organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o471-o472

Ethyl 2-(1,3-benzodioxol-5-yl)-1-[3-(2-oxopyrrolidin-1-yl)prop­yl]-1H-benz­imidazole-5-carboxyl­ate

aInstitute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia, and bSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my

(Received 7 January 2012; accepted 12 January 2012; online 21 January 2012)

In the title compound, C24H25N3O5, the benzimidazole and benzodioxole ring systems are each approximately planar [maximum deviations = 0.043 (1) and 0.036 (1) Å, respectively]. Their mean planes form a dihedral angle of 42.85 (4)°. The pyrrolidine ring has an envelope conformation with one of the methyl­ene C atoms forming the flap. In the crystal, weak C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network. The crystal packing is further stabillized by weak ππ inter­actions between the benzene rings within the benzimidazole ring system [centroid–centroid distance = 3.7955 (7) Å]. A weak C—H⋯π inter­action involving the benzodioxole ring is also present.

Related literature

For the pharmacological appplications of benzimidazole derivatives, see: Grassmann et al. (2002[Grassmann, S., Sadek, B., Ligneau, X., Elz, S., Ganellin, C. R., Arrang, J. M., Schwartz, J. C., Stark, H. & Schunack, W. (2002). Eur. J. Pharm. Sci. 15, 367-378.]); Demirayak et al. (2002[Demirayak, S., Mohsen, U. A. & Karaburun, A. C. (2002). Eur. J. Med. Chem. 37, 255-260.]); Evans et al. (1997[Evans, T. M., Gardiner, J. M., Mahmood, N. & Smis, M. (1997). Bioorg. Med. Chem. Lett. 7, 409-412.]). For ring conformation analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For related structures, see: Yoon et al. (2012a[Yoon, Y. K., Ali, M. A., Choon, T. S., Asik, S. I. J. & Razak, I. A. (2012a). Acta Cryst. E68, o247-o248.],b[Yoon, Y. K., Ali, M. A., Choon, T. S., Asik, S. I. J. & Razak, I. A. (2012b). Acta Cryst. E68, o87-o88.],c[Yoon, Y. K., Ali, M. A., Choon, T. S., Asik, S. I. J. & Razak, I. A. (2012c). Acta Cryst. E68, o59.])

[Scheme 1]

Experimental

Crystal data
  • C24H25N3O5

  • Mr = 435.47

  • Monoclinic, P 21 /c

  • a = 11.1692 (2) Å

  • b = 11.5498 (2) Å

  • c = 17.4607 (3) Å

  • β = 109.210 (1)°

  • V = 2127.05 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.50 × 0.49 × 0.21 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.954, Tmax = 0.980

  • 50292 measured reflections

  • 7050 independent reflections

  • 5762 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.134

  • S = 1.04

  • 7050 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O5i 0.95 2.49 3.4324 (15) 172
C15—H15B⋯O3ii 0.99 2.52 3.4288 (18) 153
C21—H21A⋯O3iii 0.99 2.28 3.184 (2) 151
C24—H24B⋯O3iv 0.99 2.43 3.338 (2) 153
C16—H16BCgii 0.98 2.80 3.702 (2) 154
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+2; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x+1, -y, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

2-substituted benzimidazoles are proven important drug leads. They have therefore generated pharmacological interests (Grassmann et al., 2002; Demirayak et al., 2002; Evans et al., 1997). As part of our ongoing structural studies of benzimidazole derivatives (Yoon et al., 2012a,b,c), we now report the structure of the title compound (I).

In (I), the benzimidazole, (N1–N2/C1–C7) and benzodioxole, (O4–O5/C8–C13/C24) rings are approximately planar with a maximum deviation of 0.043 (1) Å at atom N1 and 0.036 (1) Å at atom O4, respectively. The mean plane through the benzimidazole ring makes a dihedral angle of 42.85 (4) ° with the mean plane through the benzodioxole ring. The pyrrolidine ring adopts an envelope conformation with puckering parameters, Q = 0.2094 (17) Å and ϕ = 64.7 (4)° and atom C21 at the flap (Cremer & Pople, 1975).

In the crystal (Fig. 2), intermolecular C5—H5A···O5(x,-y+1/2,z-1/2), C15—H15B···O3(2-x,1-y,2-z), C21—H21A···O31(-x,-1/2+y,3/2-z) and C24—H24B···O3(1-x,-y,2-z) interactions link the molecules into a three-dimensional network. In addition, ππ interactions are observed which involve the benzimidazole ring system between the benzene, (C1–C6;centroid Cg1) rings with a Cg1···Cg1(2-x,1-y,2-z) distance of 3.7955 (7) Å. The crystal packing is further stabilized by weak C—H···π interactions (Table 1) involving the benzodioxole rings.

Related literature top

For the pharmacological appplications of benzimidazole derivatives, see: Grassmann et al. (2002); Demirayak et al. (2002); Evans et al. (1997). For ring conformation analysis, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For related structures, see: Yoon et al. (2012a,b,c)

Experimental top

Ethyl 3-amino-4-(3(2-oxopyrrolidin-1yl)propylamino)benzoate (0.84 mmol) and sodium metabisulfite adduct of piperonal (1.68 mmol) were dissolved in DMF. The reaction mixture was reflux at 403K for 2 hrs. After completion, the reaction mixture was diluted in ethyl acetate (20 mL) and washed with water (20 mL). The organic layer was collected, dried over Na2SO4 and the evaporated in vacuo to yield the product. The product was recrystallised from ethyl acetate.

Refinement top

All the H atoms were positioned geometrically and refined using a riding-model approximation with with C–H = 0.95–0.99 Å. The Uiso values were constrained to be 1.5Ueq (methyl-H atom) and 1.2Ueq (other H atoms). The rotating model group was applied for the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing, viewed along the b-axis, showing the molecules are connected into three-dimensional network. Hydrogen bonds are shown as dashed lines.
Ethyl 2-(1,3-benzodioxol-5-yl)-1-[3-(2-oxopyrrolidin-1-yl)propyl]- 1H-benzimidazole-5-carboxylate top
Crystal data top
C24H25N3O5F(000) = 920
Mr = 435.47Dx = 1.360 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9946 reflections
a = 11.1692 (2) Åθ = 2.5–31.5°
b = 11.5498 (2) ŵ = 0.10 mm1
c = 17.4607 (3) ÅT = 100 K
β = 109.210 (1)°Block, yellow
V = 2127.05 (6) Å30.50 × 0.49 × 0.21 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7050 independent reflections
Radiation source: fine-focus sealed tube5762 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 31.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1316
Tmin = 0.954, Tmax = 0.980k = 1616
50292 measured reflectionsl = 2325
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0625P)2 + 0.8818P]
where P = (Fo2 + 2Fc2)/3
7050 reflections(Δ/σ)max < 0.001
290 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C24H25N3O5V = 2127.05 (6) Å3
Mr = 435.47Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.1692 (2) ŵ = 0.10 mm1
b = 11.5498 (2) ÅT = 100 K
c = 17.4607 (3) Å0.50 × 0.49 × 0.21 mm
β = 109.210 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7050 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5762 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.980Rint = 0.032
50292 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.04Δρmax = 0.45 e Å3
7050 reflectionsΔρmin = 0.38 e Å3
290 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.36916 (8)0.64900 (8)1.00135 (6)0.02630 (19)
O21.46990 (9)0.52246 (9)1.09862 (6)0.0351 (2)
O30.53054 (11)0.16025 (9)0.79853 (8)0.0412 (3)
O40.75646 (11)0.15864 (9)1.14027 (6)0.0373 (2)
O50.83670 (11)0.00736 (10)1.23064 (6)0.0413 (3)
N11.08459 (9)0.25301 (8)1.08845 (5)0.01863 (18)
N20.94409 (9)0.27310 (8)0.96239 (5)0.01759 (18)
N30.68842 (9)0.06821 (9)0.76740 (6)0.0242 (2)
C11.12627 (10)0.33875 (9)1.04755 (6)0.0178 (2)
C21.23809 (11)0.40311 (10)1.07214 (6)0.0198 (2)
H2A1.30050.39101.12370.024*
C31.25516 (11)0.48569 (9)1.01862 (7)0.0201 (2)
C41.16207 (11)0.50423 (10)0.94229 (7)0.0215 (2)
H4A1.17450.56400.90830.026*
C51.05304 (11)0.43769 (10)0.91560 (7)0.0209 (2)
H5A0.99150.44870.86360.025*
C61.03832 (10)0.35349 (9)0.96927 (6)0.01764 (19)
C70.97710 (10)0.21525 (9)1.03573 (6)0.01711 (19)
C80.90606 (10)0.11885 (9)1.05532 (6)0.01784 (19)
C90.85386 (11)0.02908 (10)1.00098 (7)0.0210 (2)
H9A0.85480.03440.94690.025*
C100.80006 (11)0.06882 (10)1.02441 (7)0.0235 (2)
H10A0.76550.13020.98760.028*
C110.79959 (11)0.07201 (10)1.10277 (7)0.0230 (2)
C120.84914 (11)0.01780 (11)1.15672 (7)0.0231 (2)
C130.90412 (11)0.11341 (10)1.13575 (7)0.0207 (2)
H13A0.93940.17341.17370.025*
C141.37606 (12)0.55209 (10)1.04449 (7)0.0231 (2)
C151.48387 (12)0.71957 (11)1.02515 (8)0.0285 (3)
H15A1.55510.67611.01690.034*
H15B1.50760.74131.08310.034*
C161.45570 (18)0.82402 (18)0.97368 (14)0.0613 (6)
H16A1.52900.87620.99020.092*
H16B1.38170.86360.97980.092*
H16C1.43770.80170.91680.092*
C170.83289 (10)0.25829 (10)0.88998 (6)0.0194 (2)
H17A0.79360.33480.87200.023*
H17B0.76970.20930.90340.023*
C180.86814 (11)0.20207 (12)0.82103 (7)0.0253 (2)
H18A0.92100.25620.80200.030*
H18B0.91860.13130.84130.030*
C190.74954 (12)0.17057 (12)0.75023 (7)0.0282 (3)
H19A0.68920.23620.73900.034*
H19B0.77330.15700.70110.034*
C200.72393 (14)0.04871 (14)0.75131 (11)0.0436 (4)
H20A0.81550.06270.77910.052*
H20B0.70410.06170.69240.052*
C210.64389 (16)0.12635 (13)0.78542 (12)0.0522 (5)
H21A0.61210.19400.74970.063*
H21B0.69390.15440.84020.063*
C220.53501 (15)0.05070 (12)0.78894 (9)0.0363 (3)
H22A0.45760.06640.74230.044*
H22B0.51620.06420.83980.044*
C230.58101 (12)0.07147 (11)0.78574 (7)0.0249 (2)
C240.77364 (13)0.11782 (12)1.22069 (8)0.0297 (3)
H24A0.82540.17361.26110.036*
H24B0.69040.10961.22880.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0228 (4)0.0255 (4)0.0303 (4)0.0072 (3)0.0083 (3)0.0011 (3)
O20.0270 (5)0.0331 (5)0.0367 (5)0.0086 (4)0.0010 (4)0.0027 (4)
O30.0344 (6)0.0334 (5)0.0616 (7)0.0032 (4)0.0238 (5)0.0088 (5)
O40.0471 (6)0.0343 (5)0.0314 (5)0.0208 (5)0.0142 (4)0.0004 (4)
O50.0557 (7)0.0490 (6)0.0199 (4)0.0313 (5)0.0135 (4)0.0020 (4)
N10.0190 (4)0.0193 (4)0.0163 (4)0.0022 (3)0.0041 (3)0.0008 (3)
N20.0172 (4)0.0206 (4)0.0138 (4)0.0022 (3)0.0035 (3)0.0012 (3)
N30.0183 (4)0.0263 (5)0.0240 (5)0.0014 (4)0.0014 (4)0.0073 (4)
C10.0186 (5)0.0187 (4)0.0157 (4)0.0011 (4)0.0051 (4)0.0018 (3)
C20.0195 (5)0.0209 (5)0.0173 (5)0.0017 (4)0.0037 (4)0.0025 (4)
C30.0204 (5)0.0197 (5)0.0208 (5)0.0036 (4)0.0078 (4)0.0036 (4)
C40.0241 (5)0.0222 (5)0.0196 (5)0.0022 (4)0.0092 (4)0.0010 (4)
C50.0211 (5)0.0241 (5)0.0168 (5)0.0013 (4)0.0052 (4)0.0010 (4)
C60.0171 (5)0.0194 (4)0.0163 (4)0.0017 (4)0.0053 (4)0.0020 (4)
C70.0180 (5)0.0182 (4)0.0149 (4)0.0002 (4)0.0051 (4)0.0014 (3)
C80.0163 (4)0.0200 (5)0.0168 (4)0.0012 (4)0.0048 (4)0.0009 (4)
C90.0215 (5)0.0233 (5)0.0193 (5)0.0024 (4)0.0081 (4)0.0041 (4)
C100.0232 (5)0.0222 (5)0.0259 (5)0.0046 (4)0.0092 (4)0.0061 (4)
C110.0195 (5)0.0233 (5)0.0254 (5)0.0043 (4)0.0062 (4)0.0012 (4)
C120.0224 (5)0.0288 (6)0.0168 (5)0.0061 (4)0.0047 (4)0.0009 (4)
C130.0200 (5)0.0245 (5)0.0165 (4)0.0050 (4)0.0045 (4)0.0019 (4)
C140.0242 (5)0.0221 (5)0.0242 (5)0.0045 (4)0.0094 (4)0.0040 (4)
C150.0238 (6)0.0273 (6)0.0345 (6)0.0083 (5)0.0097 (5)0.0031 (5)
C160.0378 (9)0.0587 (11)0.0704 (12)0.0228 (8)0.0052 (8)0.0337 (10)
C170.0162 (5)0.0259 (5)0.0143 (4)0.0013 (4)0.0027 (4)0.0016 (4)
C180.0206 (5)0.0383 (6)0.0175 (5)0.0066 (5)0.0069 (4)0.0073 (4)
C190.0254 (6)0.0418 (7)0.0159 (5)0.0068 (5)0.0047 (4)0.0046 (5)
C200.0256 (6)0.0396 (8)0.0529 (9)0.0102 (6)0.0042 (6)0.0242 (7)
C210.0411 (8)0.0223 (6)0.0667 (11)0.0032 (6)0.0181 (8)0.0037 (7)
C220.0425 (8)0.0291 (6)0.0320 (7)0.0088 (6)0.0053 (6)0.0026 (5)
C230.0251 (6)0.0255 (5)0.0227 (5)0.0001 (4)0.0062 (4)0.0014 (4)
C240.0274 (6)0.0341 (6)0.0250 (6)0.0085 (5)0.0054 (5)0.0079 (5)
Geometric parameters (Å, º) top
O1—C141.3373 (15)C10—C111.3704 (17)
O1—C151.4588 (15)C10—H10A0.9500
O2—C141.2071 (15)C11—C121.3880 (17)
O3—C231.2256 (16)C12—C131.3706 (16)
O4—C111.3672 (14)C13—H13A0.9500
O4—C241.4330 (17)C15—C161.475 (2)
O5—C121.3738 (14)C15—H15A0.9900
O5—C241.4399 (16)C15—H15B0.9900
N1—C71.3235 (14)C16—H16A0.9800
N1—C11.3878 (14)C16—H16B0.9800
N2—C61.3788 (14)C16—H16C0.9800
N2—C71.3825 (14)C17—C181.5290 (16)
N2—C171.4618 (14)C17—H17A0.9900
N3—C231.3402 (16)C17—H17B0.9900
N3—C191.4450 (17)C18—C191.5289 (17)
N3—C201.4606 (17)C18—H18A0.9900
C1—C21.3943 (15)C18—H18B0.9900
C1—C61.4067 (15)C19—H19A0.9900
C2—C31.3916 (16)C19—H19B0.9900
C2—H2A0.9500C20—C211.519 (3)
C3—C41.4112 (16)C20—H20A0.9900
C3—C141.4880 (16)C20—H20B0.9900
C4—C51.3847 (16)C21—C221.515 (2)
C4—H4A0.9500C21—H21A0.9900
C5—C61.3971 (15)C21—H21B0.9900
C5—H5A0.9500C22—C231.5090 (18)
C7—C81.4714 (15)C22—H22A0.9900
C8—C91.3968 (15)C22—H22B0.9900
C8—C131.4130 (15)C24—H24A0.9900
C9—C101.4031 (16)C24—H24B0.9900
C9—H9A0.9500
C14—O1—C15115.14 (10)O1—C15—H15B110.3
C11—O4—C24105.89 (10)C16—C15—H15B110.3
C12—O5—C24105.71 (10)H15A—C15—H15B108.6
C7—N1—C1104.97 (9)C15—C16—H16A109.5
C6—N2—C7106.35 (9)C15—C16—H16B109.5
C6—N2—C17124.13 (9)H16A—C16—H16B109.5
C7—N2—C17129.52 (9)C15—C16—H16C109.5
C23—N3—C19123.21 (11)H16A—C16—H16C109.5
C23—N3—C20113.14 (12)H16B—C16—H16C109.5
C19—N3—C20122.67 (12)N2—C17—C18111.41 (9)
N1—C1—C2129.80 (10)N2—C17—H17A109.3
N1—C1—C6109.95 (9)C18—C17—H17A109.3
C2—C1—C6120.20 (10)N2—C17—H17B109.3
C3—C2—C1117.74 (10)C18—C17—H17B109.3
C3—C2—H2A121.1H17A—C17—H17B108.0
C1—C2—H2A121.1C19—C18—C17111.01 (10)
C2—C3—C4121.13 (10)C19—C18—H18A109.4
C2—C3—C14117.42 (10)C17—C18—H18A109.4
C4—C3—C14121.44 (10)C19—C18—H18B109.4
C5—C4—C3121.78 (10)C17—C18—H18B109.4
C5—C4—H4A119.1H18A—C18—H18B108.0
C3—C4—H4A119.1N3—C19—C18111.70 (10)
C4—C5—C6116.43 (10)N3—C19—H19A109.3
C4—C5—H5A121.8C18—C19—H19A109.3
C6—C5—H5A121.8N3—C19—H19B109.3
N2—C6—C5131.70 (10)C18—C19—H19B109.3
N2—C6—C1105.79 (9)H19A—C19—H19B107.9
C5—C6—C1122.50 (10)N3—C20—C21103.78 (13)
N1—C7—N2112.92 (9)N3—C20—H20A111.0
N1—C7—C8121.52 (9)C21—C20—H20A111.0
N2—C7—C8125.53 (9)N3—C20—H20B111.0
C9—C8—C13120.17 (10)C21—C20—H20B111.0
C9—C8—C7122.70 (10)H20A—C20—H20B109.0
C13—C8—C7116.78 (9)C22—C21—C20105.03 (12)
C8—C9—C10121.55 (10)C22—C21—H21A110.7
C8—C9—H9A119.2C20—C21—H21A110.7
C10—C9—H9A119.2C22—C21—H21B110.7
C11—C10—C9117.10 (10)C20—C21—H21B110.7
C11—C10—H10A121.5H21A—C21—H21B108.8
C9—C10—H10A121.5C23—C22—C21104.48 (13)
O4—C11—C10127.99 (11)C23—C22—H22A110.9
O4—C11—C12110.28 (10)C21—C22—H22A110.9
C10—C11—C12121.72 (11)C23—C22—H22B110.9
C13—C12—O5127.89 (11)C21—C22—H22B110.9
C13—C12—C11122.30 (11)H22A—C22—H22B108.9
O5—C12—C11109.79 (10)O3—C23—N3124.65 (12)
C12—C13—C8117.14 (10)O3—C23—C22126.37 (13)
C12—C13—H13A121.4N3—C23—C22108.97 (11)
C8—C13—H13A121.4O4—C24—O5108.19 (10)
O2—C14—O1123.55 (11)O4—C24—H24A110.1
O2—C14—C3123.99 (11)O5—C24—H24A110.1
O1—C14—C3112.46 (10)O4—C24—H24B110.1
O1—C15—C16106.98 (12)O5—C24—H24B110.1
O1—C15—H15A110.3H24A—C24—H24B108.4
C16—C15—H15A110.3
C7—N1—C1—C2175.77 (11)C24—O5—C12—C13179.43 (13)
C7—N1—C1—C61.68 (12)C24—O5—C12—C111.18 (15)
N1—C1—C2—C3179.21 (11)O4—C11—C12—C13177.00 (12)
C6—C1—C2—C33.56 (16)C10—C11—C12—C131.6 (2)
C1—C2—C3—C40.43 (16)O4—C11—C12—O51.37 (15)
C1—C2—C3—C14178.59 (10)C10—C11—C12—O5180.00 (12)
C2—C3—C4—C53.24 (18)O5—C12—C13—C8179.51 (13)
C14—C3—C4—C5175.73 (11)C11—C12—C13—C81.46 (18)
C3—C4—C5—C61.83 (17)C9—C8—C13—C120.24 (17)
C7—N2—C6—C5177.75 (12)C7—C8—C13—C12173.63 (10)
C17—N2—C6—C51.48 (18)C15—O1—C14—O21.08 (18)
C7—N2—C6—C10.87 (12)C15—O1—C14—C3178.54 (10)
C17—N2—C6—C1179.90 (10)C2—C3—C14—O217.46 (18)
C4—C5—C6—N2179.30 (11)C4—C3—C14—O2161.55 (12)
C4—C5—C6—C12.27 (17)C2—C3—C14—O1162.16 (10)
N1—C1—C6—N21.60 (12)C4—C3—C14—O118.83 (16)
C2—C1—C6—N2176.14 (10)C14—O1—C15—C16177.39 (14)
N1—C1—C6—C5177.18 (10)C6—N2—C17—C1872.07 (14)
C2—C1—C6—C55.09 (17)C7—N2—C17—C18108.89 (13)
C1—N1—C7—N21.14 (12)N2—C17—C18—C19171.60 (10)
C1—N1—C7—C8176.98 (10)C23—N3—C19—C18105.15 (13)
C6—N2—C7—N10.17 (12)C20—N3—C19—C1886.92 (14)
C17—N2—C7—N1179.00 (10)C17—C18—C19—N375.98 (14)
C6—N2—C7—C8177.86 (10)C23—N3—C20—C2115.83 (15)
C17—N2—C7—C82.97 (18)C19—N3—C20—C21175.15 (11)
N1—C7—C8—C9135.87 (12)N3—C20—C21—C2221.08 (15)
N2—C7—C8—C942.00 (16)C20—C21—C22—C2319.27 (16)
N1—C7—C8—C1337.34 (15)C19—N3—C23—O38.2 (2)
N2—C7—C8—C13144.79 (11)C20—N3—C23—O3177.18 (14)
C13—C8—C9—C100.85 (17)C19—N3—C23—C22172.53 (11)
C7—C8—C9—C10172.14 (11)C20—N3—C23—C223.57 (15)
C8—C9—C10—C110.72 (18)C21—C22—C23—O3168.92 (15)
C24—O4—C11—C10178.17 (13)C21—C22—C23—N310.31 (15)
C24—O4—C11—C123.30 (14)C11—O4—C24—O53.98 (15)
C9—C10—C11—O4177.89 (12)C12—O5—C24—O43.19 (15)
C9—C10—C11—C120.49 (18)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5A···O5i0.952.493.4324 (15)172
C15—H15B···O3ii0.992.523.4288 (18)153
C21—H21A···O3iii0.992.283.184 (2)151
C24—H24B···O3iv0.992.433.338 (2)153
C16—H16B···Cgii0.982.803.702 (2)154
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+2, y+1, z+2; (iii) x+1, y1/2, z+3/2; (iv) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC24H25N3O5
Mr435.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.1692 (2), 11.5498 (2), 17.4607 (3)
β (°) 109.210 (1)
V3)2127.05 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.50 × 0.49 × 0.21
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.954, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
50292, 7050, 5762
Rint0.032
(sin θ/λ)max1)0.735
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.134, 1.04
No. of reflections7050
No. of parameters290
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.38

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5A···O5i0.952.493.4324 (15)171.9
C15—H15B···O3ii0.99002.52003.4288 (18)153.00
C21—H21A···O3iii0.99002.28003.184 (2)151.00
C24—H24B···O3iv0.99002.43003.338 (2)153.00
C16—H16B···Cgii0.98002.803.702 (2)154
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+2, y+1, z+2; (iii) x+1, y1/2, z+3/2; (iv) x+1, y, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grants Nos.1001/PFIZIK/811151 and 1001/PSK/8620012. The authors also wish to express their thanks to the Pharmacogenetic and Novel Therapeutic Research, Institute for Research in Mol­ecular Medicine, Universiti Sains Malaysia.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDemirayak, S., Mohsen, U. A. & Karaburun, A. C. (2002). Eur. J. Med. Chem. 37, 255–260.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEvans, T. M., Gardiner, J. M., Mahmood, N. & Smis, M. (1997). Bioorg. Med. Chem. Lett. 7, 409–412.  CrossRef CAS Web of Science Google Scholar
First citationGrassmann, S., Sadek, B., Ligneau, X., Elz, S., Ganellin, C. R., Arrang, J. M., Schwartz, J. C., Stark, H. & Schunack, W. (2002). Eur. J. Pharm. Sci. 15, 367–378.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoon, Y. K., Ali, M. A., Choon, T. S., Asik, S. I. J. & Razak, I. A. (2012a). Acta Cryst. E68, o247–o248.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYoon, Y. K., Ali, M. A., Choon, T. S., Asik, S. I. J. & Razak, I. A. (2012b). Acta Cryst. E68, o87–o88.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYoon, Y. K., Ali, M. A., Choon, T. S., Asik, S. I. J. & Razak, I. A. (2012c). Acta Cryst. E68, o59.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o471-o472
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds