organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o545-o546

(E)-2-[4-(Tri­fluoro­meth­yl)benzyl­­idene]-2,3-di­hydro-1H-inden-1-one

aInstitute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia, and bSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my

(Received 17 January 2012; accepted 25 January 2012; online 31 January 2012)

In the title mol­ecule, C17H11F3O, the indan ring system and the trifluoro­methyl-substituted benzene ring are approximately individually planar and form a dihedral angle of 1.81 (5)° with each other. In the crystal, mol­ecules are linked by pairs of weak bifurcated (C—H)2⋯O hydrogen bonds to form centrosymmetric dimers, generating R21(6) and R22(10) ring motifs. These dimers are connected by further weak C—H⋯O hydrogen bonds into one-dimensional chains along the b axis. Weak C—H⋯π inter­actions are also present.

Related literature

For the biological activity of chalcone compounds, see: Gurubasavaraja Swamy & Agasimundin (2008[Gurubasavaraja Swamy, P. M. & Agasimundin, Y. S. (2008). Acta Pharm. Sci. 50, 197-202.]); Shibata (1994[Shibata, S. (1994). Stem Cells, 12, 44-52.]); Charris et al. (2007[Charris, J. E., Lobo, G. M., Camacho, J., Ferrer, R., Barazarte, A., Dominguez, J. N., Gamboa, N., Rodrigues, J. R. & Angel, J. E. (2007). Lett. Drug. Des. Discov. 4, 49-54.]); Sharma et al. (2009[Sharma, M., Chaturvedi, V., Manju, Y. K., Bhatnagar, S., Srivastava, K., Puri, S. K. & Chauhan, Prem M. S. (2009). Eur. J. Med. Chem. 44, 2081-2091.]). For related structures, see: Ali et al. (2011a[Ali, M. A., Ismail, R., Choon, T. S., Loh, W.-S. & Fun, H.-K. (2011a). Acta Cryst. E67, o1983-o1984.],b[Ali, M. A., Ismail, R., Choon, T. S., Loh, W.-S. & Fun, H.-K. (2011b). Acta Cryst. E67, o2306-o2307.],c[Ali, M. A., Ismail, R., Tan, S. C., Rosli, M. M. & Fun, H.-K. (2011c). Acta Cryst. E67, o2147.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C17H11F3O

  • Mr = 288.26

  • Monoclinic, P 21 /c

  • a = 15.6546 (13) Å

  • b = 6.2050 (6) Å

  • c = 14.6546 (13) Å

  • β = 113.774 (2)°

  • V = 1302.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.40 × 0.18 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.954, Tmax = 0.988

  • 10643 measured reflections

  • 3804 independent reflections

  • 3033 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.129

  • S = 1.06

  • 3804 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C2–C7 and C11–C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯O1i 0.99 2.45 3.2713 (17) 140
C10—H10A⋯O1ii 0.95 2.54 3.3566 (17) 144
C12—H12A⋯O1ii 0.95 2.45 3.2765 (17) 146
C15—H15ACg1iii 0.95 2.78 3.5163 (14) 135
C3—H3ACg2iii 0.95 2.81 3.5035 (15) 130
Symmetry codes: (i) x, y+1, z; (ii) -x, -y, -z+1; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcones are an important group of natural products and many of these compounds possess various biological activities including antibacterial (Gurubasavaraja Swamy & Agasimundin, 2008), antitumor (Shibata, 1994), antimalarial (Charris et al., 2007) and antitubercular (Sharma et al., 2009). Indanones have been studied extensively as they are very useful intermediates for the synthesis of heterocyclic compounds. As part of our ongoing search to discover novel indanone related compounds (Ali et al., 2011a,b) our group has synthesized the title compound as described below.

In the molecular structure (Fig 1), the 2,3-dihydro-1H-indene ring system (C1–C9) and the benzene ring (C11–C16) are approximately planar with a dihedral angle of 1.81 (5)° between them. The bond lengths and angles are within normal ranges and comparable to the related structure (Ali et al., 2011c).

The crystal packing is shown in Fig. 2. The molecules are linked by intermolecular C1—H1B···O1i, C10—H10A···O1ii and C12—H12A···O1ii interactions (Table 1) to form dimers, generating R12(6) and R22(10) ring motifs (Bernstein et al., 1995). Furthermore, these sets of ring motifs are connected into one-dimensional chains along the b-axis. In addition, the crystal structure is further stabilized by weak intermolecular C15—H15A···Cg1iii and C3—H3A···Cg2iii (Table 1) interactions (Cg1 and Cg2 are the centroids of C2–C7 and C11–C16 rings, respectively).

Related literature top

For the biological activity of chalcone compounds, see: Gurubasavaraja Swamy & Agasimundin (2008); Shibata (1994); Charris et al. (2007); Sharma et al. (2009). For related structures, see: Ali et al. (2011a,b,c). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 2,3-dihydro-1H-indene-1-one (0.001 mol) and 4-(trifluoromethyl)benzaldehyde (0.001 mol) were dissolved in ethanolic sodium hydroxide solution (15 ml) and the mixture was stirred for 5 h. After completion of the reaction as evident from TLC, the mixture was poured into crushed ice then neutralized with concentrated HCl. The precipitated solid was filtered, washed with water and recrystallized from ethanol to reveal the title compound as yellow crystals.

Refinement top

All H atoms were positioned geometrically [C—H = 0.95 and 0.99 Å] and refined using a riding model with Uiso(H) = 1.2 Ueq(C). Two outliers were omitted for the final refinement, 3 4 4 and 3 4 3.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
(E)-2-[4-(Trifluoromethyl)benzylidene]-2,3-dihydro-1H-inden-1-one top
Crystal data top
C17H11F3OF(000) = 592
Mr = 288.26Dx = 1.470 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3626 reflections
a = 15.6546 (13) Åθ = 2.8–30.1°
b = 6.2050 (6) ŵ = 0.12 mm1
c = 14.6546 (13) ÅT = 100 K
β = 113.774 (2)°Plate, colourless
V = 1302.7 (2) Å30.40 × 0.18 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
3804 independent reflections
Radiation source: fine-focus sealed tube3033 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 30.1°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2122
Tmin = 0.954, Tmax = 0.988k = 88
10643 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0567P)2 + 0.6847P]
where P = (Fo2 + 2Fc2)/3
3804 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C17H11F3OV = 1302.7 (2) Å3
Mr = 288.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.6546 (13) ŵ = 0.12 mm1
b = 6.2050 (6) ÅT = 100 K
c = 14.6546 (13) Å0.40 × 0.18 × 0.10 mm
β = 113.774 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3804 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3033 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.988Rint = 0.023
10643 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.06Δρmax = 0.55 e Å3
3804 reflectionsΔρmin = 0.32 e Å3
190 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.41885 (6)0.88298 (16)0.17877 (8)0.0335 (2)
F20.47050 (6)0.62598 (19)0.23994 (8)0.0392 (3)
F30.45949 (7)0.5856 (2)0.09945 (8)0.0450 (3)
O10.11757 (7)0.05902 (17)0.48959 (8)0.0225 (2)
C10.07259 (8)0.5913 (2)0.37708 (10)0.0170 (3)
H1A0.04780.61370.30410.020*
H1B0.05440.71490.40810.020*
C20.17752 (8)0.5624 (2)0.42083 (9)0.0158 (2)
C30.24539 (9)0.7074 (2)0.42066 (10)0.0192 (3)
H3A0.22850.84450.38970.023*
C40.33894 (9)0.6456 (3)0.46729 (10)0.0221 (3)
H4A0.38610.74270.46800.026*
C50.36474 (9)0.4440 (3)0.51297 (10)0.0215 (3)
H5A0.42890.40620.54400.026*
C60.29734 (9)0.2987 (2)0.51332 (9)0.0187 (3)
H6A0.31410.16140.54410.022*
C70.20371 (8)0.3623 (2)0.46647 (9)0.0154 (2)
C80.12026 (8)0.2400 (2)0.45815 (9)0.0166 (3)
C90.03802 (8)0.3802 (2)0.40223 (9)0.0163 (2)
C100.04785 (8)0.3083 (2)0.38672 (9)0.0167 (2)
H10A0.04960.16770.41160.020*
C110.13924 (8)0.4128 (2)0.33745 (9)0.0164 (2)
C120.21766 (8)0.2952 (2)0.33344 (9)0.0159 (2)
H12A0.20910.15700.36370.019*
C130.30716 (8)0.3780 (2)0.28612 (9)0.0173 (3)
H13A0.35950.29590.28290.021*
C140.31963 (8)0.5819 (2)0.24335 (9)0.0166 (3)
C150.24327 (9)0.7038 (2)0.24696 (9)0.0175 (3)
H15A0.25230.84300.21760.021*
C160.15373 (9)0.6189 (2)0.29410 (10)0.0182 (3)
H16A0.10160.70160.29700.022*
C170.41652 (9)0.6688 (3)0.19105 (10)0.0219 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0274 (4)0.0258 (5)0.0519 (6)0.0129 (4)0.0208 (4)0.0134 (5)
F20.0209 (4)0.0532 (7)0.0507 (6)0.0122 (4)0.0218 (4)0.0260 (5)
F30.0284 (5)0.0563 (8)0.0316 (5)0.0171 (5)0.0074 (4)0.0106 (5)
O10.0210 (4)0.0179 (5)0.0275 (5)0.0019 (4)0.0086 (4)0.0045 (4)
C10.0148 (5)0.0169 (6)0.0181 (5)0.0023 (5)0.0055 (4)0.0026 (5)
C20.0156 (5)0.0179 (6)0.0143 (5)0.0030 (5)0.0065 (4)0.0011 (5)
C30.0192 (6)0.0195 (7)0.0196 (6)0.0044 (5)0.0086 (5)0.0004 (5)
C40.0177 (6)0.0274 (8)0.0227 (6)0.0077 (5)0.0097 (5)0.0034 (6)
C50.0143 (5)0.0296 (8)0.0197 (6)0.0025 (5)0.0061 (5)0.0029 (6)
C60.0161 (5)0.0218 (7)0.0175 (5)0.0004 (5)0.0059 (4)0.0018 (5)
C70.0140 (5)0.0178 (6)0.0145 (5)0.0026 (5)0.0059 (4)0.0015 (5)
C80.0145 (5)0.0179 (6)0.0162 (5)0.0016 (5)0.0050 (4)0.0003 (5)
C90.0162 (5)0.0154 (6)0.0165 (5)0.0003 (5)0.0059 (4)0.0002 (5)
C100.0159 (5)0.0157 (6)0.0176 (5)0.0001 (5)0.0059 (4)0.0002 (5)
C110.0141 (5)0.0178 (6)0.0155 (5)0.0006 (5)0.0042 (4)0.0008 (5)
C120.0146 (5)0.0157 (6)0.0164 (5)0.0010 (5)0.0053 (4)0.0008 (5)
C130.0141 (5)0.0194 (6)0.0186 (6)0.0013 (5)0.0069 (4)0.0002 (5)
C140.0149 (5)0.0191 (6)0.0161 (5)0.0032 (5)0.0065 (4)0.0002 (5)
C150.0185 (6)0.0163 (6)0.0176 (5)0.0019 (5)0.0071 (4)0.0021 (5)
C160.0163 (5)0.0180 (6)0.0190 (6)0.0020 (5)0.0057 (4)0.0023 (5)
C170.0174 (6)0.0252 (7)0.0236 (6)0.0059 (5)0.0088 (5)0.0054 (6)
Geometric parameters (Å, º) top
F1—C171.3395 (18)C6—H6A0.9500
F2—C171.3365 (16)C7—C81.4727 (17)
F3—C171.3391 (18)C8—C91.4951 (18)
O1—C81.2211 (17)C9—C101.3460 (17)
C1—C21.5141 (17)C10—C111.4683 (17)
C1—C91.5180 (19)C10—H10A0.9500
C1—H1A0.9900C11—C161.4049 (19)
C1—H1B0.9900C11—C121.4090 (17)
C2—C71.3912 (19)C12—C131.3871 (17)
C2—C31.3932 (18)C12—H12A0.9500
C3—C41.3971 (19)C13—C141.3907 (19)
C3—H3A0.9500C13—H13A0.9500
C4—C51.399 (2)C14—C151.3974 (18)
C4—H4A0.9500C14—C171.4972 (17)
C5—C61.3895 (19)C15—C161.3926 (18)
C5—H5A0.9500C15—H15A0.9500
C6—C71.4016 (17)C16—H16A0.9500
C2—C1—C9103.13 (11)C8—C9—C1108.82 (10)
C2—C1—H1A111.1C9—C10—C11130.19 (13)
C9—C1—H1A111.1C9—C10—H10A114.9
C2—C1—H1B111.1C11—C10—H10A114.9
C9—C1—H1B111.1C16—C11—C12118.25 (11)
H1A—C1—H1B109.1C16—C11—C10124.90 (11)
C7—C2—C3120.00 (12)C12—C11—C10116.85 (12)
C7—C2—C1111.62 (11)C13—C12—C11121.11 (12)
C3—C2—C1128.37 (12)C13—C12—H12A119.4
C2—C3—C4118.14 (13)C11—C12—H12A119.4
C2—C3—H3A120.9C12—C13—C14119.48 (12)
C4—C3—H3A120.9C12—C13—H13A120.3
C3—C4—C5121.53 (13)C14—C13—H13A120.3
C3—C4—H4A119.2C13—C14—C15120.86 (12)
C5—C4—H4A119.2C13—C14—C17119.19 (12)
C6—C5—C4120.58 (12)C15—C14—C17119.94 (12)
C6—C5—H5A119.7C16—C15—C14119.25 (13)
C4—C5—H5A119.7C16—C15—H15A120.4
C5—C6—C7117.46 (13)C14—C15—H15A120.4
C5—C6—H6A121.3C15—C16—C11121.03 (12)
C7—C6—H6A121.3C15—C16—H16A119.5
C2—C7—C6122.29 (12)C11—C16—H16A119.5
C2—C7—C8109.90 (11)F2—C17—F3106.87 (13)
C6—C7—C8127.81 (13)F2—C17—F1106.30 (12)
O1—C8—C7127.37 (12)F3—C17—F1105.80 (12)
O1—C8—C9126.09 (12)F2—C17—C14112.52 (11)
C7—C8—C9106.53 (11)F3—C17—C14111.72 (12)
C10—C9—C8118.70 (12)F1—C17—C14113.15 (12)
C10—C9—C1132.43 (12)
C9—C1—C2—C70.08 (14)C2—C1—C9—C80.30 (13)
C9—C1—C2—C3179.37 (13)C8—C9—C10—C11178.11 (12)
C7—C2—C3—C40.10 (19)C1—C9—C10—C111.1 (2)
C1—C2—C3—C4179.14 (13)C9—C10—C11—C160.8 (2)
C2—C3—C4—C50.2 (2)C9—C10—C11—C12179.53 (13)
C3—C4—C5—C60.1 (2)C16—C11—C12—C131.41 (19)
C4—C5—C6—C70.02 (19)C10—C11—C12—C13178.26 (12)
C3—C2—C7—C60.01 (19)C11—C12—C13—C141.11 (19)
C1—C2—C7—C6179.36 (12)C12—C13—C14—C150.38 (19)
C3—C2—C7—C8179.18 (11)C12—C13—C14—C17179.09 (12)
C1—C2—C7—C80.18 (15)C13—C14—C15—C160.01 (19)
C5—C6—C7—C20.03 (19)C17—C14—C15—C16178.69 (12)
C5—C6—C7—C8178.99 (12)C14—C15—C16—C110.3 (2)
C2—C7—C8—O1179.80 (13)C12—C11—C16—C151.01 (19)
C6—C7—C8—O11.1 (2)C10—C11—C16—C15178.63 (12)
C2—C7—C8—C90.36 (14)C13—C14—C17—F241.38 (18)
C6—C7—C8—C9179.48 (12)C15—C14—C17—F2139.90 (14)
O1—C8—C9—C102.5 (2)C13—C14—C17—F378.84 (16)
C7—C8—C9—C10178.09 (11)C15—C14—C17—F399.88 (16)
O1—C8—C9—C1179.86 (13)C13—C14—C17—F1161.88 (12)
C7—C8—C9—C10.41 (14)C15—C14—C17—F119.40 (18)
C2—C1—C9—C10177.55 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 and C11–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1B···O1i0.992.453.2713 (17)140
C10—H10A···O1ii0.952.543.3566 (17)144
C12—H12A···O1ii0.952.453.2765 (17)146
C15—H15A···Cg1iii0.952.783.5163 (14)135
C3—H3A···Cg2iii0.952.813.5035 (15)130
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H11F3O
Mr288.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)15.6546 (13), 6.2050 (6), 14.6546 (13)
β (°) 113.774 (2)
V3)1302.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.40 × 0.18 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.954, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
10643, 3804, 3033
Rint0.023
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.129, 1.06
No. of reflections3804
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.32

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C2–C7 and C11–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1B···O1i0.99002.45003.2713 (17)140.00
C10—H10A···O1ii0.95002.54003.3566 (17)144.00
C12—H12A···O1ii0.95002.45003.2765 (17)146.00
C15—H15A···Cg1iii0.95002.78003.5163 (14)135.00
C3—H3A···Cg2iii0.95002.81003.5035 (15)130.00
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1; (iii) x, y+1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia for Research University grants Nos. 1001/PFIZIK/811151 and 1001/PSK/8620012. The authors are also grateful to Pharmacogenetic and Novel Therapeutic Research, Institute for Research in Mol­ecular Medicine, Universiti Sains Malaysia.

References

First citationAli, M. A., Ismail, R., Choon, T. S., Loh, W.-S. & Fun, H.-K. (2011a). Acta Cryst. E67, o1983–o1984.  CrossRef IUCr Journals Google Scholar
First citationAli, M. A., Ismail, R., Choon, T. S., Loh, W.-S. & Fun, H.-K. (2011b). Acta Cryst. E67, o2306–o2307.  CrossRef IUCr Journals Google Scholar
First citationAli, M. A., Ismail, R., Tan, S. C., Rosli, M. M. & Fun, H.-K. (2011c). Acta Cryst. E67, o2147.  CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCharris, J. E., Lobo, G. M., Camacho, J., Ferrer, R., Barazarte, A., Dominguez, J. N., Gamboa, N., Rodrigues, J. R. & Angel, J. E. (2007). Lett. Drug. Des. Discov. 4, 49–54.  CrossRef CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGurubasavaraja Swamy, P. M. & Agasimundin, Y. S. (2008). Acta Pharm. Sci. 50, 197–202.  Google Scholar
First citationSharma, M., Chaturvedi, V., Manju, Y. K., Bhatnagar, S., Srivastava, K., Puri, S. K. & Chauhan, Prem M. S. (2009). Eur. J. Med. Chem. 44, 2081–2091.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShibata, S. (1994). Stem Cells, 12, 44–52.  CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o545-o546
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds