organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Bromo-1H-indol-3-yl)aceto­nitrile

aCollege of Chemistry and Chemical, Engineering, Southeast UniVersity, Nanjing 211189, People's Republic of China
*Correspondence e-mail: chmsunbw@seu.edu.cn

(Received 2 December 2011; accepted 21 December 2011; online 18 January 2012)

In the title compound, C10H7BrN2, the non-H atoms, except the N atom of the acetonitrile group and the C atom bonded to it, lie in the least-squares plane defined by the atoms of the indole ring system (r.m.s deviation = 0.019 Å), with the N and C atom of the cyano group displaced by 2.278 (1) and 1.289 (1) Å, respectively, out of that plane. In the crystal, N—H⋯N hydrogen bonds link the mol­ecules into a C(7) chain along [100].

Related literature

For natural products with a bromo indole moiety, see: Walker et al. (2009[Walker, S. R., Carter, E. J., Huff, B. C. & Morris, J. C. (2009). Chem. Rev. 109, 3080-3098.]). For the use of 4-bromo indole derivatives in the synthesis of biologically active compounds, see: Hendrickson & Wang (2004[Hendrickson, J. B. & Wang, J. (2004). Org. Lett., 6, 3-5.]); Giraud et al. (2011[Giraud, F., Alves, G., Debiton, E., Nauton, L., Théry, V., Durieu, E., Ferandin, Y., Lozach, O., Meijer, L., Anizon, F., Pereira, E. & Moreau, P. (2011). J. Med. Chem., 54, 4474-4489.]). For the structures of related halo indoles, see: Kunzer & Wendt (2011[Kunzer, A. R. & Wendt, M. D. (2011). Tetrahedron Lett., 52, 1815-1818.]).

[Scheme 1]

Experimental

Crystal data
  • C10H7BrN2

  • Mr = 235.09

  • Monoclinic, P 21 /c

  • a = 8.3971 (17) Å

  • b = 11.237 (2) Å

  • c = 9.979 (2) Å

  • β = 104.82 (3)°

  • V = 910.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.46 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.983, Tmax = 0.983

  • 9047 measured reflections

  • 2082 independent reflections

  • 1489 reflections with I > 2σ(I)

  • Rint = 0.115

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.188

  • S = 1.09

  • 2082 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −1.84 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N2i 0.86 2.45 3.218 (7) 148
Symmetry code: (i) x+1, y, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The derivatives of halo indole present in several natural products (Walker et al., 2009) are also excellent intermediates for the synthesis of many biological active compounds (Giraud et al., 2011; Hendrickson & Wang, 2004) . As part of our interest in these materials, we report the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The non-H atoms, except the nitrogen of the acetonitrile moiety and the carbon atom bonded to it, are lying in the least-squares plane defined by the atoms of the indole ring system (r.m.s deviation= 0.019 Å ), with the nitrogen and carbon of the cyano moiety shifted by 2.278 (1) and 1.289 (1) Å, respectively, out of that plane.

In the crystal, N1—H1A···N2 hydrogen bonds link the molecules into chain along the [100] direction (Fig. 2).

Related literature top

For natural products with a bromo indole moiety, see: Walker et al. (2009). For the use of 4-bromo indole derivatives in the synthesis of biologically active compounds, see: Hendrickson & Wang (2004); Giraud et al. (2011). For the structures of related halo indoles, see: Kunzer & Wendt (2011).

Experimental top

The title compound was obtained commercially from ChemFuture PharmaTech, Ltd (Nanjing, Jiangsu). Crystals suitable for X-ray diffraction were obtained by slow evaporation from a methanol solution.

Refinement top

All H atoms attached to C atoms and N atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (CH), C—H = 0.97 Å (CH2), and N—H = 0.86 Å with Uiso(H) = 1.2Ueq.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing view. Intermolecular hydrogen bonds are shown as dashed lines.
2-(4-Bromo-1H-indol-3-yl)acetonitrile top
Crystal data top
C10H7BrN2F(000) = 464
Mr = 235.09Dx = 1.715 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2082 reflections
a = 8.3971 (17) Åθ = 3.1–27.5°
b = 11.237 (2) ŵ = 4.46 mm1
c = 9.979 (2) ÅT = 293 K
β = 104.82 (3)°Prism, colourless
V = 910.2 (3) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
2082 independent reflections
Radiation source: fine-focus sealed tube1489 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.115
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
CCD_Profile_fitting scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1414
Tmin = 0.983, Tmax = 0.983l = 1212
9047 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0915P)2]
where P = (Fo2 + 2Fc2)/3
2082 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 1.84 e Å3
Crystal data top
C10H7BrN2V = 910.2 (3) Å3
Mr = 235.09Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.3971 (17) ŵ = 4.46 mm1
b = 11.237 (2) ÅT = 293 K
c = 9.979 (2) Å0.20 × 0.20 × 0.20 mm
β = 104.82 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2082 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1489 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.983Rint = 0.115
9047 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.188H-atom parameters constrained
S = 1.09Δρmax = 0.64 e Å3
2082 reflectionsΔρmin = 1.84 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.72608 (9)1.02919 (6)0.23625 (7)0.0565 (3)
C100.9402 (7)0.9743 (4)0.2351 (5)0.0344 (12)
N11.1261 (6)0.7932 (4)0.0298 (5)0.0433 (11)
H1A1.21090.76000.01240.052*
C50.9637 (6)0.8989 (4)0.1306 (5)0.0285 (10)
C20.8646 (6)0.8483 (4)0.0068 (5)0.0341 (11)
C91.0709 (8)1.0096 (4)0.3397 (6)0.0447 (14)
H9A1.05311.06230.40630.054*
C61.1290 (6)0.8616 (4)0.1422 (5)0.0333 (11)
C81.2297 (8)0.9690 (5)0.3493 (7)0.0520 (15)
H8A1.31580.99240.42340.062*
C10.9703 (8)0.7850 (5)0.0511 (6)0.0410 (13)
H1B0.93930.74260.13380.049*
C30.6815 (6)0.8582 (5)0.0559 (5)0.0439 (13)
H3A0.64890.94100.05470.053*
H3B0.65650.83260.15190.053*
C40.5863 (7)0.7872 (5)0.0176 (6)0.0444 (13)
N20.5110 (7)0.7337 (5)0.0738 (6)0.0608 (14)
C71.2599 (7)0.8940 (6)0.2491 (5)0.0490 (15)
H7A1.36560.86640.25400.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0551 (5)0.0581 (5)0.0607 (5)0.0174 (3)0.0226 (4)0.0069 (3)
C100.038 (3)0.033 (3)0.035 (3)0.004 (2)0.014 (2)0.007 (2)
N10.047 (3)0.040 (2)0.052 (3)0.008 (2)0.029 (3)0.0010 (19)
C50.033 (3)0.024 (2)0.031 (2)0.0024 (17)0.010 (2)0.0062 (17)
C20.039 (3)0.034 (3)0.029 (2)0.006 (2)0.008 (2)0.0037 (19)
C90.062 (4)0.035 (3)0.038 (3)0.005 (2)0.014 (3)0.004 (2)
C60.033 (3)0.034 (3)0.036 (3)0.003 (2)0.015 (2)0.011 (2)
C80.044 (4)0.061 (4)0.043 (3)0.012 (3)0.004 (3)0.007 (3)
C10.060 (4)0.036 (3)0.032 (3)0.005 (2)0.020 (3)0.002 (2)
C30.045 (3)0.052 (3)0.031 (3)0.009 (3)0.002 (2)0.004 (2)
C40.035 (3)0.050 (3)0.046 (3)0.001 (2)0.007 (3)0.001 (2)
N20.045 (3)0.070 (4)0.069 (4)0.009 (3)0.017 (3)0.004 (3)
C70.039 (3)0.051 (4)0.055 (4)0.000 (2)0.008 (3)0.013 (3)
Geometric parameters (Å, º) top
Br1—C101.904 (5)C9—H9A0.9300
C10—C91.365 (8)C6—C71.371 (7)
C10—C51.397 (6)C8—C71.379 (9)
N1—C61.355 (6)C8—H8A0.9300
N1—C11.353 (8)C1—H1B0.9300
N1—H1A0.8600C3—C41.454 (7)
C5—C21.420 (7)C3—H3A0.9700
C5—C61.425 (6)C3—H3B0.9700
C2—C11.374 (7)C4—N21.121 (7)
C2—C31.509 (7)C7—H7A0.9300
C9—C81.389 (9)
C9—C10—C5120.5 (5)C7—C6—C5123.7 (5)
C9—C10—Br1118.5 (4)C7—C8—C9120.1 (6)
C5—C10—Br1121.0 (4)C7—C8—H8A119.9
C6—N1—C1110.0 (4)C9—C8—H8A119.9
C6—N1—H1A125.0C2—C1—N1110.1 (5)
C1—N1—H1A125.0C2—C1—H1B125.0
C10—C5—C2136.8 (5)N1—C1—H1B125.0
C10—C5—C6116.0 (5)C4—C3—C2112.6 (4)
C2—C5—C6107.1 (4)C4—C3—H3A109.1
C1—C2—C5106.0 (4)C2—C3—H3A109.1
C1—C2—C3124.3 (5)C4—C3—H3B109.1
C5—C2—C3129.7 (4)C2—C3—H3B109.1
C10—C9—C8121.8 (5)H3A—C3—H3B107.8
C10—C9—H9A119.1N2—C4—C3178.9 (6)
C8—C9—H9A119.1C6—C7—C8117.8 (5)
N1—C6—C7129.5 (5)C6—C7—H7A121.1
N1—C6—C5106.8 (5)C8—C7—H7A121.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.862.453.218 (7)148
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC10H7BrN2
Mr235.09
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.3971 (17), 11.237 (2), 9.979 (2)
β (°) 104.82 (3)
V3)910.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)4.46
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.983, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
9047, 2082, 1489
Rint0.115
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.188, 1.09
No. of reflections2082
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 1.84

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.862.453.218 (7)148.4
Symmetry code: (i) x+1, y, z.
 

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationGiraud, F., Alves, G., Debiton, E., Nauton, L., Théry, V., Durieu, E., Ferandin, Y., Lozach, O., Meijer, L., Anizon, F., Pereira, E. & Moreau, P. (2011). J. Med. Chem., 54, 4474–4489.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHendrickson, J. B. & Wang, J. (2004). Org. Lett., 6, 3–5.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKunzer, A. R. & Wendt, M. D. (2011). Tetrahedron Lett., 52, 1815–1818.  Web of Science CrossRef CAS Google Scholar
First citationRigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWalker, S. R., Carter, E. J., Huff, B. C. & Morris, J. C. (2009). Chem. Rev. 109, 3080–3098.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds