organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o435-o436

Ethyl 1-(2,4-di­chloro­benz­yl)-4-oxo-7-tri­fluoro­meth­yl-1,4-di­hydro­quinoline-3-carboxyl­ate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India, and cFaculty of Industrial Science and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang Kuantan, Pahang Darul Makmur, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 5 January 2012; accepted 11 January 2012; online 18 January 2012)

In the title compound, C20H14Cl2F3NO3, the trifluromethyl group is disordered over two sets of sites in a 0.784 (10):0.216 (10) ratio. The quinoline ring system is essentially planar with a maximum deviation of 0.058 (2) Å for the N atom and forms dihedral angles of 89.23 (11) and 8.13 (17)°, respectively with the mean planes of the benzene ring and the carboxyl­ate group. In the crystal, pairs of weak C—H⋯O and C—H⋯F hydrogen bonds link mol­ecules into centrosymmetric dimers. The crystal structure is further stabilized by weak ππ [centroid–centroid distance = 3.624 (2) Å] inter­actions.

Related literature

For background to the properties and uses of quinoline derivatives, see: Kaur et al. (2010[Kaur, K., Jain, M., Reddy, R. P. & Jain, R. (2010). Eur. J. Med. Chem. 45, 3245-3264.]); Eswaran et al. (2010[Eswaran, S., Adhikari, A. V., Chowdhury, I. H., Pal, N. K. & Thomas, K. D. (2010). Eur. J. Med. Chem. 45, 3374-3383.]); Chou et al. (2010[Chou, L. C., Tsai, M. T., Hsu, M. H., Wang, S. H., Way, T. D., Huang, C. H., Lin, H. Y., Qian, K., Dong, Y., Lee, K. H., Huang, L. J. & Kuo, S. C. (2010). J. Med. Chem. 53, 8047-8058.]); Chen et al. (2004[Chen, Y. L., Hung, H. M., Lu, C. M., Li, K. C. & Tzeng, C. C. (2004). Bioorg. Med. Chem. 12, 6539-6546.]); Shingalapur et al. (2009[Shingalapur, R. V., Hosamani, K. M. & Keri, R. S. (2009). Eur. J. Med. Chem. 44, 4244-4248.]). For a related structure, see: Fun et al. (2011[Fun, H.-K., Arshad, S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011). Acta Cryst. E67, o3117-o3118.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C20H14Cl2F3NO3

  • Mr = 444.22

  • Triclinic, [P \overline 1]

  • a = 8.090 (2) Å

  • b = 9.547 (3) Å

  • c = 14.047 (4) Å

  • α = 77.299 (6)°

  • β = 76.198 (5)°

  • γ = 67.488 (4)°

  • V = 963.3 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 296 K

  • 0.43 × 0.18 × 0.07 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.852, Tmax = 0.972

  • 13916 measured reflections

  • 5071 independent reflections

  • 2759 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.179

  • S = 1.04

  • 5071 reflections

  • 288 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16A⋯O3i 0.93 2.52 3.292 (5) 141
C18—H18A⋯F2i 0.97 2.50 3.355 (7) 147
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The quinoline moiety is of great importance to chemists as well as biologists as it is one of the key building elements for many naturally occurring compounds. Members of this family have wide range of applications as pharmaceuticals as antimalarial (Kaur et al., 2010), anti-tuberculosis (Eswaran et al., 2010), antitumor (Chou et al., 2010), anticancer (Chen et al., 2004) and antiviral (Shingalapur et al., 2009) agents. Some of the present day drugs such as chloroquine, mefloquine, tafenoquine and primaquine contain quinoline as the basic unit in their structures. In view of the biological importance, we have synthesized the title compound to study its crystal structure.

In the molecular structure (Fig. 1), the trifluromethyl group is disordered over two sets of sites in a ratio of 0.784 (10):0.216 (10). The quinoline ring (N1/C1–C9) is essentially planar with a maximum deviation of 0.058 (2) Å at atom N1. The quinoline ring makes dihedral angles of 89.23 (11) and 8.13 (17)°, respectively with the chloro-substituted benzene ring (C11–C16) and the carboxylate group (O1/O2/C17–C19). The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to a related structure (Fun et al., 2011).

In the crystal (Fig. 2), intermolecular C16—H16A···O3i and C18—H18A···F2i hydrogen bonds (Table 1) link molecules to form dimers. The crystal is further stabilized by weak ππ interactions between the quinoline (N1/C1–C9) and the benzene ring (C4–C9) [centroid-to-centroid (-x, 1 - y, -z); distance = 3.624 (2) Å].

Related literature top

For background to the properties and uses of quinoline derivatives, see: Kaur et al. (2010); Eswaran et al. (2010); Chou et al. (2010); Chen et al. (2004); Shingalapur et al. (2009). For a related structure, see: Fun et al. (2011). For standard bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of ethyl 4-hydroxy-7-(trifluoromethyl)quinoline-3-carboxylate (0.10 g, 0.00035 mol), potassium carbonate (0.053 g, 0.00038 mol) and 1-(bromomethyl)-2,4-dichlorobenzene (0.091 g, 0.00038 mol) in dimethylformamide (5 ml) was stirred at 353K for 3 h. After completion of the reaction, the reaction mixture was poured into ice-cold water. The solid product obtained was filtered, washed with water and recrystallized using ethanol. Yield: 0.150 g, 96.77%. M. p.: 428–429 K.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C) (C—H = 0.93, 0.96 or 0.97 Å). A rotating group model was applied to the methyl group. In the final refinement, the outliners (-4 - 6 1), (3 2 0), (5 0 6), (5 1 8) were omitted. A bond-distance restraint was applied to C20A–C7. The same Uij parameters were used for atom pairs F3A/F1A and C20A/C7.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. Both disorder components are shown.
[Figure 2] Fig. 2. The crystal packing of the title compound. The dashed lines represent the hydrogen bonds. Only the major disordered component is shown.
Ethyl 1-(2,4-dichlorobenzyl)-4-oxo-7-trifluoromethyl-1,4-dihydroquinoline-3- carboxylate top
Crystal data top
C20H14Cl2F3NO3Z = 2
Mr = 444.22F(000) = 452
Triclinic, P1Dx = 1.531 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.090 (2) ÅCell parameters from 3077 reflections
b = 9.547 (3) Åθ = 2.3–24.2°
c = 14.047 (4) ŵ = 0.39 mm1
α = 77.299 (6)°T = 296 K
β = 76.198 (5)°Block, colourless
γ = 67.488 (4)°0.43 × 0.18 × 0.07 mm
V = 963.3 (5) Å3
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
5071 independent reflections
Radiation source: fine-focus sealed tube2759 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 29.1°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1011
Tmin = 0.852, Tmax = 0.972k = 1313
13916 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0711P)2 + 0.3522P]
where P = (Fo2 + 2Fc2)/3
5071 reflections(Δ/σ)max < 0.001
288 parametersΔρmax = 0.35 e Å3
7 restraintsΔρmin = 0.34 e Å3
Crystal data top
C20H14Cl2F3NO3γ = 67.488 (4)°
Mr = 444.22V = 963.3 (5) Å3
Triclinic, P1Z = 2
a = 8.090 (2) ÅMo Kα radiation
b = 9.547 (3) ŵ = 0.39 mm1
c = 14.047 (4) ÅT = 296 K
α = 77.299 (6)°0.43 × 0.18 × 0.07 mm
β = 76.198 (5)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
5071 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2759 reflections with I > 2σ(I)
Tmin = 0.852, Tmax = 0.972Rint = 0.027
13916 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0567 restraints
wR(F2) = 0.179H-atom parameters constrained
S = 1.04Δρmax = 0.35 e Å3
5071 reflectionsΔρmin = 0.34 e Å3
288 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.33323 (10)0.73631 (10)0.39029 (6)0.0780 (3)
Cl20.24014 (16)0.66624 (13)0.54781 (7)0.1052 (4)
C200.1448 (11)0.0460 (8)0.2381 (6)0.0900 (15)0.784 (10)
F10.0710 (8)0.0345 (4)0.2048 (3)0.1144 (17)0.784 (10)
F20.2991 (6)0.0610 (5)0.2577 (5)0.137 (2)0.784 (10)
F30.0375 (13)0.0915 (6)0.3154 (4)0.197 (5)0.784 (10)
C20A0.134 (3)0.055 (2)0.2391 (13)0.0638 (7)0.216 (10)
F1A0.207 (3)0.0777 (17)0.2083 (14)0.149 (7)0.216 (10)
F2A0.204 (2)0.042 (2)0.3172 (9)0.103 (6)0.216 (10)
F3A0.026 (2)0.078 (2)0.2781 (19)0.149 (7)0.216 (10)
O10.3593 (3)0.7747 (2)0.19081 (13)0.0747 (6)
O20.2188 (3)0.9285 (2)0.07639 (15)0.0818 (6)
O30.4032 (4)0.4757 (3)0.14202 (17)0.0992 (8)
N10.0638 (3)0.5929 (2)0.11707 (14)0.0525 (5)
C10.1139 (3)0.6989 (3)0.04830 (18)0.0538 (6)
H1A0.06520.79970.06110.065*
C20.2309 (3)0.6694 (3)0.03871 (18)0.0519 (6)
C30.3065 (4)0.5147 (3)0.0630 (2)0.0614 (7)
C40.2558 (3)0.4008 (3)0.01455 (19)0.0546 (6)
C50.3257 (4)0.2471 (3)0.0008 (2)0.0668 (7)
H5A0.40180.22060.06000.080*
C60.2850 (4)0.1353 (3)0.0693 (2)0.0726 (8)
H6A0.32940.03440.05700.087*
C70.1763 (4)0.1747 (3)0.1588 (2)0.0638 (7)
C80.1019 (4)0.3237 (3)0.1768 (2)0.0580 (6)
H8A0.02750.34810.23690.070*
C90.1394 (3)0.4388 (3)0.10383 (18)0.0506 (6)
C100.0705 (3)0.6443 (3)0.20509 (18)0.0570 (6)
H10A0.14610.58120.22470.068*
H10B0.14840.74900.18760.068*
C110.0122 (3)0.6370 (3)0.29170 (17)0.0497 (6)
C120.0999 (3)0.6848 (3)0.37876 (18)0.0546 (6)
C130.0312 (4)0.6930 (3)0.4573 (2)0.0692 (8)
H13A0.10890.72620.51480.083*
C140.1529 (4)0.6517 (3)0.4499 (2)0.0680 (8)
C150.2693 (4)0.5999 (3)0.3659 (2)0.0651 (7)
H15A0.39420.56950.36190.078*
C160.1983 (4)0.5938 (3)0.2878 (2)0.0580 (6)
H16A0.27690.55980.23070.070*
C170.2670 (3)0.8046 (3)0.10207 (19)0.0566 (6)
C180.3971 (5)0.9011 (3)0.2582 (2)0.0729 (8)
H18A0.46110.94390.22900.087*
H18B0.28480.98110.27300.087*
C190.5111 (6)0.8397 (4)0.3499 (2)0.1007 (13)
H19A0.52780.92260.39930.151*
H19B0.45210.78780.37400.151*
H19C0.62710.76910.33560.151*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0572 (4)0.0910 (6)0.0667 (5)0.0187 (4)0.0125 (3)0.0118 (4)
Cl20.1179 (8)0.1260 (8)0.0906 (7)0.0464 (7)0.0256 (6)0.0378 (6)
C200.091 (4)0.062 (3)0.116 (4)0.028 (3)0.016 (3)0.010 (3)
F10.120 (4)0.097 (2)0.156 (3)0.073 (3)0.038 (2)0.003 (2)
F20.099 (3)0.099 (3)0.207 (5)0.048 (2)0.072 (3)0.069 (3)
F30.325 (11)0.088 (3)0.129 (4)0.094 (5)0.092 (6)0.020 (3)
C20A0.0626 (17)0.0525 (15)0.0778 (19)0.0208 (13)0.0151 (14)0.0079 (13)
F1A0.096 (9)0.116 (10)0.226 (15)0.066 (7)0.006 (8)0.010 (9)
F2A0.083 (9)0.145 (15)0.076 (8)0.057 (10)0.038 (7)0.053 (8)
F3A0.096 (9)0.116 (10)0.226 (15)0.066 (7)0.006 (8)0.010 (9)
O10.0975 (15)0.0655 (12)0.0540 (11)0.0334 (11)0.0120 (10)0.0122 (9)
O20.1094 (17)0.0645 (13)0.0696 (13)0.0377 (12)0.0106 (12)0.0200 (10)
O30.1143 (19)0.0721 (14)0.0803 (15)0.0225 (13)0.0394 (13)0.0285 (12)
N10.0536 (12)0.0498 (11)0.0481 (11)0.0138 (9)0.0006 (9)0.0124 (9)
C10.0558 (15)0.0509 (14)0.0526 (14)0.0154 (11)0.0049 (11)0.0139 (11)
C20.0520 (14)0.0529 (14)0.0486 (13)0.0178 (11)0.0027 (11)0.0103 (11)
C30.0539 (15)0.0601 (16)0.0569 (15)0.0089 (12)0.0025 (12)0.0153 (12)
C40.0477 (13)0.0523 (14)0.0582 (15)0.0091 (11)0.0061 (11)0.0153 (11)
C50.0615 (17)0.0576 (16)0.0692 (18)0.0067 (13)0.0025 (13)0.0198 (14)
C60.0751 (19)0.0515 (16)0.087 (2)0.0132 (14)0.0137 (16)0.0176 (15)
C70.0626 (17)0.0525 (15)0.0778 (19)0.0208 (13)0.0151 (14)0.0079 (13)
C80.0548 (15)0.0585 (16)0.0601 (15)0.0212 (12)0.0063 (12)0.0087 (12)
C90.0476 (13)0.0481 (13)0.0553 (14)0.0139 (11)0.0070 (11)0.0131 (11)
C100.0511 (14)0.0554 (14)0.0551 (15)0.0129 (11)0.0065 (11)0.0168 (12)
C110.0544 (14)0.0411 (12)0.0491 (13)0.0184 (10)0.0034 (10)0.0076 (10)
C120.0558 (14)0.0498 (14)0.0491 (14)0.0196 (11)0.0069 (11)0.0039 (11)
C130.078 (2)0.0700 (18)0.0518 (16)0.0258 (15)0.0095 (14)0.0156 (13)
C140.081 (2)0.0682 (18)0.0591 (16)0.0310 (16)0.0091 (15)0.0132 (14)
C150.0621 (17)0.0616 (17)0.0757 (19)0.0261 (14)0.0078 (14)0.0140 (14)
C160.0562 (15)0.0569 (15)0.0578 (15)0.0208 (12)0.0045 (12)0.0156 (12)
C170.0541 (15)0.0618 (16)0.0529 (14)0.0210 (12)0.0026 (11)0.0119 (12)
C180.084 (2)0.0724 (19)0.0620 (17)0.0388 (16)0.0061 (15)0.0073 (14)
C190.137 (3)0.100 (3)0.064 (2)0.058 (3)0.023 (2)0.0218 (18)
Geometric parameters (Å, º) top
Cl1—C121.735 (3)C5—H5A0.9300
Cl2—C141.741 (3)C6—C71.388 (4)
C20—F31.262 (8)C6—H6A0.9300
C20—F21.320 (7)C7—C81.371 (4)
C20—F11.344 (8)C8—C91.401 (4)
C20—C71.522 (8)C8—H8A0.9300
C20A—F3A1.235 (16)C10—C111.499 (4)
C20A—F1A1.303 (16)C10—H10A0.9700
C20A—F2A1.311 (16)C10—H10B0.9700
C20A—C71.494 (17)C11—C121.387 (3)
O1—C171.320 (3)C11—C161.391 (4)
O1—C181.445 (3)C12—C131.377 (4)
O2—C171.204 (3)C13—C141.371 (4)
O3—C31.236 (3)C13—H13A0.9300
N1—C11.349 (3)C14—C151.376 (4)
N1—C91.396 (3)C15—C161.375 (4)
N1—C101.472 (3)C15—H15A0.9300
C1—C21.365 (3)C16—H16A0.9300
C1—H1A0.9300C18—C191.485 (4)
C2—C31.450 (4)C18—H18A0.9700
C2—C171.484 (4)C18—H18B0.9700
C3—C41.465 (4)C19—H19A0.9600
C4—C51.401 (4)C19—H19B0.9600
C4—C91.402 (3)C19—H19C0.9600
C5—C61.367 (4)
F3—C20—F2112.3 (8)N1—C9—C8121.8 (2)
F3—C20—F1105.5 (6)N1—C9—C4118.2 (2)
F2—C20—F1101.2 (6)C8—C9—C4120.1 (2)
F3—C20—C7113.9 (6)N1—C10—C11113.9 (2)
F2—C20—C7111.8 (6)N1—C10—H10A108.8
F1—C20—C7111.2 (6)C11—C10—H10A108.8
F3A—C20A—F1A110.4 (17)N1—C10—H10B108.8
F3A—C20A—F2A99.9 (16)C11—C10—H10B108.8
F1A—C20A—F2A106.3 (18)H10A—C10—H10B107.7
F3A—C20A—C7118.3 (17)C12—C11—C16117.1 (2)
F1A—C20A—C7109.6 (14)C12—C11—C10119.6 (2)
F2A—C20A—C7111.4 (13)C16—C11—C10123.2 (2)
C17—O1—C18116.3 (2)C13—C12—C11121.8 (3)
C1—N1—C9120.0 (2)C13—C12—Cl1118.4 (2)
C1—N1—C10118.3 (2)C11—C12—Cl1119.8 (2)
C9—N1—C10121.7 (2)C14—C13—C12119.3 (3)
N1—C1—C2124.9 (2)C14—C13—H13A120.3
N1—C1—H1A117.6C12—C13—H13A120.3
C2—C1—H1A117.6C13—C14—C15120.8 (3)
C1—C2—C3119.4 (2)C13—C14—Cl2119.5 (2)
C1—C2—C17115.1 (2)C15—C14—Cl2119.7 (3)
C3—C2—C17125.5 (2)C16—C15—C14119.1 (3)
O3—C3—C2125.5 (3)C16—C15—H15A120.4
O3—C3—C4120.0 (2)C14—C15—H15A120.4
C2—C3—C4114.5 (2)C15—C16—C11121.8 (2)
C5—C4—C9118.3 (2)C15—C16—H16A119.1
C5—C4—C3118.9 (2)C11—C16—H16A119.1
C9—C4—C3122.8 (2)O2—C17—O1122.9 (2)
C6—C5—C4121.6 (3)O2—C17—C2124.4 (2)
C6—C5—H5A119.2O1—C17—C2112.6 (2)
C4—C5—H5A119.2O1—C18—C19107.1 (3)
C5—C6—C7119.0 (3)O1—C18—H18A110.3
C5—C6—H6A120.5C19—C18—H18A110.3
C7—C6—H6A120.5O1—C18—H18B110.3
C8—C7—C6121.6 (3)C19—C18—H18B110.3
C8—C7—C20A117.5 (8)H18A—C18—H18B108.6
C6—C7—C20A120.9 (8)C18—C19—H19A109.5
C8—C7—C20120.7 (4)C18—C19—H19B109.5
C6—C7—C20117.7 (4)H19A—C19—H19B109.5
C7—C8—C9119.3 (3)C18—C19—H19C109.5
C7—C8—H8A120.4H19A—C19—H19C109.5
C9—C8—H8A120.4H19B—C19—H19C109.5
C9—N1—C1—C23.1 (4)C20A—C7—C8—C9179.4 (8)
C10—N1—C1—C2177.2 (2)C20—C7—C8—C9177.5 (4)
N1—C1—C2—C31.6 (4)C1—N1—C9—C8174.9 (2)
N1—C1—C2—C17179.3 (2)C10—N1—C9—C84.8 (4)
C1—C2—C3—O3174.7 (3)C1—N1—C9—C45.0 (4)
C17—C2—C3—O34.3 (5)C10—N1—C9—C4175.2 (2)
C1—C2—C3—C43.8 (4)C7—C8—C9—N1178.3 (2)
C17—C2—C3—C4177.2 (2)C7—C8—C9—C41.7 (4)
O3—C3—C4—C53.0 (4)C5—C4—C9—N1177.3 (2)
C2—C3—C4—C5178.4 (3)C3—C4—C9—N12.6 (4)
O3—C3—C4—C9176.8 (3)C5—C4—C9—C82.7 (4)
C2—C3—C4—C91.8 (4)C3—C4—C9—C8177.4 (2)
C9—C4—C5—C60.8 (4)C1—N1—C10—C1193.1 (3)
C3—C4—C5—C6179.3 (3)C9—N1—C10—C1186.7 (3)
C4—C5—C6—C72.1 (5)N1—C10—C11—C12178.9 (2)
C5—C6—C7—C83.2 (5)N1—C10—C11—C163.4 (3)
C5—C6—C7—C20A177.6 (8)C16—C11—C12—C131.6 (4)
C5—C6—C7—C20175.6 (4)C10—C11—C12—C13174.2 (2)
F3A—C20A—C7—C849 (2)C16—C11—C12—Cl1178.55 (18)
F1A—C20A—C7—C8176.8 (13)C10—C11—C12—Cl15.6 (3)
F2A—C20A—C7—C865.8 (19)C11—C12—C13—C140.6 (4)
F3A—C20A—C7—C6130.1 (17)Cl1—C12—C13—C14179.5 (2)
F1A—C20A—C7—C62.5 (18)C12—C13—C14—C151.1 (4)
F2A—C20A—C7—C6114.9 (15)C12—C13—C14—Cl2178.5 (2)
F3A—C20A—C7—C20159 (16)C13—C14—C15—C161.7 (4)
F1A—C20A—C7—C2031 (14)Cl2—C14—C15—C16177.9 (2)
F2A—C20A—C7—C2086 (15)C14—C15—C16—C110.7 (4)
F3—C20—C7—C84.5 (8)C12—C11—C16—C150.9 (4)
F2—C20—C7—C8124.1 (6)C10—C11—C16—C15174.7 (2)
F1—C20—C7—C8123.6 (6)C18—O1—C17—O21.4 (4)
F3—C20—C7—C6176.7 (6)C18—O1—C17—C2178.7 (2)
F2—C20—C7—C654.7 (8)C1—C2—C17—O29.3 (4)
F1—C20—C7—C657.6 (8)C3—C2—C17—O2171.8 (3)
F3—C20—C7—C20A24 (14)C1—C2—C17—O1170.9 (2)
F2—C20—C7—C20A153 (15)C3—C2—C17—O18.1 (4)
F1—C20—C7—C20A95 (15)C17—O1—C18—C19176.4 (3)
C6—C7—C8—C91.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O3i0.932.523.292 (5)141
C18—H18A···F2i0.972.503.355 (7)147
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H14Cl2F3NO3
Mr444.22
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.090 (2), 9.547 (3), 14.047 (4)
α, β, γ (°)77.299 (6), 76.198 (5), 67.488 (4)
V3)963.3 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.43 × 0.18 × 0.07
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.852, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
13916, 5071, 2759
Rint0.027
(sin θ/λ)max1)0.683
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.179, 1.04
No. of reflections5071
No. of parameters288
No. of restraints7
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.34

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O3i0.93002.52003.292 (5)141.00
C18—H18A···F2i0.97002.50003.355 (7)147.00
Symmetry code: (i) x+1, y+1, z.
 

Footnotes

Visiting Professor, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and CWO thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). CWO also thanks the Malaysian Government and USM for the award of the post of research assistant under the Research University Grant (1001/PFIZIK/811151). AMI is thankful to the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India for the Young Scientist award.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y. L., Hung, H. M., Lu, C. M., Li, K. C. & Tzeng, C. C. (2004). Bioorg. Med. Chem. 12, 6539–6546.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChou, L. C., Tsai, M. T., Hsu, M. H., Wang, S. H., Way, T. D., Huang, C. H., Lin, H. Y., Qian, K., Dong, Y., Lee, K. H., Huang, L. J. & Kuo, S. C. (2010). J. Med. Chem. 53, 8047–8058.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEswaran, S., Adhikari, A. V., Chowdhury, I. H., Pal, N. K. & Thomas, K. D. (2010). Eur. J. Med. Chem. 45, 3374–3383.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFun, H.-K., Arshad, S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011). Acta Cryst. E67, o3117–o3118.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKaur, K., Jain, M., Reddy, R. P. & Jain, R. (2010). Eur. J. Med. Chem. 45, 3245–3264.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShingalapur, R. V., Hosamani, K. M. & Keri, R. S. (2009). Eur. J. Med. Chem. 44, 4244–4248.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o435-o436
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds