organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(6-Methyl-3-phenyl-2-sulfanyl­­idene-1,2,3,4-tetra­hydro­pyrimidin-5-yl)ethanone

aDepartment of Organic Chemistry, Baku State University, Baku, Azerbaijan, and bDepartamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile
*Correspondence e-mail: ivanbritob@yahoo.com

(Received 7 December 2011; accepted 23 December 2011; online 7 January 2012)

In the title compound, C13H14N2OS, four C atoms of the phenyl ring are disordered over two sets of sites in a 0.60 (3):0.40 (3) ratio. The heterocyclic ring is essentially planar (r.m.s. deviation = 0.017 Å) and forms dihedral angles of 82.0 (2) and 79.3 (3)°, respectively, with the major and minor occupancy components of the phenyl ring. The crystal packing features N—H⋯O hydrogen bonds, which link the mol­ecules into C(6) chains running parallel to the b axis.

Related literature

For synthetic methods, see: Kotharkar et al. (2006[Kotharkar, S. A., Nagawade, R. R. & Shinde, D. B. (2006). Ukrainica Bioorg. Acta, 2, 17-21.]); Lu et al. (2000[Lu, J., Bai, Y., Wang, Z., Yang, B. & Ma, H. (2000). Tetrahedron Lett. 41, 9075-9078.]); Salehi et al. (2003[Salehi, P., Davizi, M., Zolfigol, A. M. & Fard, M. A. (2003). Tetrahedron Lett. 44, 2889-289.]); Srinivas & Das (2004[Srinivas, K. V. & Das, B. (2004). Synthesis, 13, 2091-2093.]). For pharmacological properties of related compounds, see: Dalinger et al. (2004[Dalinger, D., Stadler, A. & Kappe, C. O. (2004). Pure Appl. Chem. 76, 1017-1024.]). For graph-set notation see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H14N2OS

  • Mr = 246.32

  • Orthorhombic, P n a 21

  • a = 24.3527 (10) Å

  • b = 7.2374 (3) Å

  • c = 7.0063 (3) Å

  • V = 1234.86 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 100 K

  • 0.30 × 0.30 × 0.30 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS, Madison, Wisconsin, USA.]) Tmin = 0.930, Tmax = 0.930

  • 13745 measured reflections

  • 3089 independent reflections

  • 2877 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.141

  • S = 1.00

  • 3089 reflections

  • 150 parameters

  • 19 restraints

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O1i 0.88 2.05 2.920 (2) 168
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS, Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS, Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The dihydropyrimidinethiones display many pharmacological properties (Dalinger et al. 2004), as part of our interest in this kind of materials, we report here the synthesis and crystal structure determination of the title compound. Our synthesis is based in the Bidjinelli reaction, which consists on a three-component condensation of an aldehyde, a methylene active compound and an thiourea derivative in acidic media. This procedure is the most simple and useful for the preparation of 3,4-dihydropyrimidene-2(1H) thiones (Kotharkar et al. 2006; Lu et al. 2000; Srinivas & Das, 2004; Salehi et al. 2003).

In the compound, the C8, C9, C11 and C12 atoms of the phenyl ring are disordered over two sets of sites in a 0.60 (3):0.40 (3) ratio. The heterocycle ring is essentially planar (r.m.s.= 0.017 Å) and form a dihedral angle of 82.0 (2)° with the phenyl ring.The crystal packing is stabilized by intermolecular N3—H3N···O1 hydrogen bonds (Table 1), which link the molecules into chains running parallel to the b axis (Fig.2), with graph-set notation C(6), (Bernstein et al. 1995).

Related literature top

For synthetic methods, see: Kotharkar et al. (2006); Lu et al. (2000); Salehi et al. (2003); Srinivas & Das (2004). For pharmacological properties of related compounds, see: Dalinger et al. (2004). For graph-set notation see: Bernstein et al. (1995).

Experimental top

Phenylthiourea, 15.2 g (0.1 mol), 37% water solution of formaldehyde (formaline), 3 g (0.1 mol) and 13 g (0.1 mol) of acetoacetic ester were dissolved in 10 ml of ethanol and then 0.5 ml of trifluoroacetic was added. The mixture was vigorously stirred during 4–5 h at room temperature and then cooled and kept one day at 0°C. The white crystals of 1-(6-methyl-3-phenyl-2-thioxo-1,2,3,4-tetrahydropyrimidin-5-yl) ethanone were filtered and washed with dichloromethane. Suitable crystal for diffraction were obtained by slow evaporation from ethanol. The yield was of 19.2 g (70%). Mp 180°C. Rf = 0.35. Eluent- ethanol:hexane (5:2). 1H NMR (300 MHz, DMSO-d6) δ 1.35 (s, 3H, CH3), 6.8–7.1 (m, H, Ar), 7.4 (m, H, Ar), 9.35 (s, 1H, NH). 13C NMR (75 MHz, DMSO-d6) δ 24, 29, 37, 51, 86, 117, 122, 129, 132, 141, 151, 179 (C=S), 205 (C=O)

Refinement top

H atoms were placed in calculated position and refined using a riding model, with C—H distances in the range 0.95 — 0.99 Å and N—H distance of 0.88 Å, with Uiso(H) = 1.2Ueq(N,Cmethylene and Caromatic) and 1.5Ueq(Cmethyl ).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, including disorder. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound. N—H···O hydrogen bonds are shown as dashed lines. For clarity only one of the disordered components of the phenyl ring is shown.
1-(6-Methyl-3-phenyl-2-sulfanylidene-1,2,3,4-tetrahydropyrimidin-5-yl)ethanone top
Crystal data top
C13H14N2OSF(000) = 520
Mr = 246.32Dx = 1.325 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 7985 reflections
a = 24.3527 (10) Åθ = 2.9–28.3°
b = 7.2374 (3) ŵ = 0.25 mm1
c = 7.0063 (3) ÅT = 100 K
V = 1234.86 (9) Å3Cube, colourless
Z = 40.30 × 0.30 × 0.30 mm
Data collection top
Bruker APEXII CCD
diffractometer
3089 independent reflections
Radiation source: fine-focus sealed tube2877 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 28.4°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 3232
Tmin = 0.930, Tmax = 0.930k = 99
13745 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: difference Fourier map
wR(F2) = 0.141H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0713P)2 + 0.8297P]
where P = (Fo2 + 2Fc2)/3
3089 reflections(Δ/σ)max = 0.001
150 parametersΔρmax = 0.40 e Å3
19 restraintsΔρmin = 0.35 e Å3
Crystal data top
C13H14N2OSV = 1234.86 (9) Å3
Mr = 246.32Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 24.3527 (10) ŵ = 0.25 mm1
b = 7.2374 (3) ÅT = 100 K
c = 7.0063 (3) Å0.30 × 0.30 × 0.30 mm
Data collection top
Bruker APEXII CCD
diffractometer
3089 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2877 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.930Rint = 0.016
13745 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05119 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.00Δρmax = 0.40 e Å3
3089 reflectionsΔρmin = 0.35 e Å3
150 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.36824 (2)1.18702 (7)0.3739 (4)0.04639 (18)
O10.51205 (7)0.42042 (19)0.3715 (9)0.0661 (6)
N10.39774 (6)0.8325 (2)0.3725 (6)0.0341 (3)
C20.41226 (7)1.0102 (2)0.3775 (7)0.0314 (3)
N30.46747 (6)1.04586 (19)0.3735 (7)0.0349 (3)
H3N0.47611.16440.37530.042*
C40.50891 (7)0.9147 (2)0.3784 (6)0.0280 (3)
C50.49517 (7)0.7330 (2)0.3726 (7)0.0327 (4)
C60.43611 (8)0.6775 (2)0.3775 (11)0.0512 (6)
H6A0.42860.59590.26720.061*
H6B0.42940.60510.49500.061*
C70.34084 (7)0.7781 (2)0.3747 (3)0.0413 (4)
C80.3095 (2)0.7676 (8)0.2110 (7)0.0577 (9)0.60
H8A0.32430.80100.09030.069*0.60
C90.2556 (3)0.7066 (7)0.2280 (7)0.0577 (9)0.60
H9A0.23290.69760.11820.069*0.60
C8'0.3160 (4)0.7165 (12)0.2081 (8)0.0577 (9)0.40
H8B0.33440.71520.08850.069*0.40
C9'0.2620 (4)0.6568 (13)0.2298 (9)0.0577 (9)0.40
H9B0.24270.61300.12100.069*0.40
C100.23526 (11)0.6591 (3)0.4053 (5)0.0833 (14)
H10A0.19830.61780.41410.100*
C130.56501 (7)0.9991 (3)0.3745 (8)0.0406 (4)
H13A0.58810.93200.28330.061*
H13B0.58140.99160.50200.061*
H13C0.56221.12890.33580.061*
C140.53254 (8)0.5753 (2)0.3726 (8)0.0386 (4)
C150.59377 (9)0.5914 (3)0.3708 (10)0.0538 (6)
H15A0.61010.46930.39090.081*
H15B0.60550.67510.47290.081*
H15C0.60580.64060.24730.081*
C110.2664 (2)0.6689 (8)0.5722 (7)0.0577 (9)0.60
H11A0.25160.63540.69280.069*0.60
C120.3200 (3)0.7300 (7)0.5526 (6)0.0577 (9)0.60
H12A0.34280.73920.66220.069*0.60
C11'0.2596 (4)0.7202 (12)0.5726 (11)0.0577 (9)0.40
H11B0.24130.72180.69240.069*0.40
C12'0.3133 (4)0.7788 (13)0.5473 (9)0.0577 (9)0.40
H12B0.33250.82250.65630.069*0.40
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0357 (3)0.0330 (3)0.0704 (4)0.00649 (18)0.0000 (5)0.0009 (5)
O10.0503 (9)0.0230 (6)0.1250 (17)0.0015 (6)0.014 (2)0.006 (2)
N10.0267 (7)0.0277 (7)0.0480 (8)0.0031 (5)0.0033 (14)0.0073 (15)
C20.0321 (8)0.0271 (7)0.0351 (8)0.0008 (6)0.0035 (14)0.0005 (15)
N30.0302 (7)0.0208 (6)0.0537 (9)0.0025 (5)0.0048 (14)0.0063 (15)
C40.0280 (7)0.0246 (7)0.0315 (8)0.0019 (6)0.0049 (12)0.0061 (13)
C50.0305 (8)0.0246 (7)0.0429 (9)0.0021 (6)0.0070 (16)0.0091 (17)
C60.0315 (9)0.0251 (8)0.0970 (18)0.0036 (7)0.010 (2)0.002 (2)
C70.0277 (8)0.0310 (8)0.0652 (12)0.0041 (7)0.0077 (18)0.000 (2)
C80.0353 (13)0.052 (3)0.0853 (11)0.0022 (15)0.0014 (10)0.0077 (14)
C90.0353 (13)0.052 (3)0.0853 (11)0.0022 (15)0.0014 (10)0.0077 (14)
C8'0.0353 (13)0.052 (3)0.0853 (11)0.0022 (15)0.0014 (10)0.0077 (14)
C9'0.0353 (13)0.052 (3)0.0853 (11)0.0022 (15)0.0014 (10)0.0077 (14)
C100.0341 (12)0.0659 (17)0.150 (4)0.0103 (12)0.026 (2)0.002 (3)
C130.0316 (8)0.0301 (8)0.0601 (12)0.0051 (7)0.0087 (17)0.0104 (19)
C140.0399 (9)0.0255 (8)0.0502 (10)0.0019 (7)0.0041 (17)0.0089 (17)
C150.0383 (10)0.0368 (10)0.0864 (17)0.0087 (8)0.012 (2)0.016 (2)
C110.0353 (13)0.052 (3)0.0853 (11)0.0022 (15)0.0014 (10)0.0077 (14)
C120.0353 (13)0.052 (3)0.0853 (11)0.0022 (15)0.0014 (10)0.0077 (14)
C11'0.0353 (13)0.052 (3)0.0853 (11)0.0022 (15)0.0014 (10)0.0077 (14)
C12'0.0353 (13)0.052 (3)0.0853 (11)0.0022 (15)0.0014 (10)0.0077 (14)
Geometric parameters (Å, º) top
S1—C21.6694 (17)C9—H9A0.9500
O1—C141.227 (2)C8'—C9'1.393 (3)
N1—C21.334 (2)C8'—H8B0.9500
N1—C71.441 (2)C9'—C101.391 (3)
N1—C61.460 (2)C9'—H9B0.9500
C2—N31.369 (2)C10—C11'1.386 (3)
N3—C41.386 (2)C10—C111.395 (3)
N3—H3N0.8834C10—H10A0.9500
C4—C51.357 (2)C13—H13A0.9800
C4—C131.497 (2)C13—H13B0.9800
C5—C141.460 (2)C13—H13C0.9800
C5—C61.494 (2)C14—C151.496 (3)
C6—H6A0.9900C15—H15A0.9800
C6—H6B0.9900C15—H15B0.9800
C7—C81.380 (3)C15—H15C0.9800
C7—C12'1.384 (3)C11—C121.386 (3)
C7—C8'1.389 (3)C11—H11A0.9500
C7—C121.390 (3)C12—H12A0.9500
C8—C91.391 (3)C11'—C12'1.385 (3)
C8—H8A0.9500C11'—H11B0.9500
C9—C101.381 (3)C12'—H12B0.9500
C2—N1—C7121.21 (14)C10—C9'—C8'122.3 (9)
C2—N1—C6124.76 (15)C10—C9'—H9B118.8
C7—N1—C6113.90 (14)C8'—C9'—H9B118.8
N1—C2—N3116.18 (15)C9—C10—C11'121.9 (6)
N1—C2—S1124.62 (13)C9—C10—C9'16.3 (4)
N3—C2—S1119.08 (13)C11'—C10—C9'123.5 (6)
C2—N3—C4125.84 (14)C9—C10—C11123.1 (4)
C2—N3—H3N114.6C11'—C10—C1116.8 (4)
C4—N3—H3N119.4C9'—C10—C11119.2 (6)
C5—C4—N3118.90 (15)C9—C10—H10A118.4
C5—C4—C13128.30 (16)C11'—C10—H10A116.8
N3—C4—C13112.62 (14)C9'—C10—H10A119.7
C4—C5—C14127.14 (16)C11—C10—H10A118.4
C4—C5—C6119.80 (16)C4—C13—H13A109.5
C14—C5—C6112.96 (15)C4—C13—H13B109.5
N1—C6—C5114.15 (14)H13A—C13—H13B109.5
N1—C6—H6A108.7C4—C13—H13C109.5
C5—C6—H6A108.7H13A—C13—H13C109.5
N1—C6—H6B108.7H13B—C13—H13C109.5
C5—C6—H6B108.7O1—C14—C5117.44 (18)
H6A—C6—H6B107.6O1—C14—C15118.47 (18)
C8—C7—C12'117.3 (6)C5—C14—C15124.08 (16)
C8—C7—C8'16.7 (4)C14—C15—H15A109.5
C12'—C7—C8'121.6 (6)C14—C15—H15B109.5
C8—C7—C12122.0 (4)H15A—C15—H15B109.5
C12'—C7—C1216.2 (4)C14—C15—H15C109.5
C8'—C7—C12121.0 (6)H15A—C15—H15C109.5
C8—C7—N1122.5 (4)H15B—C15—H15C109.5
C12'—C7—N1118.4 (5)C12—C11—C10116.4 (6)
C8'—C7—N1119.9 (5)C12—C11—H11A121.8
C12—C7—N1115.4 (4)C10—C11—H11A121.8
C7—C8—C9117.9 (6)C11—C12—C7120.8 (6)
C7—C8—H8A121.0C11—C12—H12A119.6
C9—C8—H8A121.0C7—C12—H12A119.6
C10—C9—C8119.7 (6)C12'—C11'—C10113.1 (9)
C10—C9—H9A120.2C12'—C11'—H11B123.4
C8—C9—H9A120.2C10—C11'—H11B123.4
C7—C8'—C9'114.8 (9)C7—C12'—C11'124.7 (10)
C7—C8'—H8B122.6C7—C12'—H12B117.7
C9'—C8'—H8B122.6C11'—C12'—H12B117.7
C7—N1—C2—N3179.6 (3)C12'—C7—C8'—C9'0.01 (3)
C6—N1—C2—N34.8 (7)C12—C7—C8'—C9'19.0 (5)
C7—N1—C2—S13.7 (6)N1—C7—C8'—C9'176.16 (17)
C6—N1—C2—S1179.4 (4)C7—C8'—C9'—C100.00 (3)
N1—C2—N3—C44.8 (6)C8—C9—C10—C11'19.9 (5)
S1—C2—N3—C4179.1 (3)C8—C9—C10—C9'81 (3)
C2—N3—C4—C55.2 (6)C8—C9—C10—C110.03 (7)
C2—N3—C4—C13179.3 (4)C8'—C9'—C10—C990 (3)
N3—C4—C5—C14178.7 (4)C8'—C9'—C10—C11'0.01 (7)
C13—C4—C5—C144.0 (7)C8'—C9'—C10—C1119.1 (5)
N3—C4—C5—C65.1 (6)C4—C5—C14—O1178.2 (5)
C13—C4—C5—C6179.8 (5)C6—C5—C14—O11.8 (7)
C2—N1—C6—C54.9 (8)C4—C5—C14—C152.7 (8)
C7—N1—C6—C5179.2 (4)C6—C5—C14—C15179.2 (5)
C4—C5—C6—N14.8 (7)C9—C10—C11—C120.06 (9)
C14—C5—C6—N1178.4 (4)C11'—C10—C11—C1291 (2)
C2—N1—C7—C885.5 (4)C9'—C10—C11—C1218.5 (5)
C6—N1—C7—C898.5 (5)C10—C11—C12—C70.06 (8)
C2—N1—C7—C12'79.0 (5)C8—C7—C12—C110.04 (7)
C6—N1—C7—C12'97.1 (5)C12'—C7—C12—C1178 (3)
C2—N1—C7—C8'104.8 (5)C8'—C7—C12—C1119.5 (5)
C6—N1—C7—C8'79.2 (6)N1—C7—C12—C11177.66 (16)
C2—N1—C7—C1296.8 (4)C9—C10—C11'—C12'19.3 (5)
C6—N1—C7—C1279.2 (5)C9'—C10—C11'—C12'0.02 (8)
C12'—C7—C8—C917.9 (5)C11—C10—C11'—C12'80 (2)
C8'—C7—C8—C992 (2)C8—C7—C12'—C11'18.5 (5)
C12—C7—C8—C90.01 (3)C8'—C7—C12'—C11'0.03 (7)
N1—C7—C8—C9177.52 (17)C12—C7—C12'—C11'93 (3)
C7—C8—C9—C100.01 (3)N1—C7—C12'—C11'176.23 (17)
C8—C7—C8'—C9'80 (2)C10—C11'—C12'—C70.04 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O1i0.882.052.920 (2)168
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H14N2OS
Mr246.32
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)24.3527 (10), 7.2374 (3), 7.0063 (3)
V3)1234.86 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.30 × 0.30 × 0.30
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.930, 0.930
No. of measured, independent and
observed [I > 2σ(I)] reflections
13745, 3089, 2877
Rint0.016
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.141, 1.00
No. of reflections3089
No. of parameters150
No. of restraints19
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.35

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O1i0.882.052.920 (2)168
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors thank Baku State University and the Universidad de Antofagasta for supporting this study. Thanks are also given to the Consejo Superior de Investigaciones Científicas (CSIC) of Spain for the award of a license for the use of the Cambridge Structural Database (CSD).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationDalinger, D., Stadler, A. & Kappe, C. O. (2004). Pure Appl. Chem. 76, 1017–1024.  Google Scholar
First citationKotharkar, S. A., Nagawade, R. R. & Shinde, D. B. (2006). Ukrainica Bioorg. Acta, 2, 17–21.  Google Scholar
First citationLu, J., Bai, Y., Wang, Z., Yang, B. & Ma, H. (2000). Tetrahedron Lett. 41, 9075–9078.  Web of Science CrossRef CAS Google Scholar
First citationSalehi, P., Davizi, M., Zolfigol, A. M. & Fard, M. A. (2003). Tetrahedron Lett. 44, 2889–289.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrinivas, K. V. & Das, B. (2004). Synthesis, 13, 2091–2093.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds