organic compounds
Morpholin-4-ium hydrogen L-tartrate monohydrate
aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, bDepartment of Physics, St. Xavier's College, Palayamkottai 627 002, India, cDepartment of Physics, Govt. Arts College (Autonomous), Chennai 600 035, India, and dDepartment of Physics, The New College (Autonomous), Chennai 600 014, India
*Correspondence e-mail: mnizam_new@yahoo.in
In the title compound, C4H10NO+·C4H5O6−·H2O, the morpholine ring adopts a chair conformation. In the crystal, the tartrate anions are linked via O—H⋯O hydrogen bonds, forming chains propagating along [101]. These chains are linked via N—H⋯O and O—H⋯O hydrogen bonds, involving the morpholinium cation and the water molecule, forming a three-dimensional network.
Related literature
For the biological activity of morpholine derivatives, see: Lan et al. (2010); Raparti et al. (2009). For standard bond lengths, see: Allen et al. (1987). For related studies on co-crystals of amino derivatives, see: Fu et al. (2010); Aminabhavi et al. (1986). For puckering parameters, see: Cremer & Pople (1975) and for asymmetry parameters, see: Nardelli (1983).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811055620/lx2207sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811055620/lx2207Isup2.hkl
Cold absolute methanol (60 ml) was added to L-tartaric acid (2.94 g, 19.62mmol). The acid was dissolved by heating the mixture on a hot plate with stirring maintained at a temperature of 358 K. The solution was cooled to 298 K and morpholine (1.70 g, 19.62 mmol) was added dropwise. The product was precipitated out of the solution as a white tiny seed crystals by spontaneous nucleation (78.3 %, m.p. 441-442 K). Single crystals suitable for X-ray diffraction were recrystallized ethl alcohol.
The H atoms bonded to O1w were located a different Fourier map and refined freely. All other H atoms were positioned geometrically, with C–H = 0.93 and N–H = 0.89Å constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. | |
Fig. 2. A view of the N–H···O and O–H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) - x+1, - y + 1, - z ; (ii) - x, - y, - z ; (iii) x - 1, y, z - 1; (iv) x + 1, y, z ; (v) - x + 1, - y + 1, - z + 1; (vi) x + 1, y, z + 1; (vii) - x + 1, - y + 1, - z + 1; (viii) x - 1, y, z.] |
C4H10NO+·C4H5O6−·H2O | Z = 2 |
Mr = 255.23 | F(000) = 272 |
Triclinic, P1 | Dx = 1.471 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.6260 (3) Å | Cell parameters from 6973 reflections |
b = 8.2408 (3) Å | θ = 2.6–31.9° |
c = 10.1674 (4) Å | µ = 0.13 mm−1 |
α = 98.462 (1)° | T = 293 K |
β = 106.282 (1)° | Block, colourless |
γ = 104.807 (1)° | 0.25 × 0.20 × 0.20 mm |
V = 576.25 (4) Å3 |
Bruker Kappa APEXII CCD diffractometer | 3977 independent reflections |
Radiation source: fine-focus sealed tube | 3218 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
Detector resolution: 10.0 pixels mm-1 | θmax = 32.0°, θmin = 2.2° |
ω and ϕ scan | h = −11→11 |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | k = −12→12 |
Tmin = 0.968, Tmax = 0.974 | l = −15→15 |
15849 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.113 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0609P)2 + 0.0699P] where P = (Fo2 + 2Fc2)/3 |
3977 reflections | (Δ/σ)max < 0.001 |
182 parameters | Δρmax = 0.42 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
C4H10NO+·C4H5O6−·H2O | γ = 104.807 (1)° |
Mr = 255.23 | V = 576.25 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.6260 (3) Å | Mo Kα radiation |
b = 8.2408 (3) Å | µ = 0.13 mm−1 |
c = 10.1674 (4) Å | T = 293 K |
α = 98.462 (1)° | 0.25 × 0.20 × 0.20 mm |
β = 106.282 (1)° |
Bruker Kappa APEXII CCD diffractometer | 3977 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 3218 reflections with I > 2σ(I) |
Tmin = 0.968, Tmax = 0.974 | Rint = 0.022 |
15849 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.113 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.42 e Å−3 |
3977 reflections | Δρmin = −0.21 e Å−3 |
182 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.94402 (12) | 0.37187 (11) | 0.27498 (9) | 0.04274 (19) | |
O2 | 0.97405 (10) | 0.21983 (10) | 0.43867 (8) | 0.03730 (17) | |
H2A | 1.078 (3) | 0.201 (2) | 0.4093 (18) | 0.070 (5)* | |
O3 | 0.64815 (10) | 0.44948 (8) | 0.32017 (7) | 0.02986 (15) | |
H3A | 0.614 (2) | 0.529 (2) | 0.3718 (16) | 0.055 (4)* | |
O4 | 0.49940 (9) | 0.07745 (8) | 0.24744 (7) | 0.02624 (14) | |
H4A | 0.435 (2) | 0.1291 (19) | 0.1931 (16) | 0.046 (4)* | |
O5 | 0.46940 (10) | 0.30910 (9) | 0.56376 (7) | 0.03325 (16) | |
O6 | 0.24385 (10) | 0.16066 (12) | 0.35901 (9) | 0.0434 (2) | |
O7 | 0.27079 (16) | 0.18179 (14) | 0.03248 (8) | 0.0589 (3) | |
N1 | 0.13637 (14) | 0.33402 (11) | −0.18924 (9) | 0.03416 (18) | |
H1A | 0.009 (3) | 0.299 (2) | −0.2159 (17) | 0.058 (4)* | |
H1B | 0.171 (2) | 0.406 (2) | −0.2372 (17) | 0.054 (4)* | |
C1 | 0.89145 (11) | 0.31305 (11) | 0.36407 (9) | 0.02589 (17) | |
C2 | 0.72471 (11) | 0.34681 (10) | 0.40548 (9) | 0.02281 (15) | |
H2 | 0.7731 | 0.4103 | 0.5044 | 0.027* | |
C3 | 0.56984 (11) | 0.17709 (10) | 0.38751 (8) | 0.02054 (15) | |
H3 | 0.6295 | 0.1105 | 0.4483 | 0.025* | |
C4 | 0.41269 (11) | 0.21858 (11) | 0.44055 (9) | 0.02372 (16) | |
C5 | 0.18699 (19) | 0.08025 (15) | −0.10810 (11) | 0.0423 (2) | |
H5A | 0.0503 | 0.0270 | −0.1283 | 0.051* | |
H5B | 0.2445 | −0.0110 | −0.1189 | 0.051* | |
C6 | 0.21726 (18) | 0.18979 (14) | −0.20995 (11) | 0.0403 (2) | |
H6A | 0.3536 | 0.2358 | −0.1949 | 0.048* | |
H6B | 0.1544 | 0.1202 | −0.3058 | 0.048* | |
C7 | 0.21262 (16) | 0.43291 (14) | −0.04050 (12) | 0.0405 (2) | |
H7A | 0.1471 | 0.5177 | −0.0285 | 0.049* | |
H7B | 0.3487 | 0.4936 | −0.0152 | 0.049* | |
C8 | 0.1826 (2) | 0.31178 (19) | 0.05380 (12) | 0.0536 (3) | |
H8A | 0.2377 | 0.3759 | 0.1515 | 0.064* | |
H8B | 0.0460 | 0.2582 | 0.0335 | 0.064* | |
O1W | −0.25124 (12) | 0.25085 (11) | −0.22673 (10) | 0.0442 (2) | |
H1W | −0.305 (3) | 0.152 (3) | −0.2239 (19) | 0.066 (5)* | |
H2W | −0.323 (3) | 0.282 (2) | −0.2912 (19) | 0.061 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0447 (4) | 0.0499 (4) | 0.0573 (5) | 0.0244 (4) | 0.0374 (4) | 0.0259 (4) |
O2 | 0.0257 (3) | 0.0513 (4) | 0.0468 (4) | 0.0201 (3) | 0.0188 (3) | 0.0194 (3) |
O3 | 0.0370 (3) | 0.0253 (3) | 0.0389 (3) | 0.0157 (3) | 0.0226 (3) | 0.0119 (3) |
O4 | 0.0260 (3) | 0.0244 (3) | 0.0279 (3) | 0.0086 (2) | 0.0094 (2) | 0.0027 (2) |
O5 | 0.0347 (3) | 0.0436 (4) | 0.0309 (3) | 0.0223 (3) | 0.0166 (3) | 0.0079 (3) |
O6 | 0.0206 (3) | 0.0625 (5) | 0.0465 (4) | 0.0161 (3) | 0.0121 (3) | 0.0031 (4) |
O7 | 0.0882 (7) | 0.0764 (6) | 0.0274 (4) | 0.0622 (6) | 0.0101 (4) | 0.0106 (4) |
N1 | 0.0375 (4) | 0.0333 (4) | 0.0352 (4) | 0.0091 (3) | 0.0161 (3) | 0.0145 (3) |
C1 | 0.0193 (3) | 0.0254 (4) | 0.0323 (4) | 0.0047 (3) | 0.0118 (3) | 0.0026 (3) |
C2 | 0.0206 (3) | 0.0224 (3) | 0.0268 (4) | 0.0063 (3) | 0.0115 (3) | 0.0035 (3) |
C3 | 0.0182 (3) | 0.0220 (3) | 0.0251 (4) | 0.0085 (3) | 0.0104 (3) | 0.0067 (3) |
C4 | 0.0216 (3) | 0.0270 (4) | 0.0307 (4) | 0.0122 (3) | 0.0143 (3) | 0.0118 (3) |
C5 | 0.0605 (7) | 0.0408 (5) | 0.0332 (5) | 0.0254 (5) | 0.0166 (5) | 0.0122 (4) |
C6 | 0.0553 (6) | 0.0387 (5) | 0.0340 (5) | 0.0172 (5) | 0.0235 (5) | 0.0083 (4) |
C7 | 0.0359 (5) | 0.0382 (5) | 0.0445 (6) | 0.0134 (4) | 0.0125 (4) | −0.0005 (4) |
C8 | 0.0798 (9) | 0.0697 (8) | 0.0315 (5) | 0.0532 (7) | 0.0212 (5) | 0.0137 (5) |
O1W | 0.0343 (4) | 0.0367 (4) | 0.0501 (5) | 0.0037 (3) | 0.0014 (3) | 0.0144 (4) |
O1—C1 | 1.2041 (11) | C2—C3 | 1.5310 (11) |
O2—C1 | 1.3089 (11) | C2—H2 | 0.9800 |
O2—H2A | 0.958 (19) | C3—C4 | 1.5367 (11) |
O3—C2 | 1.4119 (10) | C3—H3 | 0.9800 |
O3—H3A | 0.911 (17) | C5—C6 | 1.4976 (15) |
O4—C3 | 1.4115 (10) | C5—H5A | 0.9700 |
O4—H4A | 0.868 (16) | C5—H5B | 0.9700 |
O5—C4 | 1.2526 (11) | C6—H6A | 0.9700 |
O6—C4 | 1.2425 (11) | C6—H6B | 0.9700 |
O7—C5 | 1.4192 (14) | C7—C8 | 1.5019 (18) |
O7—C8 | 1.4239 (14) | C7—H7A | 0.9700 |
N1—C7 | 1.4803 (14) | C7—H7B | 0.9700 |
N1—C6 | 1.4872 (14) | C8—H8A | 0.9700 |
N1—H1A | 0.888 (18) | C8—H8B | 0.9700 |
N1—H1B | 0.856 (17) | O1W—H1W | 0.825 (19) |
C1—C2 | 1.5224 (11) | O1W—H2W | 0.848 (19) |
C1—O2—H2A | 110.4 (11) | O5—C4—C3 | 115.75 (7) |
C2—O3—H3A | 110.2 (10) | O7—C5—C6 | 110.47 (10) |
C3—O4—H4A | 109.1 (10) | O7—C5—H5A | 109.6 |
C5—O7—C8 | 110.99 (9) | C6—C5—H5A | 109.6 |
C7—N1—C6 | 111.80 (8) | O7—C5—H5B | 109.6 |
C7—N1—H1A | 108.3 (11) | C6—C5—H5B | 109.6 |
C6—N1—H1A | 113.0 (11) | H5A—C5—H5B | 108.1 |
C7—N1—H1B | 106.1 (10) | N1—C6—C5 | 109.55 (8) |
C6—N1—H1B | 109.1 (11) | N1—C6—H6A | 109.8 |
H1A—N1—H1B | 108.3 (15) | C5—C6—H6A | 109.8 |
O1—C1—O2 | 124.30 (8) | N1—C6—H6B | 109.8 |
O1—C1—C2 | 122.71 (8) | C5—C6—H6B | 109.8 |
O2—C1—C2 | 112.95 (7) | H6A—C6—H6B | 108.2 |
O3—C2—C1 | 108.22 (7) | N1—C7—C8 | 109.64 (9) |
O3—C2—C3 | 110.63 (6) | N1—C7—H7A | 109.7 |
C1—C2—C3 | 110.96 (6) | C8—C7—H7A | 109.7 |
O3—C2—H2 | 109.0 | N1—C7—H7B | 109.7 |
C1—C2—H2 | 109.0 | C8—C7—H7B | 109.7 |
C3—C2—H2 | 109.0 | H7A—C7—H7B | 108.2 |
O4—C3—C2 | 111.41 (6) | O7—C8—C7 | 110.28 (10) |
O4—C3—C4 | 113.65 (6) | O7—C8—H8A | 109.6 |
C2—C3—C4 | 108.61 (6) | C7—C8—H8A | 109.6 |
O4—C3—H3 | 107.6 | O7—C8—H8B | 109.6 |
C2—C3—H3 | 107.6 | C7—C8—H8B | 109.6 |
C4—C3—H3 | 107.6 | H8A—C8—H8B | 108.1 |
O6—C4—O5 | 126.30 (8) | H1W—O1W—H2W | 110.3 (17) |
O6—C4—C3 | 117.95 (8) | ||
O1—C1—C2—O3 | 1.65 (12) | C2—C3—C4—O6 | 125.59 (9) |
O2—C1—C2—O3 | 179.30 (7) | O4—C3—C4—O5 | −178.95 (7) |
O1—C1—C2—C3 | 123.19 (9) | C2—C3—C4—O5 | −54.34 (9) |
O2—C1—C2—C3 | −59.15 (10) | C8—O7—C5—C6 | 62.14 (15) |
O3—C2—C3—O4 | 62.09 (8) | C7—N1—C6—C5 | 53.29 (13) |
C1—C2—C3—O4 | −58.03 (8) | O7—C5—C6—N1 | −56.83 (13) |
O3—C2—C3—C4 | −63.83 (8) | C6—N1—C7—C8 | −53.28 (12) |
C1—C2—C3—C4 | 176.05 (7) | C5—O7—C8—C7 | −61.96 (16) |
O4—C3—C4—O6 | 0.98 (11) | N1—C7—C8—O7 | 56.73 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···O3i | 0.856 (17) | 2.036 (17) | 2.8430 (11) | 156.6 (15) |
N1—H1A···O1W | 0.888 (18) | 1.888 (18) | 2.7583 (13) | 166.1 (16) |
O1W—H1W···O4ii | 0.825 (19) | 2.013 (19) | 2.8173 (11) | 164.6 (18) |
O1W—H2W···O5iii | 0.848 (19) | 1.921 (19) | 2.7542 (11) | 167.2 (17) |
O2—H2A···O6iv | 0.958 (19) | 1.584 (19) | 2.5412 (10) | 177.3 (17) |
O3—H3A···O5v | 0.911 (17) | 1.742 (17) | 2.6398 (9) | 167.9 (15) |
O4—H4A···O7 | 0.868 (16) | 1.939 (16) | 2.7818 (10) | 163.4 (14) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y, −z; (iii) x−1, y, z−1; (iv) x+1, y, z; (v) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C4H10NO+·C4H5O6−·H2O |
Mr | 255.23 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.6260 (3), 8.2408 (3), 10.1674 (4) |
α, β, γ (°) | 98.462 (1), 106.282 (1), 104.807 (1) |
V (Å3) | 576.25 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.13 |
Crystal size (mm) | 0.25 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.968, 0.974 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15849, 3977, 3218 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.746 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.113, 1.05 |
No. of reflections | 3977 |
No. of parameters | 182 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.42, −0.21 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···O3i | 0.856 (17) | 2.036 (17) | 2.8430 (11) | 156.6 (15) |
N1—H1A···O1W | 0.888 (18) | 1.888 (18) | 2.7583 (13) | 166.1 (16) |
O1W—H1W···O4ii | 0.825 (19) | 2.013 (19) | 2.8173 (11) | 164.6 (18) |
O1W—H2W···O5iii | 0.848 (19) | 1.921 (19) | 2.7542 (11) | 167.2 (17) |
O2—H2A···O6iv | 0.958 (19) | 1.584 (19) | 2.5412 (10) | 177.3 (17) |
O3—H3A···O5v | 0.911 (17) | 1.742 (17) | 2.6398 (9) | 167.9 (15) |
O4—H4A···O7 | 0.868 (16) | 1.939 (16) | 2.7818 (10) | 163.4 (14) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y, −z; (iii) x−1, y, z−1; (iv) x+1, y, z; (v) −x+1, −y+1, −z+1. |
Acknowledgements
The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the
data collection.References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Aminabhavi, T. M., Biradar, N. S. & Patil, S. B. (1986). Inorg. Chim. Acta, 125, 125–128. CrossRef CAS Web of Science Google Scholar
Bruker (2004). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Fu, D.-W., Dai, J., Ge, J.-Z., Ye, H.-Y. & Qu, Z.-R. (2010). Inorg. Chem. Commun. 13, 282–285. Web of Science CSD CrossRef CAS Google Scholar
Lan, P., Chen, W. N., Xiao, G. K., Sun, P. H. & Chen, W. M. (2010). Bioorg. Med. Chem. Lett. 20, 6764–6772. Web of Science CrossRef CAS PubMed Google Scholar
Nardelli, M. (1983). Acta Cryst. C39, 1141–1142. CrossRef CAS Web of Science IUCr Journals Google Scholar
Raparti, V., Chitre, T., Bothara, K., Kumar, V., Dangre, S., Khachane, C., Gore, S. & Deshmane, B. (2009). Eur. J. Med. Chem. 44, 3954–3960. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Morpholine derivatives possess anticancer and antimicrobial (Lan et al., 2010; Raparti et al., 2009) activities. The amino derivatives have found wide range of applications in material science, such as magnetic, fluorescent and dielectric behaviors, and there has been an increasing interest in the preparation of amino co-crystal compounds (Aminabhavi et al., 1986; Fu, et al. 2010). Here we report the crystal structure of the title compound (Fig. 1).
All geometric parameters are in the normal ranges (Allen et al., 1987). The morpholine ring (N1/O7/C5–C8) adopts an almost perfect normal chair conformation having a total puckering amplitude, QT of 0.568 (2) Å and [θ = 176.2 (2) and ϕ = 180.1 (2)°] (Cremer & Pople, 1975), and the lowest displacement asymmetry parameters ΔS(O7/N1) is 0.11 (2)° (Nardelli, 1983). The crystal structure of the title compound is characterized by intermolecular bifurcated N–H···O and O–H···O hydorgen bond (Table. 1 and Fig. 2). The morpholinium cations and tartrate anions are linked through intermolecular bifurcated N–H···O and O–H···O hydrogen bonds, forming a chain. The chains and water molecules interact, generating an O–H···O hydrogen-bonded layer.