) Tmin = 0.320, Tmax = 0.674

  • 20701 measured reflections

  • 4723 independent reflections

  • 4142 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.092

  • S = 1.05

  • 4723 reflections

  • 355 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O7i 0.84 (2) 1.98 (3) 2.763 (4) 155 (4)
O8—H8C⋯O4ii 0.84 (2) 1.81 (2) 2.629 (4) 166 (4)
O9—H9A⋯O2iii 0.83 (2) 1.82 (2) 2.635 (3) 169 (4)
O9—H9B⋯O6iii 0.82 (2) 1.83 (2) 2.647 (3) 171 (4)
Symmetry codes: (i) x-1, y, z+1; (ii) x+1, y, z-1; (iii) -x, -y+2, -z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (Palmer, 2007[Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently we have been investigating divalent copper coordination polymers containing tethering bis(pyridin-4-ylmethyl)piperazine (4-bpmp) ligands. (Sposato, et al., 2010; Gandolfo & LaDuca, 2011). The title compound was obtained upon an attempt to prepare a copper 4-bpmp coordination polymer incorporating 5-bromoisophthalate (Brip).

The asymmetric unit of the title compound contains a CuII ion, an aqua ligand, two HBrip ligands, and half of a 4-bpmp ligand whose chair conformation piperazinyl ring centroid lies on a crystallographic inversion center. The CuII ion is coordinated in a square planar manner, with carboxylate O atom donors from two monodentate HBrip ligands in trans positions. The aqua ligand and a pyridyl N atom donor from a 4-bpmp ligand occupy the other two trans positions. Two [Cu(H2O)(HBrip)2] fragments are connected into a {[Cu(H2O)(HBrip)2]2(4-bpmp)} dinuclear molecular species (Fig. 1) by a tethering 4-bpmp ligand.

Individual {[Cu(H2O)(HBrip)2]2(4-bpmp)} molecules aggregate into supramolecular chains by means of O—H···O hydrogen bonding between aqua ligands and unligated O atoms belonging to the ligating HBrip monodentate carboxylate groups (Fig. 2). The chains are arranged parallel to the [1 0 1] crystal direction. In turn these supramolecular chains are connected into supramolecular layers aligned parallel to the (1 3 1) crystal planes via O—H···O hydrogen bonding between protonated HBrip carboxylate groups (Fig. 3). Crystal packing forces are responsible for the aggregation of the supramolecular layers into the full crystal structure of the title compound (Fig. 4).

Related literature top

For other copper coordination polymers containing 4-bpmp ligands, see: Sposato et al. (2010); Gandolfo & LaDuca (2011).

Experimental top

All starting materials were obtained commercially. A mixture of Cu(NO3)2.2.5H2O (51 mg, 0.22 mmol), 4-bpmp (74 mg, 0.28 mmol), H2Brip (68 mg, 0.28 mmol), 0.5 ml concentrated nitric acid and 10.0 g water (550 mmol) was placed into a 23 ml Teflon-lined Parr acid digestion bomb, which was then heated under autogenous pressure at 393 K for 24 h. Blue blocks of the title compound were isolated.

Refinement top

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.95 Å, and refined in riding mode with Uiso = 1.2Ueq(C). The H atoms bound to the aqua ligand O atom and carboxylate O atoms were found in a difference Fourier map, restrained with O—H = 0.85 Å and refined with Uiso =1.2Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2007); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A single {[Cu(H2O)(HBrip)2]2(4-bpmp)} molecule, showing 50% probability ellipsoids and partial atom numbering scheme. Hydrogen atom positions are shown as grey sticks. Color codes: dark blue Cu, red O, light blue N, black C, brown Br. The unlabeled atoms are related by the symmetry operator (-x + 2, -y + 1, -z + 1).
[Figure 2] Fig. 2. A supramolecular chain of {[Cu(H2O)(HBrip)2]2(4-bpmp)} molecules, with O—H···O hydrogen bonding shown as dashed lines.
[Figure 3] Fig. 3. A supramolecular layer formed from {[Cu(H2O)(HBrip)2]2(4-bpmp)} supramolecular chains, with interlayer O—H···O hydrogen bonding shown as dashed lines.
[Figure 4] Fig. 4. Packing diagram for the title compound.
µ-1,4-Bis(pyridin-4-ylmethyl)piperazine-κ2N:N'- bis[aquabis(3-bromo-5-carboxybenzoato-κO1)copper(II)] top
Crystal data top
[Cu2(C8H4BrO4)4(C16H20N4)(H2O)2]Z = 1
Mr = 1407.56F(000) = 698
Triclinic, P1Dx = 1.799 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.136 (2) ÅCell parameters from 9934 reflections
b = 11.925 (4) Åθ = 2.5–25.3°
c = 16.577 (5) ŵ = 3.97 mm1
α = 74.458 (3)°T = 173 K
β = 86.358 (4)°Chunk, blue
γ = 72.908 (3)°0.37 × 0.26 × 0.11 mm
V = 1299.0 (7) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4723 independent reflections
Radiation source: fine-focus sealed tube4142 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 25.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.320, Tmax = 0.674k = 1414
20701 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0434P)2 + 2.2722P]
where P = (Fo2 + 2Fc2)/3
4723 reflections(Δ/σ)max < 0.001
355 parametersΔρmax = 0.73 e Å3
5 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Cu2(C8H4BrO4)4(C16H20N4)(H2O)2]γ = 72.908 (3)°
Mr = 1407.56V = 1299.0 (7) Å3
Triclinic, P1Z = 1
a = 7.136 (2) ÅMo Kα radiation
b = 11.925 (4) ŵ = 3.97 mm1
c = 16.577 (5) ÅT = 173 K
α = 74.458 (3)°0.37 × 0.26 × 0.11 mm
β = 86.358 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
4723 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4142 reflections with I > 2σ(I)
Tmin = 0.320, Tmax = 0.674Rint = 0.025
20701 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0345 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.73 e Å3
4723 reflectionsΔρmin = 0.60 e Å3
355 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.24171 (6)0.87361 (3)0.11476 (2)0.02507 (11)
Br10.40313 (7)1.48207 (3)0.24403 (3)0.05057 (14)
Br20.86689 (8)0.43000 (4)0.07443 (3)0.05927 (15)
O10.0823 (3)0.9602 (2)0.18966 (14)0.0362 (6)
O20.0127 (4)1.1404 (2)0.09417 (14)0.0400 (6)
O30.1644 (4)0.9305 (2)0.47763 (16)0.0431 (6)
H3A0.210 (6)0.899 (4)0.5231 (17)0.052*
O40.3480 (4)1.0979 (2)0.50793 (17)0.0510 (7)
O50.3990 (3)0.7968 (2)0.03553 (13)0.0317 (5)
O60.3406 (4)0.9682 (2)0.06839 (16)0.0389 (6)
O70.8012 (4)0.7817 (2)0.36611 (16)0.0408 (6)
O80.6280 (4)0.9548 (2)0.34293 (16)0.0432 (6)
H8C0.636 (6)0.990 (4)0.3933 (14)0.052*
O90.0062 (3)0.8750 (2)0.06054 (13)0.0280 (5)
H9A0.009 (5)0.861 (3)0.0143 (15)0.034*
H9B0.097 (4)0.925 (3)0.067 (2)0.034*
N10.4710 (4)0.8158 (2)0.19417 (16)0.0268 (6)
N20.9406 (5)0.6125 (2)0.43776 (17)0.0346 (7)
C10.4470 (5)0.8125 (3)0.2762 (2)0.0380 (8)
H10.31770.83700.29630.046*
C20.6023 (6)0.7753 (4)0.3317 (2)0.0448 (10)
H20.57880.77260.38910.054*
C30.7919 (5)0.7418 (3)0.3041 (2)0.0331 (8)
C40.8168 (5)0.7434 (3)0.2208 (2)0.0353 (8)
H40.94490.71920.19950.042*
C50.6543 (5)0.7804 (3)0.1680 (2)0.0315 (7)
H50.67460.78070.11080.038*
C60.9650 (6)0.7027 (3)0.3631 (2)0.0399 (9)
H6A1.08600.66860.33450.048*
H6B0.97930.77430.37880.048*
C71.0859 (6)0.5919 (3)0.5029 (2)0.0418 (9)
H7A1.07760.66960.51580.050*
H7B1.21950.55990.48270.050*
C80.9526 (6)0.4977 (3)0.4194 (2)0.0400 (9)
H8B1.08450.46430.39840.048*
H8A0.85490.51170.37530.048*
C90.1060 (4)1.1335 (3)0.23134 (19)0.0254 (7)
C100.1898 (5)1.2583 (3)0.2111 (2)0.0284 (7)
H100.17881.30660.15620.034*
C110.2900 (5)1.3120 (3)0.2721 (2)0.0317 (7)
C120.3085 (5)1.2433 (3)0.3524 (2)0.0319 (7)
H120.37851.28120.39340.038*
C130.2238 (5)1.1186 (3)0.3724 (2)0.0288 (7)
C140.1224 (5)1.0639 (3)0.3121 (2)0.0277 (7)
H140.06390.97840.32600.033*
C150.0040 (5)1.0757 (3)0.1651 (2)0.0279 (7)
C160.2487 (5)1.0454 (3)0.46047 (19)0.0294 (7)
C170.5456 (4)0.7858 (3)0.09479 (19)0.0239 (6)
C180.5706 (4)0.8441 (3)0.17780 (19)0.0240 (6)
H180.51000.92880.19860.029*
C190.6838 (5)0.7784 (3)0.22993 (19)0.0268 (7)
C200.7747 (5)0.6545 (3)0.1999 (2)0.0314 (7)
H200.85270.60920.23540.038*
C210.7489 (5)0.5990 (3)0.1172 (2)0.0316 (7)
C220.6352 (5)0.6626 (3)0.0643 (2)0.0292 (7)
H220.61870.62230.00770.035*
C230.4175 (4)0.8580 (3)0.03952 (19)0.0260 (7)
C240.7112 (5)0.8415 (3)0.32309 (19)0.0252 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0300 (2)0.0234 (2)0.01558 (19)0.00011 (16)0.00140 (15)0.00329 (15)
Br10.0652 (3)0.0247 (2)0.0584 (3)0.00651 (18)0.0128 (2)0.00904 (17)
Br20.0773 (3)0.0264 (2)0.0558 (3)0.0053 (2)0.0118 (2)0.00513 (18)
O10.0357 (13)0.0405 (15)0.0253 (12)0.0039 (11)0.0002 (10)0.0128 (11)
O20.0579 (17)0.0459 (15)0.0229 (13)0.0234 (13)0.0081 (11)0.0123 (11)
O30.0610 (17)0.0323 (14)0.0280 (13)0.0070 (12)0.0144 (12)0.0047 (11)
O40.0648 (19)0.0323 (14)0.0424 (16)0.0003 (13)0.0116 (14)0.0051 (12)
O50.0351 (13)0.0334 (13)0.0207 (11)0.0001 (10)0.0014 (9)0.0084 (10)
O60.0384 (14)0.0260 (13)0.0429 (15)0.0009 (11)0.0127 (11)0.0074 (11)
O70.0484 (16)0.0356 (14)0.0350 (14)0.0123 (12)0.0024 (12)0.0037 (12)
O80.0585 (17)0.0375 (15)0.0266 (13)0.0093 (13)0.0128 (12)0.0046 (11)
O90.0304 (12)0.0299 (12)0.0183 (11)0.0006 (10)0.0018 (9)0.0065 (9)
N10.0349 (15)0.0215 (13)0.0198 (13)0.0043 (11)0.0017 (11)0.0030 (10)
N20.0468 (18)0.0238 (14)0.0284 (15)0.0024 (13)0.0162 (13)0.0037 (11)
C10.041 (2)0.040 (2)0.0226 (17)0.0046 (16)0.0018 (15)0.0093 (15)
C20.054 (2)0.044 (2)0.0227 (17)0.0095 (18)0.0071 (16)0.0104 (16)
C30.044 (2)0.0198 (16)0.0297 (18)0.0044 (15)0.0068 (15)0.0001 (13)
C40.0334 (19)0.038 (2)0.0301 (18)0.0098 (16)0.0004 (14)0.0019 (15)
C50.0361 (19)0.0344 (18)0.0214 (16)0.0102 (15)0.0034 (14)0.0038 (14)
C60.047 (2)0.0309 (19)0.037 (2)0.0070 (17)0.0125 (17)0.0034 (15)
C70.053 (2)0.0287 (18)0.041 (2)0.0057 (17)0.0224 (18)0.0069 (16)
C80.054 (2)0.0286 (18)0.0341 (19)0.0036 (17)0.0204 (17)0.0069 (15)
C90.0234 (15)0.0309 (17)0.0232 (15)0.0074 (13)0.0001 (12)0.0096 (13)
C100.0292 (17)0.0306 (17)0.0266 (16)0.0105 (14)0.0031 (13)0.0064 (13)
C110.0321 (18)0.0251 (17)0.0393 (19)0.0073 (14)0.0041 (15)0.0111 (14)
C120.0318 (18)0.0355 (19)0.0315 (18)0.0092 (15)0.0047 (14)0.0154 (15)
C130.0295 (17)0.0301 (17)0.0275 (17)0.0085 (14)0.0030 (13)0.0096 (14)
C140.0279 (16)0.0289 (17)0.0250 (16)0.0056 (14)0.0019 (13)0.0080 (13)
C150.0260 (16)0.0378 (19)0.0232 (16)0.0100 (14)0.0013 (13)0.0124 (14)
C160.0289 (17)0.0364 (19)0.0164 (15)0.0131 (15)0.0018 (13)0.0083 (14)
C170.0228 (15)0.0260 (16)0.0231 (15)0.0058 (13)0.0016 (12)0.0087 (13)
C180.0227 (15)0.0258 (16)0.0236 (15)0.0071 (13)0.0002 (12)0.0064 (13)
C190.0261 (16)0.0323 (18)0.0249 (16)0.0131 (14)0.0046 (13)0.0084 (14)
C200.0311 (18)0.0330 (18)0.0336 (18)0.0093 (15)0.0087 (14)0.0164 (15)
C210.0340 (18)0.0215 (16)0.0354 (18)0.0024 (14)0.0039 (14)0.0078 (14)
C220.0330 (18)0.0260 (17)0.0254 (16)0.0060 (14)0.0028 (13)0.0043 (13)
C230.0234 (16)0.0296 (18)0.0252 (16)0.0051 (13)0.0017 (12)0.0105 (14)
C240.0253 (16)0.0261 (17)0.0236 (16)0.0186 (14)0.0118 (13)0.0098 (13)
Geometric parameters (Å, º) top
Cu1—O51.918 (2)C5—H50.9500
Cu1—O11.928 (2)C6—H6A0.9900
Cu1—O91.949 (2)C6—H6B0.9900
Cu1—N12.002 (3)C7—C8i1.506 (5)
Br1—C111.887 (3)C7—H7A0.9900
Br2—C211.894 (3)C7—H7B0.9900
O1—C151.285 (4)C8—C7i1.506 (5)
O2—C151.230 (4)C8—H8B0.9900
O3—C161.284 (4)C8—H8A0.9900
O3—H3A0.840 (19)C9—C101.386 (5)
O4—C161.202 (4)C9—C141.391 (5)
O5—C231.283 (4)C9—C151.509 (4)
O6—C231.237 (4)C10—C111.390 (5)
O7—C241.173 (4)C10—H100.9500
O8—C241.265 (4)C11—C121.385 (5)
O8—H8C0.836 (19)C12—C131.386 (5)
O9—H9A0.827 (18)C12—H120.9500
O9—H9B0.824 (18)C13—C141.388 (5)
N1—C51.334 (4)C13—C161.517 (4)
N1—C11.351 (4)C14—H140.9500
N2—C61.445 (5)C17—C221.383 (4)
N2—C81.458 (4)C17—C181.392 (4)
N2—C71.467 (4)C17—C231.507 (4)
C1—C21.376 (5)C18—C191.384 (4)
C1—H10.9500C18—H180.9500
C2—C31.378 (5)C19—C201.390 (5)
C2—H20.9500C19—C241.554 (4)
C3—C41.377 (5)C20—C211.380 (5)
C3—C61.507 (5)C20—H200.9500
C4—C51.387 (5)C21—C221.381 (5)
C4—H40.9500C22—H220.9500
O5—Cu1—O1176.53 (10)C7i—C8—H8A109.6
O5—Cu1—O989.58 (10)H8B—C8—H8A108.1
O1—Cu1—O990.21 (10)C10—C9—C14119.8 (3)
O5—Cu1—N190.77 (10)C10—C9—C15119.0 (3)
O1—Cu1—N190.64 (10)C14—C9—C15121.1 (3)
O9—Cu1—N1159.57 (10)C9—C10—C11119.2 (3)
C15—O1—Cu1120.4 (2)C9—C10—H10120.4
C16—O3—H3A107 (3)C11—C10—H10120.4
C23—O5—Cu1121.0 (2)C12—C11—C10121.3 (3)
C24—O8—H8C115 (3)C12—C11—Br1119.8 (3)
Cu1—O9—H9A122 (3)C10—C11—Br1118.9 (3)
Cu1—O9—H9B117 (3)C11—C12—C13119.2 (3)
H9A—O9—H9B112 (3)C11—C12—H12120.4
C5—N1—C1117.1 (3)C13—C12—H12120.4
C5—N1—Cu1121.3 (2)C12—C13—C14120.0 (3)
C1—N1—Cu1121.5 (2)C12—C13—C16118.0 (3)
C6—N2—C8111.4 (3)C14—C13—C16121.9 (3)
C6—N2—C7111.6 (3)C13—C14—C9120.4 (3)
C8—N2—C7109.6 (3)C13—C14—H14119.8
N1—C1—C2122.6 (3)C9—C14—H14119.8
N1—C1—H1118.7O2—C15—O1126.0 (3)
C2—C1—H1118.7O2—C15—C9119.0 (3)
C1—C2—C3120.1 (3)O1—C15—C9115.0 (3)
C1—C2—H2119.9O4—C16—O3125.1 (3)
C3—C2—H2119.9O4—C16—C13118.3 (3)
C4—C3—C2117.4 (3)O3—C16—C13116.6 (3)
C4—C3—C6121.3 (3)C22—C17—C18120.1 (3)
C2—C3—C6121.4 (3)C22—C17—C23120.7 (3)
C3—C4—C5119.8 (3)C18—C17—C23119.2 (3)
C3—C4—H4120.1C19—C18—C17119.9 (3)
C5—C4—H4120.1C19—C18—H18120.1
N1—C5—C4122.9 (3)C17—C18—H18120.1
N1—C5—H5118.6C18—C19—C20120.5 (3)
C4—C5—H5118.6C18—C19—C24120.6 (3)
N2—C6—C3111.0 (3)C20—C19—C24118.8 (3)
N2—C6—H6A109.4C21—C20—C19118.5 (3)
C3—C6—H6A109.4C21—C20—H20120.8
N2—C6—H6B109.4C19—C20—H20120.8
C3—C6—H6B109.4C20—C21—C22122.0 (3)
H6A—C6—H6B108.0C20—C21—Br2119.7 (2)
N2—C7—C8i109.4 (3)C22—C21—Br2118.3 (3)
N2—C7—H7A109.8C21—C22—C17119.1 (3)
C8i—C7—H7A109.8C21—C22—H22120.5
N2—C7—H7B109.8C17—C22—H22120.5
C8i—C7—H7B109.8O6—C23—O5125.5 (3)
H7A—C7—H7B108.2O6—C23—C17119.3 (3)
N2—C8—C7i110.3 (3)O5—C23—C17115.2 (3)
N2—C8—H8B109.6O7—C24—O8128.0 (3)
C7i—C8—H8B109.6O7—C24—C19118.5 (3)
N2—C8—H8A109.6O8—C24—C19113.5 (3)
O9—Cu1—O1—C1579.5 (2)C12—C13—C14—C90.3 (5)
N1—Cu1—O1—C15120.9 (2)C16—C13—C14—C9178.6 (3)
O9—Cu1—O5—C2377.0 (2)C10—C9—C14—C130.6 (5)
N1—Cu1—O5—C23123.5 (2)C15—C9—C14—C13179.8 (3)
O5—Cu1—N1—C519.0 (3)Cu1—O1—C15—O23.3 (5)
O1—Cu1—N1—C5157.8 (3)Cu1—O1—C15—C9176.2 (2)
O9—Cu1—N1—C5109.9 (3)C10—C9—C15—O21.7 (5)
O5—Cu1—N1—C1162.0 (3)C14—C9—C15—O2179.1 (3)
O1—Cu1—N1—C121.2 (3)C10—C9—C15—O1177.9 (3)
O9—Cu1—N1—C171.1 (4)C14—C9—C15—O11.4 (4)
C5—N1—C1—C20.2 (5)C12—C13—C16—O43.3 (5)
Cu1—N1—C1—C2178.8 (3)C14—C13—C16—O4175.6 (3)
N1—C1—C2—C31.4 (6)C12—C13—C16—O3178.3 (3)
C1—C2—C3—C42.2 (6)C14—C13—C16—O32.8 (5)
C1—C2—C3—C6178.9 (4)C22—C17—C18—C190.6 (5)
C2—C3—C4—C51.4 (5)C23—C17—C18—C19178.4 (3)
C6—C3—C4—C5179.7 (3)C17—C18—C19—C200.7 (5)
C1—N1—C5—C41.0 (5)C17—C18—C19—C24179.2 (3)
Cu1—N1—C5—C4178.0 (3)C18—C19—C20—C210.1 (5)
C3—C4—C5—N10.2 (5)C24—C19—C20—C21179.7 (3)
C8—N2—C6—C368.9 (4)C19—C20—C21—C220.5 (5)
C7—N2—C6—C3168.3 (3)C19—C20—C21—Br2179.0 (2)
C4—C3—C6—N2129.7 (4)C20—C21—C22—C170.5 (5)
C2—C3—C6—N249.1 (5)Br2—C21—C22—C17179.0 (2)
C6—N2—C7—C8i177.1 (3)C18—C17—C22—C210.0 (5)
C8—N2—C7—C8i59.0 (4)C23—C17—C22—C21179.0 (3)
C6—N2—C8—C7i176.4 (3)Cu1—O5—C23—O60.1 (5)
C7—N2—C8—C7i59.5 (5)Cu1—O5—C23—C17180.0 (2)
C14—C9—C10—C110.3 (5)C22—C17—C23—O6179.4 (3)
C15—C9—C10—C11179.5 (3)C18—C17—C23—O61.6 (5)
C9—C10—C11—C120.3 (5)C22—C17—C23—O50.4 (4)
C9—C10—C11—Br1179.9 (2)C18—C17—C23—O5178.6 (3)
C10—C11—C12—C130.6 (5)C18—C19—C24—O7176.8 (3)
Br1—C11—C12—C13179.6 (2)C20—C19—C24—O73.1 (4)
C11—C12—C13—C140.3 (5)C18—C19—C24—O82.5 (4)
C11—C12—C13—C16179.2 (3)C20—C19—C24—O8177.6 (3)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O7ii0.84 (2)1.98 (3)2.763 (4)155 (4)
O8—H8C···O4iii0.84 (2)1.81 (2)2.629 (4)166 (4)
O9—H9A···O2iv0.83 (2)1.82 (2)2.635 (3)169 (4)
O9—H9B···O6iv0.82 (2)1.83 (2)2.647 (3)171 (4)
Symmetry codes: (ii) x1, y, z+1; (iii) x+1, y, z1; (iv) x, y+2, z.

Experimental details

Crystal data
Chemical formula[Cu2(C8H4BrO4)4(C16H20N4)(H2O)2]
Mr1407.56
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.136 (2), 11.925 (4), 16.577 (5)
α, β, γ (°)74.458 (3), 86.358 (4), 72.908 (3)
V3)1299.0 (7)
Z1
Radiation typeMo Kα
µ (mm1)3.97
Crystal size (mm)0.37 × 0.26 × 0.11
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.320, 0.674
No. of measured, independent and
observed [I > 2σ(I)] reflections
20701, 4723, 4142
Rint0.025
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.092, 1.05
No. of reflections4723
No. of parameters355
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.73, 0.60

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (Palmer, 2007).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O7i0.840 (19)1.98 (3)2.763 (4)155 (4)
O8—H8C···O4ii0.836 (19)1.81 (2)2.629 (4)166 (4)
O9—H9A···O2iii0.827 (18)1.82 (2)2.635 (3)169 (4)
O9—H9B···O6iii0.824 (18)1.83 (2)2.647 (3)171 (4)
Symmetry codes: (i) x1, y, z+1; (ii) x+1, y, z1; (iii) x, y+2, z.
 

Acknowledgements

We gratefully acknowledge the donors of the American Chemical Society Petroleum Research Fund for funding this work.

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGandolfo, C. M. & LaDuca, R. L. (2011). Cryst. Growth Des. 11, 1328–1337.  Web of Science CSD CrossRef CAS Google Scholar
First citationPalmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSposato, L. K., Nettleman, J. H., Braverman, M. A., Supkowski, R. M. & LaDuca, R. L. (2010). Cryst. Growth Des. 10, 335–343.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds