organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-1-(2,4-Di­methyl­phen­yl)-3-phenyl-2-(1H-1,2,4-triazol-1-yl)prop-2-en-1-one

aSchool of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
*Correspondence e-mail: muruizhu@swu.edu.cn

(Received 5 January 2012; accepted 12 January 2012; online 21 January 2012)

In the title compound, C19H17N3O, the triazole and benzene rings adopt a Z configuration with respect to the C=C bond. The phenyl and benzene rings form dihedral angles of 66.20 (9) and 14.36 (9)°, respectively, with the triazole ring. The dihedral angle between the phenyl and benzene rings is 52.64 (8)°.

Related literature

For the synthesis, see: Wang et al. (2009[Wang, G., Lu, Y., Zhou, C. & Zhang, Y. (2009). Acta Cryst. E65, o1113.]). For the pharmacological activity of triazole derivatives, see: Zhou & Wang (2012[Zhou, C.-H. & Wang, Y. (2012). Curr. Med. Chem. 19, 239-280.]). For related structures, see: Wang et al. (2009[Wang, G., Lu, Y., Zhou, C. & Zhang, Y. (2009). Acta Cryst. E65, o1113.]); Yan et al. (2009[Yan, C.-Y., Wang, G.-Z. & Zhou, C.-H. (2009). Acta Cryst. E65, o2054.]).

[Scheme 1]

Experimental

Crystal data
  • C19H17N3O

  • Mr = 303.36

  • Monoclinic, P 21 /n

  • a = 12.8499 (3) Å

  • b = 7.8836 (2) Å

  • c = 16.5274 (4) Å

  • β = 108.376 (1)°

  • V = 1588.91 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.20 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.984, Tmax = 0.986

  • 11768 measured reflections

  • 2796 independent reflections

  • 2369 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.113

  • S = 1.04

  • 2796 reflections

  • 215 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Chalcones are an important type of biologically active compounds with a diaryl enone structural unit. Triazole compounds exhibit a broad bioactive spectrum (Zhou & Wang, 2012). Our interest is to develop novel triazole-derived chalcones as medicinal agents. Examples of related structures of triazolylchalcones have been reported (Wang et al., 2009; Yan et al., 2009). Herein, the crystal structure of the title compound (I) is reported.

In the molecular structure of (I) (Fig. 1) the triazole and benzene rings adopt a Z configuration with respect to the CC bond. The phenyl (C3-C8) and benzene (C12-C17) rings form dihedral angles of 66.20 (9) and 14.36 (9)°, respectively with the triazole ring (N1-N3/C1/C2). The dihedral angle between the phenyl and benzene rings is 52.64 (8)Å.

Related literature top

For the synthesis, see: Wang et al. (2009). For the pharmacological activity of triazole derivatives, see: Zhou & Wang (2012). For related structures, see: Wang et al. (2009); Yan et al. (2009).

Experimental top

The title compound was prepared according to the procedure of Wang et al. (2009). A mixture of 1-(2,4-dimethylphenyl)-2-(1H-1,2,4-triazol-1-yl) ethanone (1.08 g, 5.0 mmol) and benzaldehyde (0.74 g, 7.0 mmol) in toluene (30 mL) in the presence of glacial acetic acid (0.08 mL, 1.4 mmol) and piperidine (0.08 mL, 1.4 mmol) as catalyst was refluxed. After the reaction was completed (monitored by TLC, petroleum ether/ethyl acetate, 3/1, V/V), the solvent was removed. The residue was dissolved in dichloromethane (30 mL) and washed with water (3x30 mL). The resulting phase was dried over anhydrous sodium sulfate, concentrated under reduced pressure and then purified by silica gel column chromatography eluting with petroleum ether/ethyl acetate (10/1-2/1, V/V) to give the title compound (I) (0.923 g) as solid. Mp.396-397K. A crystal of (I) suitable for X-ray analysis was grown from a mixed solution of ethyl acetate and petroleum ether by slow evaporation at room temperature.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93Å (aromatic) and 0.96Å (methyl). The Uiso(H) values were set equal to 1.2Ueq(Caromatic) and 1.5Ueq(Cmethyl). The H atom bonded to C9 was refined independently with an isotropic displacement paramemeter.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids drawn at the 50% probability level.
(Z)-1-(2,4-Dimethylphenyl)-3-phenyl-2-(1H-1,2,4-triazol-1- yl)prop-2-en-1-one top
Crystal data top
C19H17N3OF(000) = 640
Mr = 303.36Dx = 1.268 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4934 reflections
a = 12.8499 (3) Åθ = 2.4–27.1°
b = 7.8836 (2) ŵ = 0.08 mm1
c = 16.5274 (4) ÅT = 296 K
β = 108.376 (1)°Block, colorless
V = 1588.91 (7) Å30.20 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2796 independent reflections
Radiation source: fine-focus sealed tube2369 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 159
Tmin = 0.984, Tmax = 0.986k = 89
11768 measured reflectionsl = 1719
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0517P)2 + 0.3715P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.004
2796 reflectionsΔρmax = 0.18 e Å3
215 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.017 (2)
Crystal data top
C19H17N3OV = 1588.91 (7) Å3
Mr = 303.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.8499 (3) ŵ = 0.08 mm1
b = 7.8836 (2) ÅT = 296 K
c = 16.5274 (4) Å0.20 × 0.20 × 0.18 mm
β = 108.376 (1)°
Data collection top
Bruker SMART CCD
diffractometer
2796 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2369 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.986Rint = 0.025
11768 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.18 e Å3
2796 reflectionsΔρmin = 0.15 e Å3
215 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.20259 (13)1.1290 (2)0.85885 (11)0.0604 (5)
H10.16661.20430.88420.072*
C20.23209 (14)0.9674 (3)0.77106 (11)0.0636 (5)
H20.22540.90310.72250.076*
C30.29220 (13)0.6718 (2)0.94192 (10)0.0531 (4)
H30.25110.70040.88650.064*
C40.24256 (14)0.5912 (2)0.99443 (12)0.0634 (5)
H40.16850.56370.97360.076*
C50.30203 (15)0.5514 (2)1.07733 (11)0.0615 (5)
H50.26790.49901.11260.074*
C60.41158 (15)0.5892 (2)1.10754 (10)0.0578 (4)
H60.45180.56341.16360.069*
C70.46229 (13)0.6653 (2)1.05485 (9)0.0479 (4)
H70.53720.68701.07530.057*
C80.40332 (11)0.71002 (18)0.97182 (9)0.0413 (3)
C90.46292 (12)0.78548 (19)0.91780 (9)0.0428 (4)
C100.42801 (11)0.89791 (19)0.85496 (9)0.0417 (3)
C110.48890 (13)0.9480 (2)0.79522 (10)0.0486 (4)
C120.60794 (12)0.90705 (19)0.81731 (9)0.0450 (4)
C130.67846 (13)0.9510 (2)0.89704 (10)0.0511 (4)
H130.65021.00170.93650.061*
C140.78937 (13)0.9210 (2)0.91891 (11)0.0566 (4)
H140.83510.95430.97230.068*
C150.83373 (13)0.8419 (2)0.86257 (11)0.0543 (4)
C160.76298 (13)0.7989 (2)0.78301 (10)0.0531 (4)
H160.79180.74580.74460.064*
C170.65123 (12)0.8313 (2)0.75783 (10)0.0481 (4)
C180.58064 (16)0.7803 (3)0.67006 (11)0.0724 (6)
H18A0.62550.72910.64000.109*
H18B0.54490.87880.63960.109*
H18C0.52640.70030.67460.109*
C190.95482 (15)0.8037 (3)0.88741 (15)0.0825 (6)
H19A0.99100.89160.86630.124*
H19B0.96560.69680.86330.124*
H19C0.98490.79830.94840.124*
H1M0.5369 (13)0.746 (2)0.9311 (9)0.045 (4)*
N10.15299 (12)1.0603 (2)0.78249 (9)0.0674 (4)
N20.30462 (10)1.08424 (18)0.89592 (8)0.0542 (4)
N30.32284 (9)0.97702 (16)0.83766 (7)0.0434 (3)
O10.43871 (10)1.0182 (2)0.72867 (8)0.0757 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0483 (9)0.0687 (12)0.0681 (10)0.0169 (8)0.0240 (8)0.0059 (9)
C20.0531 (10)0.0799 (13)0.0503 (9)0.0104 (9)0.0054 (7)0.0035 (8)
C30.0446 (9)0.0601 (10)0.0544 (9)0.0009 (8)0.0151 (7)0.0054 (8)
C40.0486 (10)0.0656 (12)0.0804 (12)0.0063 (8)0.0267 (9)0.0067 (9)
C50.0705 (12)0.0555 (10)0.0703 (11)0.0024 (9)0.0390 (9)0.0125 (8)
C60.0705 (12)0.0536 (10)0.0511 (9)0.0068 (8)0.0219 (8)0.0097 (7)
C70.0460 (9)0.0442 (9)0.0527 (8)0.0036 (7)0.0144 (7)0.0023 (7)
C80.0418 (8)0.0375 (8)0.0479 (8)0.0051 (6)0.0188 (6)0.0002 (6)
C90.0380 (8)0.0447 (8)0.0482 (8)0.0046 (7)0.0174 (6)0.0012 (6)
C100.0368 (7)0.0458 (8)0.0449 (7)0.0032 (6)0.0166 (6)0.0011 (6)
C110.0487 (9)0.0509 (9)0.0509 (8)0.0026 (7)0.0225 (7)0.0035 (7)
C120.0467 (8)0.0428 (8)0.0525 (8)0.0021 (7)0.0259 (7)0.0016 (7)
C130.0521 (9)0.0533 (10)0.0552 (9)0.0002 (7)0.0272 (7)0.0055 (7)
C140.0488 (9)0.0617 (11)0.0599 (9)0.0061 (8)0.0182 (7)0.0072 (8)
C150.0474 (9)0.0499 (10)0.0720 (10)0.0020 (7)0.0280 (8)0.0005 (8)
C160.0565 (10)0.0478 (9)0.0672 (10)0.0023 (8)0.0372 (8)0.0056 (8)
C170.0507 (9)0.0455 (9)0.0561 (9)0.0066 (7)0.0284 (7)0.0030 (7)
C180.0682 (12)0.0892 (15)0.0663 (11)0.0097 (10)0.0308 (9)0.0223 (10)
C190.0525 (11)0.0907 (16)0.1073 (16)0.0077 (11)0.0292 (11)0.0055 (13)
N10.0491 (8)0.0839 (11)0.0649 (9)0.0173 (8)0.0117 (7)0.0101 (8)
N20.0462 (8)0.0604 (9)0.0585 (8)0.0086 (6)0.0201 (6)0.0077 (6)
N30.0397 (7)0.0489 (7)0.0427 (6)0.0051 (5)0.0145 (5)0.0015 (5)
O10.0634 (8)0.1056 (11)0.0651 (8)0.0179 (7)0.0302 (6)0.0344 (7)
Geometric parameters (Å, º) top
C1—N21.308 (2)C10—C111.4933 (19)
C1—N11.336 (2)C11—O11.2186 (18)
C1—H10.9300C11—C121.492 (2)
C2—N11.314 (2)C12—C131.387 (2)
C2—N31.330 (2)C12—C171.406 (2)
C2—H20.9300C13—C141.376 (2)
C3—C41.383 (2)C13—H130.9300
C3—C81.389 (2)C14—C151.384 (2)
C3—H30.9300C14—H140.9300
C4—C51.378 (2)C15—C161.384 (2)
C4—H40.9300C15—C191.509 (2)
C5—C61.370 (2)C16—C171.387 (2)
C5—H50.9300C16—H160.9300
C6—C71.379 (2)C17—C181.503 (2)
C6—H60.9300C18—H18A0.9600
C7—C81.388 (2)C18—H18B0.9600
C7—H70.9300C18—H18C0.9600
C8—C91.4727 (19)C19—H19A0.9600
C9—C101.331 (2)C19—H19B0.9600
C9—H1M0.958 (15)C19—H19C0.9600
C10—N31.4330 (18)N2—N31.3560 (17)
N2—C1—N1116.25 (15)C13—C12—C11119.40 (13)
N2—C1—H1121.9C17—C12—C11121.46 (14)
N1—C1—H1121.9C14—C13—C12121.27 (14)
N1—C2—N3111.45 (16)C14—C13—H13119.4
N1—C2—H2124.3C12—C13—H13119.4
N3—C2—H2124.3C13—C14—C15120.85 (15)
C4—C3—C8120.15 (15)C13—C14—H14119.6
C4—C3—H3119.9C15—C14—H14119.6
C8—C3—H3119.9C14—C15—C16117.57 (15)
C5—C4—C3120.50 (16)C14—C15—C19120.99 (16)
C5—C4—H4119.7C16—C15—C19121.44 (16)
C3—C4—H4119.7C15—C16—C17123.21 (14)
C6—C5—C4119.79 (15)C15—C16—H16118.4
C6—C5—H5120.1C17—C16—H16118.4
C4—C5—H5120.1C16—C17—C12117.96 (14)
C5—C6—C7120.03 (15)C16—C17—C18119.53 (14)
C5—C6—H6120.0C12—C17—C18122.48 (14)
C7—C6—H6120.0C17—C18—H18A109.5
C6—C7—C8121.04 (15)C17—C18—H18B109.5
C6—C7—H7119.5H18A—C18—H18B109.5
C8—C7—H7119.5C17—C18—H18C109.5
C7—C8—C3118.45 (13)H18A—C18—H18C109.5
C7—C8—C9118.42 (13)H18B—C18—H18C109.5
C3—C8—C9123.01 (13)C15—C19—H19A109.5
C10—C9—C8129.07 (14)C15—C19—H19B109.5
C10—C9—H1M117.6 (9)H19A—C19—H19B109.5
C8—C9—H1M113.3 (9)C15—C19—H19C109.5
C9—C10—N3120.68 (13)H19A—C19—H19C109.5
C9—C10—C11125.02 (13)H19B—C19—H19C109.5
N3—C10—C11114.25 (12)C2—N1—C1101.62 (14)
O1—C11—C12121.95 (13)C1—N2—N3101.96 (13)
O1—C11—C10118.58 (14)C2—N3—N2108.70 (13)
C12—C11—C10119.45 (13)C2—N3—C10131.78 (13)
C13—C12—C17119.09 (14)N2—N3—C10119.52 (11)
C8—C3—C4—C51.4 (3)C12—C13—C14—C151.6 (3)
C3—C4—C5—C61.1 (3)C13—C14—C15—C161.8 (3)
C4—C5—C6—C70.6 (3)C13—C14—C15—C19178.00 (17)
C5—C6—C7—C82.2 (3)C14—C15—C16—C170.0 (3)
C6—C7—C8—C31.9 (2)C19—C15—C16—C17179.80 (16)
C6—C7—C8—C9177.89 (14)C15—C16—C17—C121.9 (2)
C4—C3—C8—C70.1 (2)C15—C16—C17—C18179.96 (16)
C4—C3—C8—C9175.91 (15)C13—C12—C17—C162.1 (2)
C7—C8—C9—C10149.02 (16)C11—C12—C17—C16179.33 (14)
C3—C8—C9—C1035.2 (2)C13—C12—C17—C18179.86 (16)
C8—C9—C10—N37.0 (2)C11—C12—C17—C182.6 (2)
C8—C9—C10—C11170.43 (14)N3—C2—N1—C11.4 (2)
C9—C10—C11—O1162.17 (16)N2—C1—N1—C21.1 (2)
N3—C10—C11—O115.4 (2)N1—C1—N2—N30.3 (2)
C9—C10—C11—C1216.3 (2)N1—C2—N3—N21.3 (2)
N3—C10—C11—C12166.14 (13)N1—C2—N3—C10179.01 (15)
O1—C11—C12—C13131.04 (18)C1—N2—N3—C20.56 (18)
C10—C11—C12—C1350.6 (2)C1—N2—N3—C10179.71 (13)
O1—C11—C12—C1746.2 (2)C9—C10—N3—C2113.9 (2)
C10—C11—C12—C17132.18 (16)C11—C10—N3—C263.8 (2)
C17—C12—C13—C140.4 (2)C9—C10—N3—N266.43 (19)
C11—C12—C13—C14177.68 (15)C11—C10—N3—N2115.87 (15)

Experimental details

Crystal data
Chemical formulaC19H17N3O
Mr303.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)12.8499 (3), 7.8836 (2), 16.5274 (4)
β (°) 108.376 (1)
V3)1588.91 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.984, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
11768, 2796, 2369
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.113, 1.04
No. of reflections2796
No. of parameters215
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.15

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was partially supported by the Chongqing Scientific Foundation, PR China (CSTC, 2010BB4120) and the Southwest University Doctoral Foundation, PR China (grant No. SWNU B2005006) for financial support.

References

First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, G., Lu, Y., Zhou, C. & Zhang, Y. (2009). Acta Cryst. E65, o1113.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, C.-H. & Wang, Y. (2012). Curr. Med. Chem. 19, 239–280.  Web of Science CAS PubMed Google Scholar
First citationYan, C.-Y., Wang, G.-Z. & Zhou, C.-H. (2009). Acta Cryst. E65, o2054.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds