organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Fluoro­phen­yl)-5,6-methyl­enedi­­oxy-3-phenyl­sulfinyl-1-benzo­furan monohydrate

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 12 December 2011; accepted 24 December 2011; online 14 January 2012)

In the title compound, C21H13FO4S·H2O, the dihedral angles between the mean plane of the benzofuran fragment (r.m.s. deviation = 0.005 Å) and the pendant 4-fluoro­phenyl and phenyl rings are 6.24 (7) and 83.39 (6)°, respectively. In the crystal, mol­ecules are linked by O—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For the pharmacological activity of benzofuran compounds, see: Aslam et al.(2009[Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191-195.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For the crystal structure of related compound, see: Choi et al. (2009[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o2503.]).

[Scheme 1]

Experimental

Crystal data
  • C21H13FO4S·H2O

  • Mr = 398.39

  • Monoclinic, P 21 /c

  • a = 8.2485 (2) Å

  • b = 33.5624 (9) Å

  • c = 6.1854 (2) Å

  • β = 93.001 (2)°

  • V = 1710.01 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 173 K

  • 0.39 × 0.16 × 0.11 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.915, Tmax = 0.975

  • 16270 measured reflections

  • 3947 independent reflections

  • 3235 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.120

  • S = 1.02

  • 3947 reflections

  • 261 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.94 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O4i 0.95 2.46 3.375 (3) 162
C19—H19⋯O5wi 0.95 2.49 3.433 (3) 171
O5W—H5WA⋯O4ii 0.99 (4) 1.87 (4) 2.834 (2) 164 (3)
O5W—H5WB⋯O4iii 0.97 (4) 1.98 (4) 2.908 (2) 161 (3)
Symmetry codes: (i) x+1, y, z; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x, y, z-1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, many compounds having a benzofuran ring have drawn much attention due to their valuable pharmacological properties such as antibacterial and antifungal, antitumor and antiviral, and antimicrobial activities (Aslam et al., 2009, Galal et al., 2009, Khan et al., 2005). These benzofuran derivatives occur in a wide range of natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing studies of 5,6-(methylenedioxy)benzofuran derivatives containing 2-(4-bromophenyl) (Choi et al., 2009) substituents, we report herein the crystal structure of the title compound.

The title compound crystallizes as a hydrate (Fig. 1). The benzofuran unit is essentially planar, with a mean deviation of 0.005 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angles between the mean plane of the benzofuran fragment and the pendant 4-fluorophenyl and phenyl rings are 6.24 (7) and 83.39 (6)°, respectively. The crystal packing (Fig. 2) is stabilized by intermolecular O—H···O and C—H···O hydrogen bonds (see Table 1).

Related literature top

For the pharmacological activity of benzofuran compounds, see: Aslam et al.(2009); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For the crystal structure of related compound, see: Choi et al. (2009).

Experimental top

77% 3-chloroperoxybenzoic acid (224 mg, 1.0 mmol) was added in small portions to a stirred solution of 2-(4-fluorophenyl)-5,6-methylenedioxy-3-phenylsulfanyl-1-benzofuran (291 mg, 0.8 mmol) in dichloromethane (30 ml) at 273 K. After being stirred at room temperature for 3 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 1:2 v/v) to afford the title compound as a colorless solid [yield 72%, m.p. 451–453 K; Rf = 0.79 (hexane–ethyl acetate, 1:2 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

The H atoms bonded to O5w were located a different Fourier map and refined freely. All other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å fo the aryl and 0.97 Å for the methylene H atoms. Uiso(H) =1.2Ueq(C) for aryl and methylene H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of crystal packing showing the O—H···O and C—H···O hydrogen bonds (dotted lines).H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) x + 1, y, z (ii) x, - y + 1/2, z - 1/2 (iii) x, y, z - 1 (iv) x - 1, y, z; (v) x, y, z + 1.]
2-(4-Fluorophenyl)-5,6-methylenedioxy-3-phenylsulfinyl-1-benzofuran monohydrate top
Crystal data top
C21H13FO4S·H2OF(000) = 824
Mr = 398.39Dx = 1.547 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4953 reflections
a = 8.2485 (2) Åθ = 2.4–28.3°
b = 33.5624 (9) ŵ = 0.23 mm1
c = 6.1854 (2) ÅT = 173 K
β = 93.001 (2)°Block, colourless
V = 1710.01 (8) Å30.39 × 0.16 × 0.11 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
3947 independent reflections
Radiation source: rotating anode3235 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.036
Detector resolution: 10.0 pixels mm-1θmax = 27.6°, θmin = 1.2°
ϕ and ω scansh = 109
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 4335
Tmin = 0.915, Tmax = 0.975l = 87
16270 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: difference Fourier map
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0512P)2 + 1.6272P]
where P = (Fo2 + 2Fc2)/3
3947 reflections(Δ/σ)max < 0.001
261 parametersΔρmax = 0.94 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
C21H13FO4S·H2OV = 1710.01 (8) Å3
Mr = 398.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.2485 (2) ŵ = 0.23 mm1
b = 33.5624 (9) ÅT = 173 K
c = 6.1854 (2) Å0.39 × 0.16 × 0.11 mm
β = 93.001 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3947 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3235 reflections with I > 2σ(I)
Tmin = 0.915, Tmax = 0.975Rint = 0.036
16270 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.94 e Å3
3947 reflectionsΔρmin = 0.61 e Å3
261 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.50867 (6)0.170330 (15)0.88006 (8)0.02163 (14)
F10.92782 (18)0.04232 (4)1.5856 (2)0.0415 (4)
O10.49612 (16)0.05550 (4)0.7261 (2)0.0205 (3)
O20.14035 (19)0.12607 (5)0.0740 (3)0.0318 (4)
O30.1737 (2)0.05788 (5)0.0443 (3)0.0330 (4)
O40.36252 (17)0.19343 (4)0.8043 (3)0.0283 (3)
C10.4801 (2)0.12171 (6)0.7748 (3)0.0181 (4)
C20.3882 (2)0.11212 (6)0.5762 (3)0.0191 (4)
C30.2973 (2)0.13442 (6)0.4188 (3)0.0210 (4)
H30.28380.16250.42800.025*
C40.2305 (2)0.11216 (6)0.2522 (3)0.0222 (4)
C50.0887 (3)0.09168 (7)0.0456 (4)0.0271 (5)
H5A0.11250.09490.19980.033*
H5B0.02980.08790.03650.033*
C60.2492 (2)0.07098 (6)0.2341 (3)0.0230 (4)
C70.3353 (2)0.04845 (6)0.3848 (3)0.0230 (4)
H70.34750.02040.37410.028*
C80.4031 (2)0.07100 (6)0.5549 (3)0.0201 (4)
C90.5414 (2)0.08705 (6)0.8597 (3)0.0186 (4)
C100.6438 (2)0.07586 (6)1.0502 (3)0.0191 (4)
C110.6993 (3)0.03679 (6)1.0741 (3)0.0255 (5)
H110.67000.01770.96590.031*
C120.7964 (3)0.02540 (7)1.2529 (4)0.0294 (5)
H120.83490.00121.26810.035*
C130.8354 (3)0.05361 (7)1.4074 (3)0.0270 (5)
C140.7845 (3)0.09240 (7)1.3922 (3)0.0260 (5)
H140.81470.11121.50200.031*
C150.6878 (2)0.10357 (6)1.2123 (3)0.0228 (4)
H150.65100.13031.19870.027*
C160.6720 (2)0.18499 (6)0.7173 (3)0.0197 (4)
C170.8292 (2)0.17949 (6)0.8061 (4)0.0255 (4)
H170.84730.16850.94690.031*
C180.9588 (3)0.19039 (7)0.6845 (4)0.0329 (5)
H181.06700.18650.74110.039*
C190.9309 (3)0.20687 (7)0.4815 (4)0.0348 (5)
H191.02010.21410.39870.042*
C200.7737 (3)0.21292 (7)0.3973 (4)0.0305 (5)
H200.75590.22460.25840.037*
C210.6421 (3)0.20191 (6)0.5153 (3)0.0242 (4)
H210.53410.20590.45850.029*
O5W0.2797 (2)0.22591 (6)0.2201 (3)0.0421 (4)
H5WA0.307 (5)0.2545 (13)0.220 (6)0.084 (12)*
H5WB0.292 (4)0.2198 (12)0.069 (7)0.083 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0222 (2)0.0171 (3)0.0259 (3)0.00014 (18)0.00387 (19)0.0036 (2)
F10.0526 (9)0.0387 (8)0.0310 (8)0.0113 (7)0.0197 (7)0.0006 (6)
O10.0263 (7)0.0156 (7)0.0192 (7)0.0000 (5)0.0028 (6)0.0017 (5)
O20.0371 (9)0.0290 (9)0.0277 (8)0.0027 (7)0.0124 (7)0.0002 (7)
O30.0407 (9)0.0296 (9)0.0272 (8)0.0021 (7)0.0123 (7)0.0066 (7)
O40.0244 (7)0.0239 (8)0.0367 (9)0.0046 (6)0.0012 (6)0.0001 (7)
C10.0187 (9)0.0165 (9)0.0193 (9)0.0003 (7)0.0024 (7)0.0018 (8)
C20.0176 (8)0.0182 (10)0.0217 (10)0.0013 (7)0.0021 (7)0.0008 (8)
C30.0203 (9)0.0175 (10)0.0251 (10)0.0010 (7)0.0019 (8)0.0008 (8)
C40.0190 (9)0.0252 (11)0.0222 (10)0.0010 (8)0.0012 (8)0.0030 (8)
C50.0244 (10)0.0320 (12)0.0245 (11)0.0010 (9)0.0024 (8)0.0011 (9)
C60.0229 (9)0.0244 (11)0.0215 (10)0.0031 (8)0.0005 (8)0.0029 (8)
C70.0258 (10)0.0187 (10)0.0243 (10)0.0000 (8)0.0008 (8)0.0032 (8)
C80.0193 (9)0.0192 (10)0.0220 (10)0.0003 (7)0.0010 (7)0.0008 (8)
C90.0187 (9)0.0173 (10)0.0201 (9)0.0017 (7)0.0022 (7)0.0020 (8)
C100.0181 (9)0.0205 (10)0.0188 (9)0.0006 (7)0.0021 (7)0.0001 (8)
C110.0313 (11)0.0204 (11)0.0243 (11)0.0020 (8)0.0028 (9)0.0033 (8)
C120.0356 (11)0.0217 (11)0.0302 (12)0.0049 (9)0.0043 (9)0.0009 (9)
C130.0275 (10)0.0314 (12)0.0215 (10)0.0036 (9)0.0044 (8)0.0025 (9)
C140.0296 (11)0.0265 (11)0.0216 (10)0.0001 (9)0.0025 (8)0.0049 (9)
C150.0265 (10)0.0191 (10)0.0228 (10)0.0024 (8)0.0016 (8)0.0015 (8)
C160.0187 (9)0.0159 (9)0.0245 (10)0.0013 (7)0.0018 (8)0.0034 (8)
C170.0235 (10)0.0229 (11)0.0298 (11)0.0006 (8)0.0021 (9)0.0006 (9)
C180.0188 (9)0.0330 (13)0.0467 (14)0.0010 (9)0.0008 (9)0.0024 (11)
C190.0313 (11)0.0295 (13)0.0449 (14)0.0048 (10)0.0140 (10)0.0007 (11)
C200.0391 (12)0.0264 (12)0.0262 (11)0.0021 (10)0.0044 (9)0.0013 (9)
C210.0245 (10)0.0212 (11)0.0263 (11)0.0003 (8)0.0032 (8)0.0019 (8)
O5W0.0574 (12)0.0293 (10)0.0406 (11)0.0024 (8)0.0123 (9)0.0008 (8)
Geometric parameters (Å, º) top
S1—O41.4883 (15)C10—C111.394 (3)
S1—C11.768 (2)C10—C151.401 (3)
S1—C161.792 (2)C11—C121.385 (3)
F1—C131.361 (2)C11—H110.9500
O1—C81.377 (2)C12—C131.372 (3)
O1—C91.382 (2)C12—H120.9500
O2—C41.379 (2)C13—C141.370 (3)
O2—C51.424 (3)C14—C151.386 (3)
O3—C61.372 (2)C14—H140.9500
O3—C51.431 (3)C15—H150.9500
C1—C91.362 (3)C16—C211.382 (3)
C1—C21.446 (3)C16—C171.394 (3)
C2—C81.392 (3)C17—C181.388 (3)
C2—C31.412 (3)C17—H170.9500
C3—C41.365 (3)C18—C191.380 (4)
C3—H30.9500C18—H180.9500
C4—C61.396 (3)C19—C201.386 (3)
C5—H5A0.9900C19—H190.9500
C5—H5B0.9900C20—C211.389 (3)
C6—C71.370 (3)C20—H200.9500
C7—C81.390 (3)C21—H210.9500
C7—H70.9500O5W—H5WA0.99 (4)
C9—C101.463 (3)O5W—H5WB0.97 (4)
O4—S1—C1105.95 (9)C11—C10—C9119.98 (18)
O4—S1—C16107.47 (9)C15—C10—C9121.54 (18)
C1—S1—C1697.82 (9)C12—C11—C10121.2 (2)
C8—O1—C9107.01 (15)C12—C11—H11119.4
C4—O2—C5105.97 (16)C10—C11—H11119.4
C6—O3—C5105.66 (16)C13—C12—C11118.1 (2)
C9—C1—C2107.74 (17)C13—C12—H12121.0
C9—C1—S1127.35 (15)C11—C12—H12121.0
C2—C1—S1124.90 (15)F1—C13—C14118.50 (19)
C8—C2—C3120.43 (18)F1—C13—C12118.2 (2)
C8—C2—C1104.83 (17)C14—C13—C12123.3 (2)
C3—C2—C1134.74 (19)C13—C14—C15118.3 (2)
C4—C3—C2114.14 (19)C13—C14—H14120.9
C4—C3—H3122.9C15—C14—H14120.9
C2—C3—H3122.9C14—C15—C10120.8 (2)
C3—C4—O2126.70 (19)C14—C15—H15119.6
C3—C4—C6124.11 (19)C10—C15—H15119.6
O2—C4—C6109.16 (17)C21—C16—C17121.89 (19)
O2—C5—O3108.26 (16)C21—C16—S1121.13 (15)
O2—C5—H5A110.0C17—C16—S1116.96 (16)
O3—C5—H5A110.0C18—C17—C16118.6 (2)
O2—C5—H5B110.0C18—C17—H17120.7
O3—C5—H5B110.0C16—C17—H17120.7
H5A—C5—H5B108.4C19—C18—C17120.1 (2)
C7—C6—O3127.0 (2)C19—C18—H18119.9
C7—C6—C4123.18 (19)C17—C18—H18119.9
O3—C6—C4109.81 (18)C18—C19—C20120.6 (2)
C6—C7—C8112.86 (19)C18—C19—H19119.7
C6—C7—H7123.6C20—C19—H19119.7
C8—C7—H7123.6C19—C20—C21120.3 (2)
O1—C8—C7124.23 (18)C19—C20—H20119.8
O1—C8—C2110.50 (17)C21—C20—H20119.8
C7—C8—C2125.26 (19)C16—C21—C20118.5 (2)
C1—C9—O1109.91 (17)C16—C21—H21120.8
C1—C9—C10135.77 (18)C20—C21—H21120.8
O1—C9—C10114.29 (16)H5WA—O5W—H5WB100 (3)
C11—C10—C15118.48 (19)
O4—S1—C1—C9152.40 (17)C2—C1—C9—O10.7 (2)
C16—S1—C1—C996.85 (18)S1—C1—C9—O1177.99 (13)
O4—S1—C1—C229.11 (18)C2—C1—C9—C10179.0 (2)
C16—S1—C1—C281.65 (17)S1—C1—C9—C100.3 (3)
C9—C1—C2—C80.6 (2)C8—O1—C9—C10.5 (2)
S1—C1—C2—C8178.14 (14)C8—O1—C9—C10179.20 (15)
C9—C1—C2—C3179.6 (2)C1—C9—C10—C11172.4 (2)
S1—C1—C2—C31.7 (3)O1—C9—C10—C115.7 (3)
C8—C2—C3—C40.4 (3)C1—C9—C10—C157.8 (3)
C1—C2—C3—C4179.5 (2)O1—C9—C10—C15173.98 (17)
C2—C3—C4—O2178.00 (18)C15—C10—C11—C120.3 (3)
C2—C3—C4—C60.4 (3)C9—C10—C11—C12180.00 (19)
C5—O2—C4—C3176.2 (2)C10—C11—C12—C130.6 (3)
C5—O2—C4—C65.9 (2)C11—C12—C13—F1178.6 (2)
C4—O2—C5—O310.2 (2)C11—C12—C13—C140.7 (4)
C6—O3—C5—O210.6 (2)F1—C13—C14—C15178.81 (19)
C5—O3—C6—C7174.8 (2)C12—C13—C14—C150.5 (3)
C5—O3—C6—C47.0 (2)C13—C14—C15—C100.1 (3)
C3—C4—C6—C71.0 (3)C11—C10—C15—C140.0 (3)
O2—C4—C6—C7178.98 (19)C9—C10—C15—C14179.77 (18)
C3—C4—C6—O3177.25 (18)O4—S1—C16—C2122.09 (19)
O2—C4—C6—O30.7 (2)C1—S1—C16—C2187.42 (18)
O3—C6—C7—C8177.22 (19)O4—S1—C16—C17156.30 (16)
C4—C6—C7—C80.7 (3)C1—S1—C16—C1794.18 (17)
C9—O1—C8—C7179.68 (18)C21—C16—C17—C181.8 (3)
C9—O1—C8—C20.1 (2)S1—C16—C17—C18179.81 (17)
C6—C7—C8—O1179.52 (17)C16—C17—C18—C191.0 (3)
C6—C7—C8—C20.0 (3)C17—C18—C19—C200.4 (4)
C3—C2—C8—O1179.85 (16)C18—C19—C20—C210.9 (4)
C1—C2—C8—O10.3 (2)C17—C16—C21—C201.2 (3)
C3—C2—C8—C70.6 (3)S1—C16—C21—C20179.56 (16)
C1—C2—C8—C7179.26 (18)C19—C20—C21—C160.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O4i0.952.463.375 (3)162
C19—H19···O5wi0.952.493.433 (3)171
O5W—H5WA···O4ii0.99 (4)1.87 (4)2.834 (2)164 (3)
O5W—H5WB···O4iii0.97 (4)1.98 (4)2.908 (2)161 (3)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z1/2; (iii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC21H13FO4S·H2O
Mr398.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)8.2485 (2), 33.5624 (9), 6.1854 (2)
β (°) 93.001 (2)
V3)1710.01 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.39 × 0.16 × 0.11
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.915, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
16270, 3947, 3235
Rint0.036
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.120, 1.02
No. of reflections3947
No. of parameters261
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.94, 0.61

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O4i0.952.463.375 (3)161.7
C19—H19···O5wi0.952.493.433 (3)170.9
O5W—H5WA···O4ii0.99 (4)1.87 (4)2.834 (2)164 (3)
O5W—H5WB···O4iii0.97 (4)1.98 (4)2.908 (2)161 (3)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z1/2; (iii) x, y, z1.
 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191–195.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o2503.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds