metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[piperazine-1,4-diium [μ4-chlorido-μ3-chlorido-tri-μ2-chlorido-chloridodicadmate(II)] monohydrate]

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisia, and bCEMDRX, Physics Department, University of Coimbra, P-3004-516 Coimbra, Portugal
*Correspondence e-mail: cherif_bennasr@yahoo.fr

(Received 29 December 2011; accepted 13 January 2012; online 21 January 2012)

In the title compound, {(C5H14N2)[Cd2Cl6]·H2O}n, the asymmetric unit contains one piperazinediium cation, one [Cd2Cl6]2− anion and a water mol­ecule. The coordination geometries of the two Cd2+ cations are distorted octa­hedral. Adjacent CdII atoms are inter­connected alternately by paired chloride bridges, generating polymeric chains parallel to [010]. Neighbouring chains are connected by O—H⋯Cl hydrogen bonds involving the water mol­ecules, forming layers at z = n/2. The crystal packing is further stabilized by inter­molecular N—H⋯Cl and N—H⋯O hydrogen bonds, one of which is bifurcated.

Related literature

For general background to polymeric chlorido­cadmate(II) materials, see: Corradi et al. (1997[Corradi, A. B., Cramarossa, M. R. & Saladini, M. (1997). Inorg. Chim. Acta, 257, 19-26.]). For the geometry around the CdII ion, see: Corradi et al. (1997[Corradi, A. B., Cramarossa, M. R. & Saladini, M. (1997). Inorg. Chim. Acta, 257, 19-26.], 1998[Corradi, A. B., Cramarossa, M. R. & Saladini, M. (1998). Inorg. Chim. Acta, 272, 252-260.]); Xia et al. (2005[Xia, C.-K., Zhang, Q.-Z., Chen, S.-M., He, X. & Lu, C.-Z. (2005). Acta Cryst. C61, m203-m205.]); Jian et al. (2006[Jian, F. F., Zhao, P. S., Wang, Q. X. & Li, Y. (2006). Inorg. Chim. Acta, 359, 1473-1477.]); Partin & O Keeffe (1991[Partin, D. E. & O Keeffe, M. J. (1991). J. Solid State Chem. 95, 176-183.]). For Cd—Cl bond lengths, see: El Glaoui et al. (2010[El Glaoui, M., Zeller, M., Jeanneau, E. & Ben Nasr, C. (2010). Acta Cryst. E66, m895.]). For geometrical features of the organic cation, see: Yin & Wu (2010[Yin, M. & Wu, S.-T. (2010). Acta Cryst. E66, m515.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H14N2)[Cd2Cl6]·H2O

  • Mr = 557.70

  • Monoclinic, P 21 /c

  • a = 12.1907 (3) Å

  • b = 6.8088 (2) Å

  • c = 21.4590 (5) Å

  • β = 120.521 (1)°

  • V = 1534.39 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.80 mm−1

  • T = 293 K

  • 0.40 × 0.27 × 0.16 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.411, Tmax = 0.545

  • 22206 measured reflections

  • 3688 independent reflections

  • 3449 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.045

  • S = 1.12

  • 3688 reflections

  • 154 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl3i 0.90 2.32 3.0819 (17) 143
N1—H1B⋯Cl2 0.90 2.35 3.2451 (16) 171
N4—H4A⋯Cl6ii 0.90 2.44 3.1614 (17) 138
N4—H4A⋯O1Wiii 0.90 2.45 3.131 (2) 133
N4—H4B⋯O1Wiv 0.90 1.90 2.791 (2) 171
O1W—H1W⋯Cl6v 0.83 (4) 2.40 (4) 3.2140 (19) 166 (3)
O1W—H2W⋯Cl1vi 0.84 (4) 2.68 (4) 3.503 (2) 168 (3)
Symmetry codes: (i) x, y-1, z; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x+1, -y+1, -z; (vi) x-1, y, z.

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Polymeric chlorocadmates(II) represent a class of materials with chlorine atoms as ligands, connecting neighboring cadmium atoms, thus forming one or two- dimensional arrangements. One-dimensionality of metal chains allows easier modeling of physical properties and structure property correlations (Corradi et al., 1997). In these compounds, the cadmium(II) cations exhibits a variety of coordination geometries and coordination numbers. However, it is worth to note that octahedral coordination of CdII is essentially present only in polymeric chlorocadmates(II), although a variety of stoichiometries are possible. The CdCl6 octahedra can form chains by face, edge, or vertex sharing [Corradi et al., 1997; Xia et al., 2005; Corradi et al., 1998; Jian et al., 2006). As a contribution to the investigation of the above materials, we report here the crystal structure of one such compound, Cd2Cl6C5H14N2H2O (I), formed from the reaction of piperazine, hydrochloride acid and cadmium chloride. The asymmetric unit of the title material contains one piperazinedium cation, one Cd2Cl62- anion and a water molecule (Fig. 1). Within Cd2Cl6 moiety, each CdII cations is coordinated by six chlorine atoms forming a distorted octahedron. Packing of Cd2Cl6C5H14N2H2O (Fig.2) shows that adjacent Cd ions are interconnected alternatively by paired chloride bridges to generate an infinite one-dimensional coordination chain crystallographic b axis. The closest Cd—Cd distance within the chain is 3.979 (1) A° is fairly close to the one determined in the one-dimensional chain of slightly distorted edge-charing octahedral(Partin & O Keeffe, 1991). These chains, situated at (1/2, 0, 0) and (1/2, 0, 1/2), are interconnected by the water molecules via O—H···Cl hydrogen bonds to form layers extending along the (a, c) plane at z = n/2 (Fig. 3). In the Cd2Cl6 entities, the Cd—Cl distances in the octahedra range between 2.4852 (5) and 2.9415 (5) A°. Cd—Cl distances of edge sharing chlorine atoms are 2.5449 (5) (Cd1—Cl4), 2.7148 (4) (Cd1—Cl5i), 2.6007 (5) (Cd2—Cl4) and 2.7293 (4) (Cd2—Cl5i) A° (symmetry codes in Table 1). The Cd—Cl—Cd bridges can thus be regarded as dissymmetric. These distances are longer than the terminal Cd—Cl ones 2.4852 (5) (Cd1—Cl3) and 2.51989 (5) (Cd2—Cl6) A°, which is typical of six coordinated CdII (El Glaoui et al., 2010).. The Cl—Cd—Cl bond angles average close to 90.0° and range between 81.82 (1)° (for Cl2—Cd1—Cl5) and Cl3—Cd1—Cl4 97.18 (2)°, again confirming the close to octahedral nature of the CdCl6 building units. Overwise, owing to the obvious differences of Cd—Cl distances and Cl—Cd—Cl angles in Cd2Cl6C5H14N2H2O, the coordination geometry around the Cd atoms could be regarded as slightly distorted octahedron. The piperazinedium cations are anchored onto successive layers through N—H···Cl and N—H···O hydrogen bonds. The piperazinedium ring adopts a typical chair conformation and all the geometrical features agree with those found in the salt containing the same cation, 2-methylpiperazinediium tetrachlorozincate(II) (Yin & Wu, 2010). In this structure, the anionic and organic entities and the water molecules are connected through intricate O—H···Cl, N—H···Cl and N—H···O hydrogen bonding interactions, with one of these being three-center interactions, viz. N4—H4A···(Cl6iv, O1Wv) (Fig. 3, details and symmetry codes in Table 1). It is worth noticing that the chlorine atoms Cl4 and Cl5 of the Cd2Cl6 are not involved in hydrogen bonding, while all hydrogen atoms that are attached to N1 and N4 nitrogen atoms are involved in hydrogen bondings.

Related literature top

For general background to polymeric chlorocadmate(II) materials, see: Corradi et al. (1997). For the geometry around the CdII ion, see: Corradi et al. (1997, 1998); Xia et al. (2005); Jian et al. (2006); Partin & O Keeffe (1991). For Cd—Cl bond lengths, see: El Glaoui et al. (2010). For geometrical features of the organic cation, see: Yin & Wu (2010).

Experimental top

A mixture of an aqueous solution of 2-methylpiperazine (3 mmol, 0.300 g), cadmium chloride (1.5 mmol, 0.275 g) and HCl (10 ml, 0.3 M) in a Petri dish was slowly evaporated at room temperature. Colorless single crystals of the title compound were isolated after several days (yield 63%).

Refinement top

All H atoms were located in a difference Fourier synthesis, placed in calculated positions and refined as riding on their parent atoms, using SHELXL97 (Sheldrick, 2008) defaults.

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I) showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view of the crystal structure of (I) showing the layer organization between Cd2Cl62- anion and H2O molecules. Dotted lines show intermolecular hydrogen bonding.
[Figure 3] Fig. 3. Packing diagram of the compound viewed down the b axis. Hydrogen bonds are shown as dashed lines.
Poly[piperazine-1,4-diium [µ4-chlorido-µ3-chlorido-tri-µ2-chlorido-chloridodicadmate(II)] monohydrate] top
Crystal data top
(C5H14N2)[Cd2Cl6]·H2OF(000) = 1064
Mr = 557.70Dx = 2.414 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8164 reflections
a = 12.1907 (3) Åθ = 2.7–28.0°
b = 6.8088 (2) ŵ = 3.80 mm1
c = 21.4590 (5) ÅT = 293 K
β = 120.521 (1)°Block, colourless
V = 1534.39 (7) Å30.40 × 0.27 × 0.16 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3688 independent reflections
Radiation source: fine-focus sealed tube3449 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 28.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1615
Tmin = 0.411, Tmax = 0.545k = 88
22206 measured reflectionsl = 2826
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.045H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0198P)2 + 0.7665P]
where P = (Fo2 + 2Fc2)/3
3688 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.73 e Å3
Crystal data top
(C5H14N2)[Cd2Cl6]·H2OV = 1534.39 (7) Å3
Mr = 557.70Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.1907 (3) ŵ = 3.80 mm1
b = 6.8088 (2) ÅT = 293 K
c = 21.4590 (5) Å0.40 × 0.27 × 0.16 mm
β = 120.521 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3688 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3449 reflections with I > 2σ(I)
Tmin = 0.411, Tmax = 0.545Rint = 0.031
22206 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0180 restraints
wR(F2) = 0.045H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.48 e Å3
3688 reflectionsΔρmin = 0.73 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.676903 (13)0.40204 (2)0.082720 (7)0.02594 (5)
Cd20.646100 (13)0.89968 (2)0.019721 (7)0.02546 (5)
Cl10.80264 (5)0.07606 (7)0.09737 (2)0.02919 (10)
Cl20.54286 (4)0.25219 (7)0.13506 (2)0.02547 (9)
Cl30.82700 (4)0.53623 (8)0.20479 (3)0.03199 (10)
Cl40.77287 (5)0.57158 (7)0.01573 (3)0.02863 (10)
Cl50.48547 (4)0.24642 (7)0.04173 (2)0.02682 (10)
Cl60.74505 (5)1.02346 (7)0.09068 (3)0.03096 (10)
N10.76370 (15)0.0550 (2)0.23986 (8)0.0255 (3)
H1A0.76540.14530.20970.031*
H1B0.70950.04070.21270.031*
N40.85051 (16)0.0786 (2)0.38410 (8)0.0302 (4)
H4A0.85070.16700.41530.036*
H4B0.90340.01990.41000.036*
C20.71565 (17)0.1493 (3)0.28474 (9)0.0236 (4)
H20.77240.25840.31190.028*
C30.71971 (18)0.0001 (3)0.33791 (10)0.0282 (4)
H3A0.66200.10720.31170.034*
H3B0.69140.06070.36820.034*
C50.8968 (2)0.1733 (3)0.33924 (11)0.0343 (4)
H5A0.98340.21940.37020.041*
H5B0.84380.28590.31430.041*
C60.89316 (18)0.0298 (3)0.28479 (11)0.0320 (4)
H6A0.91780.09610.25380.038*
H6B0.95370.07500.30990.038*
C70.58312 (19)0.2299 (3)0.23657 (11)0.0341 (4)
H7A0.52730.12550.20790.051*
H7B0.55250.28640.26590.051*
H7C0.58530.32880.20530.051*
O1W0.00855 (17)0.2486 (3)0.04060 (10)0.0431 (4)
H1W0.063 (4)0.162 (6)0.0509 (19)0.090 (13)*
H2W0.046 (3)0.197 (5)0.0481 (18)0.080 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02794 (8)0.02668 (8)0.02527 (8)0.00503 (5)0.01503 (6)0.00082 (5)
Cd20.02605 (8)0.02669 (8)0.02454 (8)0.00547 (5)0.01350 (6)0.00232 (5)
Cl10.0319 (2)0.0269 (2)0.0251 (2)0.00093 (18)0.01181 (19)0.00354 (17)
Cl20.0243 (2)0.0304 (2)0.02289 (19)0.00335 (17)0.01289 (17)0.00013 (17)
Cl30.0277 (2)0.0360 (3)0.0297 (2)0.00006 (19)0.01262 (19)0.0073 (2)
Cl40.0334 (2)0.0273 (2)0.0313 (2)0.00249 (18)0.0209 (2)0.00483 (18)
Cl50.0293 (2)0.0287 (2)0.0237 (2)0.00274 (18)0.01440 (18)0.00028 (17)
Cl60.0367 (2)0.0281 (2)0.0349 (2)0.00504 (19)0.0231 (2)0.00181 (19)
N10.0279 (8)0.0309 (8)0.0210 (7)0.0022 (6)0.0148 (6)0.0015 (6)
N40.0374 (9)0.0261 (9)0.0221 (7)0.0039 (7)0.0115 (7)0.0021 (6)
C20.0262 (9)0.0252 (9)0.0212 (8)0.0008 (7)0.0135 (7)0.0034 (7)
C30.0312 (10)0.0327 (11)0.0248 (9)0.0028 (8)0.0172 (8)0.0002 (8)
C50.0325 (10)0.0302 (11)0.0348 (10)0.0052 (9)0.0131 (9)0.0006 (9)
C60.0248 (9)0.0397 (12)0.0337 (10)0.0003 (8)0.0164 (8)0.0035 (9)
C70.0307 (10)0.0410 (12)0.0302 (10)0.0071 (9)0.0151 (8)0.0030 (9)
O1W0.0328 (9)0.0374 (10)0.0524 (10)0.0048 (7)0.0167 (8)0.0072 (8)
Geometric parameters (Å, º) top
Cd1—Cl32.4852 (5)N1—H1B0.9000
Cd1—Cl42.5449 (5)N4—C51.488 (3)
Cd1—Cl22.6147 (4)N4—C31.485 (2)
Cd1—Cl12.6239 (5)N4—H4A0.9000
Cd1—Cl52.7148 (4)N4—H4B0.9000
Cd1—Cl5i2.9415 (5)C2—C71.511 (3)
Cd2—Cl62.5198 (5)C2—C31.510 (3)
Cd2—Cl1ii2.5548 (5)C2—H20.9800
Cd2—Cl2i2.5905 (4)C3—H3A0.9700
Cd2—Cl42.6007 (5)C3—H3B0.9700
Cd2—Cl5i2.7293 (4)C5—C61.506 (3)
Cd2—Cl5ii2.9483 (5)C5—H5A0.9700
Cl1—Cd2iii2.5549 (5)C5—H5B0.9700
Cl2—Cd2i2.5904 (4)C6—H6A0.9700
Cl5—Cd2i2.7293 (4)C6—H6B0.9700
Cl5—Cd1i2.9415 (5)C7—H7A0.9600
Cl5—Cd2iii2.9482 (5)C7—H7B0.9600
N1—C61.486 (2)C7—H7C0.9600
N1—C21.502 (2)O1W—H1W0.83 (4)
N1—H1A0.9000O1W—H2W0.84 (4)
Cl3—Cd1—Cl497.183 (17)C2—N1—H1A109.1
Cl3—Cd1—Cl288.677 (16)C6—N1—H1B109.1
Cl4—Cd1—Cl2170.588 (16)C2—N1—H1B109.1
Cl3—Cd1—Cl196.435 (16)H1A—N1—H1B107.8
Cl4—Cd1—Cl192.478 (16)C5—N4—C3110.85 (14)
Cl2—Cd1—Cl194.181 (16)C5—N4—H4A109.5
Cl3—Cd1—Cl5170.147 (15)C3—N4—H4A109.5
Cl4—Cd1—Cl591.920 (15)C5—N4—H4B109.5
Cl2—Cd1—Cl581.819 (14)C3—N4—H4B109.5
Cl1—Cd1—Cl586.892 (14)H4A—N4—H4B108.1
Cl3—Cd1—Cl5i92.263 (15)N1—C2—C7110.25 (14)
Cl4—Cd1—Cl5i83.946 (14)N1—C2—C3108.81 (15)
Cl2—Cd1—Cl5i88.486 (14)C7—C2—C3112.00 (16)
Cl1—Cd1—Cl5i170.954 (14)N1—C2—H2108.6
Cl5—Cd1—Cl5i84.932 (14)C7—C2—H2108.6
Cl6—Cd2—Cl1ii95.130 (16)C3—C2—H2108.6
Cl6—Cd2—Cl2i91.288 (15)N4—C3—C2111.02 (15)
Cl1ii—Cd2—Cl2i170.043 (16)N4—C3—H3A109.4
Cl6—Cd2—Cl493.917 (16)C2—C3—H3A109.4
Cl1ii—Cd2—Cl494.589 (16)N4—C3—H3B109.4
Cl2i—Cd2—Cl492.555 (16)C2—C3—H3B109.4
Cl6—Cd2—Cl5i173.207 (15)H3A—C3—H3B108.0
Cl1ii—Cd2—Cl5i91.424 (15)N4—C5—C6110.43 (17)
Cl2i—Cd2—Cl5i81.980 (14)N4—C5—H5A109.6
Cl4—Cd2—Cl5i87.324 (14)C6—C5—H5A109.6
Cl6—Cd2—Cl5ii96.792 (15)N4—C5—H5B109.6
Cl1ii—Cd2—Cl5ii83.379 (14)C6—C5—H5B109.6
Cl2i—Cd2—Cl5ii88.316 (14)H5A—C5—H5B108.1
Cl4—Cd2—Cl5ii169.235 (14)N1—C6—C5111.02 (16)
Cl5i—Cd2—Cl5ii82.170 (14)N1—C6—H6A109.4
Cd2iii—Cl1—Cd1100.407 (17)C5—C6—H6A109.4
Cd2i—Cl2—Cd1101.062 (15)N1—C6—H6B109.4
Cd1—Cl4—Cd2100.341 (16)C5—C6—H6B109.4
Cd1—Cl5—Cd2i95.136 (14)H6A—C6—H6B108.0
Cd1—Cl5—Cd1i95.067 (14)C2—C7—H7A109.5
Cd2i—Cl5—Cd1i88.267 (13)C2—C7—H7B109.5
Cd1—Cl5—Cd2iii89.184 (13)H7A—C7—H7B109.5
Cd2i—Cl5—Cd2iii97.829 (14)C2—C7—H7C109.5
Cd1i—Cl5—Cd2iii172.243 (17)H7A—C7—H7C109.5
C6—N1—C2112.43 (14)H7B—C7—H7C109.5
C6—N1—H1A109.1H1W—O1W—H2W105 (3)
Cl3—Cd1—Cl1—Cd2iii173.772 (17)Cl1—Cd1—Cl5—Cd2i95.163 (16)
Cl4—Cd1—Cl1—Cd2iii88.710 (18)Cl5i—Cd1—Cl5—Cd2i88.711 (14)
Cl2—Cd1—Cl1—Cd2iii84.634 (17)Cl4—Cd1—Cl5—Cd1i83.748 (15)
Cl5—Cd1—Cl1—Cd2iii3.079 (16)Cl2—Cd1—Cl5—Cd1i89.194 (14)
Cl3—Cd1—Cl2—Cd2i176.878 (18)Cl1—Cd1—Cl5—Cd1i176.127 (16)
Cl1—Cd1—Cl2—Cd2i86.765 (17)Cl5i—Cd1—Cl5—Cd1i0.0
Cl5—Cd1—Cl2—Cd2i0.517 (14)Cl4—Cd1—Cl5—Cd2iii89.754 (14)
Cl5i—Cd1—Cl2—Cd2i84.579 (16)Cl2—Cd1—Cl5—Cd2iii97.304 (14)
Cl3—Cd1—Cl4—Cd288.832 (18)Cl1—Cd1—Cl5—Cd2iii2.625 (14)
Cl1—Cd1—Cl4—Cd2174.361 (16)Cl5i—Cd1—Cl5—Cd2iii173.501 (18)
Cl5—Cd1—Cl4—Cd287.391 (17)C6—N1—C2—C7179.04 (17)
Cl5i—Cd1—Cl4—Cd22.695 (15)C6—N1—C2—C355.8 (2)
Cl6—Cd2—Cl4—Cd1176.201 (16)C5—N4—C3—C259.2 (2)
Cl1ii—Cd2—Cl4—Cd188.323 (18)N1—C2—C3—N457.26 (19)
Cl2i—Cd2—Cl4—Cd184.734 (17)C7—C2—C3—N4179.41 (16)
Cl5i—Cd2—Cl4—Cd12.891 (16)C3—N4—C5—C657.2 (2)
Cl5ii—Cd2—Cl4—Cd19.69 (9)C2—N1—C6—C555.5 (2)
Cl4—Cd1—Cl5—Cd2i172.459 (15)N4—C5—C6—N155.1 (2)
Cl2—Cd1—Cl5—Cd2i0.484 (13)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl3iii0.902.323.0819 (17)143
N1—H1B···Cl20.902.353.2451 (16)171
N4—H4A···Cl6iv0.902.443.1614 (17)138
N4—H4A···O1Wv0.902.453.131 (2)133
N4—H4B···O1Wvi0.901.902.791 (2)171
O1W—H1W···Cl6i0.83 (4)2.40 (4)3.2140 (19)166 (3)
O1W—H2W···Cl1vii0.84 (4)2.68 (4)3.503 (2)168 (3)
Symmetry codes: (i) x+1, y+1, z; (iii) x, y1, z; (iv) x, y+3/2, z+1/2; (v) x+1, y+1/2, z+1/2; (vi) x+1, y1/2, z+1/2; (vii) x1, y, z.

Experimental details

Crystal data
Chemical formula(C5H14N2)[Cd2Cl6]·H2O
Mr557.70
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.1907 (3), 6.8088 (2), 21.4590 (5)
β (°) 120.521 (1)
V3)1534.39 (7)
Z4
Radiation typeMo Kα
µ (mm1)3.80
Crystal size (mm)0.40 × 0.27 × 0.16
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.411, 0.545
No. of measured, independent and
observed [I > 2σ(I)] reflections
22206, 3688, 3449
Rint0.031
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.045, 1.12
No. of reflections3688
No. of parameters154
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.73

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl3i0.902.323.0819 (17)143.0
N1—H1B···Cl20.902.353.2451 (16)170.9
N4—H4A···Cl6ii0.902.443.1614 (17)137.5
N4—H4A···O1Wiii0.902.453.131 (2)132.6
N4—H4B···O1Wiv0.901.902.791 (2)171.0
O1W—H1W···Cl6v0.83 (4)2.40 (4)3.2140 (19)166 (3)
O1W—H2W···Cl1vi0.84 (4)2.68 (4)3.503 (2)168 (3)
Symmetry codes: (i) x, y1, z; (ii) x, y+3/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2; (v) x+1, y+1, z; (vi) x1, y, z.
 

Acknowledgements

This work was supported by the Fundação para a Ciência e a Tecnologia (FCT), under scholarship SFRH/BD/38387/2008.

References

First citationBruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCorradi, A. B., Cramarossa, M. R. & Saladini, M. (1997). Inorg. Chim. Acta, 257, 19–26.  CSD CrossRef CAS Web of Science Google Scholar
First citationCorradi, A. B., Cramarossa, M. R. & Saladini, M. (1998). Inorg. Chim. Acta, 272, 252–260.  Web of Science CrossRef CAS Google Scholar
First citationEl Glaoui, M., Zeller, M., Jeanneau, E. & Ben Nasr, C. (2010). Acta Cryst. E66, m895.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJian, F. F., Zhao, P. S., Wang, Q. X. & Li, Y. (2006). Inorg. Chim. Acta, 359, 1473–1477.  Web of Science CSD CrossRef CAS Google Scholar
First citationPartin, D. E. & O Keeffe, M. J. (1991). J. Solid State Chem. 95, 176–183.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, C.-K., Zhang, Q.-Z., Chen, S.-M., He, X. & Lu, C.-Z. (2005). Acta Cryst. C61, m203–m205.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYin, M. & Wu, S.-T. (2010). Acta Cryst. E66, m515.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds