organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Morpholin-4-ium hydrogen L-tartrate monohydrate

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, bDepartment of Physics, St. Xavier's College, Palayamkottai 627 002, India, cDepartment of Physics, Govt. Arts College (Autonomous), Chennai 600 035, India, and dDepartment of Physics, The New College (Autonomous), Chennai 600 014, India
*Correspondence e-mail: mnizam_new@yahoo.in

(Received 27 September 2011; accepted 25 December 2011; online 7 January 2012)

In the title compound, C4H10NO+·C4H5O6·H2O, the morpholine ring adopts a chair conformation. In the crystal, the tartrate anions are linked via O—H⋯O hydrogen bonds, forming chains propagating along [101]. These chains are linked via N—H⋯O and O—H⋯O hydrogen bonds, involving the morpholinium cation and the water molecule, forming a three-dimensional network.

Related literature

For the biological activity of morpholine derivatives, see: Lan et al. (2010[Lan, P., Chen, W. N., Xiao, G. K., Sun, P. H. & Chen, W. M. (2010). Bioorg. Med. Chem. Lett. 20, 6764-6772.]); Raparti et al. (2009[Raparti, V., Chitre, T., Bothara, K., Kumar, V., Dangre, S., Khachane, C., Gore, S. & Deshmane, B. (2009). Eur. J. Med. Chem. 44, 3954-3960.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related studies on co-crystals of amino derivatives, see: Fu et al. (2010[Fu, D.-W., Dai, J., Ge, J.-Z., Ye, H.-Y. & Qu, Z.-R. (2010). Inorg. Chem. Commun. 13, 282-285.]); Aminabhavi et al. (1986[Aminabhavi, T. M., Biradar, N. S. & Patil, S. B. (1986). Inorg. Chim. Acta, 125, 125-128.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) and for asymmetry parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C4H10NO+·C4H5O6·H2O

  • Mr = 255.23

  • Triclinic, [P \overline 1]

  • a = 7.6260 (3) Å

  • b = 8.2408 (3) Å

  • c = 10.1674 (4) Å

  • α = 98.462 (1)°

  • β = 106.282 (1)°

  • γ = 104.807 (1)°

  • V = 576.25 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.968, Tmax = 0.974

  • 15849 measured reflections

  • 3977 independent reflections

  • 3218 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.113

  • S = 1.05

  • 3977 reflections

  • 182 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O3i 0.856 (17) 2.036 (17) 2.8430 (11) 156.6 (15)
N1—H1A⋯O1W 0.888 (18) 1.888 (18) 2.7583 (13) 166.1 (16)
O1W—H1W⋯O4ii 0.825 (19) 2.013 (19) 2.8173 (11) 164.6 (18)
O1W—H2W⋯O5iii 0.848 (19) 1.921 (19) 2.7542 (11) 167.2 (17)
O2—H2A⋯O6iv 0.958 (19) 1.584 (19) 2.5412 (10) 177.3 (17)
O3—H3A⋯O5v 0.911 (17) 1.742 (17) 2.6398 (9) 167.9 (15)
O4—H4A⋯O7 0.868 (16) 1.939 (16) 2.7818 (10) 163.4 (14)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y, -z; (iii) x-1, y, z-1; (iv) x+1, y, z; (v) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Morpholine derivatives possess anticancer and antimicrobial (Lan et al., 2010; Raparti et al., 2009) activities. The amino derivatives have found wide range of applications in material science, such as magnetic, fluorescent and dielectric behaviors, and there has been an increasing interest in the preparation of amino co-crystal compounds (Aminabhavi et al., 1986; Fu, et al. 2010). Here we report the crystal structure of the title compound (Fig. 1).

All geometric parameters are in the normal ranges (Allen et al., 1987). The morpholine ring (N1/O7/C5–C8) adopts an almost perfect normal chair conformation having a total puckering amplitude, QT of 0.568 (2) Å and [θ = 176.2 (2) and ϕ = 180.1 (2)°] (Cremer & Pople, 1975), and the lowest displacement asymmetry parameters ΔS(O7/N1) is 0.11 (2)° (Nardelli, 1983). The crystal structure of the title compound is characterized by intermolecular bifurcated N–H···O and O–H···O hydorgen bond (Table. 1 and Fig. 2). The morpholinium cations and tartrate anions are linked through intermolecular bifurcated N–H···O and O–H···O hydrogen bonds, forming a chain. The chains and water molecules interact, generating an O–H···O hydrogen-bonded layer.

Related literature top

For the biological activity of morpholine derivatives, see: Lan et al. (2010); Raparti et al. (2009). For standard bond lengths, see: Allen et al. (1987). For related studies on co-crystals of amino derivatives, see: Fu et al. (2010); Aminabhavi et al. (1986). For puckering parameters, see: Cremer & Pople (1975) and for asymmetry parameters, see: Nardelli (1983).

Experimental top

Cold absolute methanol (60 ml) was added to L-tartaric acid (2.94 g, 19.62mmol). The acid was dissolved by heating the mixture on a hot plate with stirring maintained at a temperature of 358 K. The solution was cooled to 298 K and morpholine (1.70 g, 19.62 mmol) was added dropwise. The product was precipitated out of the solution as a white tiny seed crystals by spontaneous nucleation (78.3 %, m.p. 441-442 K). Single crystals suitable for X-ray diffraction were recrystallized ethl alcohol.

Refinement top

The H atoms bonded to O1w were located a different Fourier map and refined freely. All other H atoms were positioned geometrically, with C–H = 0.93 and N–H = 0.89Å constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the N–H···O and O–H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) - x+1, - y + 1, - z ; (ii) - x, - y, - z ; (iii) x - 1, y, z - 1; (iv) x + 1, y, z ; (v) - x + 1, - y + 1, - z + 1; (vi) x + 1, y, z + 1; (vii) - x + 1, - y + 1, - z + 1; (viii) x - 1, y, z.]
Morpholin-4-ium hydrogen L-tartrate monohydrate top
Crystal data top
C4H10NO+·C4H5O6·H2OZ = 2
Mr = 255.23F(000) = 272
Triclinic, P1Dx = 1.471 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6260 (3) ÅCell parameters from 6973 reflections
b = 8.2408 (3) Åθ = 2.6–31.9°
c = 10.1674 (4) ŵ = 0.13 mm1
α = 98.462 (1)°T = 293 K
β = 106.282 (1)°Block, colourless
γ = 104.807 (1)°0.25 × 0.20 × 0.20 mm
V = 576.25 (4) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3977 independent reflections
Radiation source: fine-focus sealed tube3218 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 10.0 pixels mm-1θmax = 32.0°, θmin = 2.2°
ω and ϕ scanh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1212
Tmin = 0.968, Tmax = 0.974l = 1515
15849 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: difference Fourier map
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0609P)2 + 0.0699P]
where P = (Fo2 + 2Fc2)/3
3977 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C4H10NO+·C4H5O6·H2Oγ = 104.807 (1)°
Mr = 255.23V = 576.25 (4) Å3
Triclinic, P1Z = 2
a = 7.6260 (3) ÅMo Kα radiation
b = 8.2408 (3) ŵ = 0.13 mm1
c = 10.1674 (4) ÅT = 293 K
α = 98.462 (1)°0.25 × 0.20 × 0.20 mm
β = 106.282 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3977 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3218 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.974Rint = 0.022
15849 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.42 e Å3
3977 reflectionsΔρmin = 0.21 e Å3
182 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.94402 (12)0.37187 (11)0.27498 (9)0.04274 (19)
O20.97405 (10)0.21983 (10)0.43867 (8)0.03730 (17)
H2A1.078 (3)0.201 (2)0.4093 (18)0.070 (5)*
O30.64815 (10)0.44948 (8)0.32017 (7)0.02986 (15)
H3A0.614 (2)0.529 (2)0.3718 (16)0.055 (4)*
O40.49940 (9)0.07745 (8)0.24744 (7)0.02624 (14)
H4A0.435 (2)0.1291 (19)0.1931 (16)0.046 (4)*
O50.46940 (10)0.30910 (9)0.56376 (7)0.03325 (16)
O60.24385 (10)0.16066 (12)0.35901 (9)0.0434 (2)
O70.27079 (16)0.18179 (14)0.03248 (8)0.0589 (3)
N10.13637 (14)0.33402 (11)0.18924 (9)0.03416 (18)
H1A0.009 (3)0.299 (2)0.2159 (17)0.058 (4)*
H1B0.171 (2)0.406 (2)0.2372 (17)0.054 (4)*
C10.89145 (11)0.31305 (11)0.36407 (9)0.02589 (17)
C20.72471 (11)0.34681 (10)0.40548 (9)0.02281 (15)
H20.77310.41030.50440.027*
C30.56984 (11)0.17709 (10)0.38751 (8)0.02054 (15)
H30.62950.11050.44830.025*
C40.41269 (11)0.21858 (11)0.44055 (9)0.02372 (16)
C50.18699 (19)0.08025 (15)0.10810 (11)0.0423 (2)
H5A0.05030.02700.12830.051*
H5B0.24450.01100.11890.051*
C60.21726 (18)0.18979 (14)0.20995 (11)0.0403 (2)
H6A0.35360.23580.19490.048*
H6B0.15440.12020.30580.048*
C70.21262 (16)0.43291 (14)0.04050 (12)0.0405 (2)
H7A0.14710.51770.02850.049*
H7B0.34870.49360.01520.049*
C80.1826 (2)0.31178 (19)0.05380 (12)0.0536 (3)
H8A0.23770.37590.15150.064*
H8B0.04600.25820.03350.064*
O1W0.25124 (12)0.25085 (11)0.22673 (10)0.0442 (2)
H1W0.305 (3)0.152 (3)0.2239 (19)0.066 (5)*
H2W0.323 (3)0.282 (2)0.2912 (19)0.061 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0447 (4)0.0499 (4)0.0573 (5)0.0244 (4)0.0374 (4)0.0259 (4)
O20.0257 (3)0.0513 (4)0.0468 (4)0.0201 (3)0.0188 (3)0.0194 (3)
O30.0370 (3)0.0253 (3)0.0389 (3)0.0157 (3)0.0226 (3)0.0119 (3)
O40.0260 (3)0.0244 (3)0.0279 (3)0.0086 (2)0.0094 (2)0.0027 (2)
O50.0347 (3)0.0436 (4)0.0309 (3)0.0223 (3)0.0166 (3)0.0079 (3)
O60.0206 (3)0.0625 (5)0.0465 (4)0.0161 (3)0.0121 (3)0.0031 (4)
O70.0882 (7)0.0764 (6)0.0274 (4)0.0622 (6)0.0101 (4)0.0106 (4)
N10.0375 (4)0.0333 (4)0.0352 (4)0.0091 (3)0.0161 (3)0.0145 (3)
C10.0193 (3)0.0254 (4)0.0323 (4)0.0047 (3)0.0118 (3)0.0026 (3)
C20.0206 (3)0.0224 (3)0.0268 (4)0.0063 (3)0.0115 (3)0.0035 (3)
C30.0182 (3)0.0220 (3)0.0251 (4)0.0085 (3)0.0104 (3)0.0067 (3)
C40.0216 (3)0.0270 (4)0.0307 (4)0.0122 (3)0.0143 (3)0.0118 (3)
C50.0605 (7)0.0408 (5)0.0332 (5)0.0254 (5)0.0166 (5)0.0122 (4)
C60.0553 (6)0.0387 (5)0.0340 (5)0.0172 (5)0.0235 (5)0.0083 (4)
C70.0359 (5)0.0382 (5)0.0445 (6)0.0134 (4)0.0125 (4)0.0005 (4)
C80.0798 (9)0.0697 (8)0.0315 (5)0.0532 (7)0.0212 (5)0.0137 (5)
O1W0.0343 (4)0.0367 (4)0.0501 (5)0.0037 (3)0.0014 (3)0.0144 (4)
Geometric parameters (Å, º) top
O1—C11.2041 (11)C2—C31.5310 (11)
O2—C11.3089 (11)C2—H20.9800
O2—H2A0.958 (19)C3—C41.5367 (11)
O3—C21.4119 (10)C3—H30.9800
O3—H3A0.911 (17)C5—C61.4976 (15)
O4—C31.4115 (10)C5—H5A0.9700
O4—H4A0.868 (16)C5—H5B0.9700
O5—C41.2526 (11)C6—H6A0.9700
O6—C41.2425 (11)C6—H6B0.9700
O7—C51.4192 (14)C7—C81.5019 (18)
O7—C81.4239 (14)C7—H7A0.9700
N1—C71.4803 (14)C7—H7B0.9700
N1—C61.4872 (14)C8—H8A0.9700
N1—H1A0.888 (18)C8—H8B0.9700
N1—H1B0.856 (17)O1W—H1W0.825 (19)
C1—C21.5224 (11)O1W—H2W0.848 (19)
C1—O2—H2A110.4 (11)O5—C4—C3115.75 (7)
C2—O3—H3A110.2 (10)O7—C5—C6110.47 (10)
C3—O4—H4A109.1 (10)O7—C5—H5A109.6
C5—O7—C8110.99 (9)C6—C5—H5A109.6
C7—N1—C6111.80 (8)O7—C5—H5B109.6
C7—N1—H1A108.3 (11)C6—C5—H5B109.6
C6—N1—H1A113.0 (11)H5A—C5—H5B108.1
C7—N1—H1B106.1 (10)N1—C6—C5109.55 (8)
C6—N1—H1B109.1 (11)N1—C6—H6A109.8
H1A—N1—H1B108.3 (15)C5—C6—H6A109.8
O1—C1—O2124.30 (8)N1—C6—H6B109.8
O1—C1—C2122.71 (8)C5—C6—H6B109.8
O2—C1—C2112.95 (7)H6A—C6—H6B108.2
O3—C2—C1108.22 (7)N1—C7—C8109.64 (9)
O3—C2—C3110.63 (6)N1—C7—H7A109.7
C1—C2—C3110.96 (6)C8—C7—H7A109.7
O3—C2—H2109.0N1—C7—H7B109.7
C1—C2—H2109.0C8—C7—H7B109.7
C3—C2—H2109.0H7A—C7—H7B108.2
O4—C3—C2111.41 (6)O7—C8—C7110.28 (10)
O4—C3—C4113.65 (6)O7—C8—H8A109.6
C2—C3—C4108.61 (6)C7—C8—H8A109.6
O4—C3—H3107.6O7—C8—H8B109.6
C2—C3—H3107.6C7—C8—H8B109.6
C4—C3—H3107.6H8A—C8—H8B108.1
O6—C4—O5126.30 (8)H1W—O1W—H2W110.3 (17)
O6—C4—C3117.95 (8)
O1—C1—C2—O31.65 (12)C2—C3—C4—O6125.59 (9)
O2—C1—C2—O3179.30 (7)O4—C3—C4—O5178.95 (7)
O1—C1—C2—C3123.19 (9)C2—C3—C4—O554.34 (9)
O2—C1—C2—C359.15 (10)C8—O7—C5—C662.14 (15)
O3—C2—C3—O462.09 (8)C7—N1—C6—C553.29 (13)
C1—C2—C3—O458.03 (8)O7—C5—C6—N156.83 (13)
O3—C2—C3—C463.83 (8)C6—N1—C7—C853.28 (12)
C1—C2—C3—C4176.05 (7)C5—O7—C8—C761.96 (16)
O4—C3—C4—O60.98 (11)N1—C7—C8—O756.73 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O3i0.856 (17)2.036 (17)2.8430 (11)156.6 (15)
N1—H1A···O1W0.888 (18)1.888 (18)2.7583 (13)166.1 (16)
O1W—H1W···O4ii0.825 (19)2.013 (19)2.8173 (11)164.6 (18)
O1W—H2W···O5iii0.848 (19)1.921 (19)2.7542 (11)167.2 (17)
O2—H2A···O6iv0.958 (19)1.584 (19)2.5412 (10)177.3 (17)
O3—H3A···O5v0.911 (17)1.742 (17)2.6398 (9)167.9 (15)
O4—H4A···O70.868 (16)1.939 (16)2.7818 (10)163.4 (14)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z; (iii) x1, y, z1; (iv) x+1, y, z; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC4H10NO+·C4H5O6·H2O
Mr255.23
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.6260 (3), 8.2408 (3), 10.1674 (4)
α, β, γ (°)98.462 (1), 106.282 (1), 104.807 (1)
V3)576.25 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.968, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
15849, 3977, 3218
Rint0.022
(sin θ/λ)max1)0.746
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.113, 1.05
No. of reflections3977
No. of parameters182
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.21

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O3i0.856 (17)2.036 (17)2.8430 (11)156.6 (15)
N1—H1A···O1W0.888 (18)1.888 (18)2.7583 (13)166.1 (16)
O1W—H1W···O4ii0.825 (19)2.013 (19)2.8173 (11)164.6 (18)
O1W—H2W···O5iii0.848 (19)1.921 (19)2.7542 (11)167.2 (17)
O2—H2A···O6iv0.958 (19)1.584 (19)2.5412 (10)177.3 (17)
O3—H3A···O5v0.911 (17)1.742 (17)2.6398 (9)167.9 (15)
O4—H4A···O70.868 (16)1.939 (16)2.7818 (10)163.4 (14)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z; (iii) x1, y, z1; (iv) x+1, y, z; (v) x+1, y+1, z+1.
 

Acknowledgements

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the X-ray intensity data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAminabhavi, T. M., Biradar, N. S. & Patil, S. B. (1986). Inorg. Chim. Acta, 125, 125–128.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFu, D.-W., Dai, J., Ge, J.-Z., Ye, H.-Y. & Qu, Z.-R. (2010). Inorg. Chem. Commun. 13, 282–285.  Web of Science CSD CrossRef CAS Google Scholar
First citationLan, P., Chen, W. N., Xiao, G. K., Sun, P. H. & Chen, W. M. (2010). Bioorg. Med. Chem. Lett. 20, 6764–6772.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRaparti, V., Chitre, T., Bothara, K., Kumar, V., Dangre, S., Khachane, C., Gore, S. & Deshmane, B. (2009). Eur. J. Med. Chem. 44, 3954–3960.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds