organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o458-o459

2-(3,4-Di­methyl-5,5-dioxo-2H,4H-pyrazolo­[4,3-c][1,2]benzo­thia­zin-2-yl)-1-(4-meth­­oxy­phen­yl)ethanone

aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, bChemistry Department, Govt. College University, Faisalabad, Pakistan, and cDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: drhamidlatif@yahoo.com

(Received 29 December 2011; accepted 11 January 2012; online 18 January 2012)

In the title mol­ecule, C20H19N3O4S, the heterocyclic thia­zine ring adopts a half-chair conformation with the S and N atoms displaced by 0.492 (6) and 0.199 (6) Å, respectively, on opposite sides from the mean plane formed by the remaining ring atoms. The ethanone group lies at an angle of 9.4 (2)° with respect to the benzene ring, which lies almost perpendicular to the pyrazole ring, with a dihedral between the two planes of 78.07 (9)°. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds.

Related literature

For the biological activity of pyrazoles, see: Farag et al. (2008[Farag, A. M., Mayhoub, A. S., Barakatb, S. E. & Bayomi, A. H. (2008). Bioorg. Med. Chem. 16, 881-889.]); Ciciani et al. (2008[Ciciani, G., Coronnello, M., Guerrini, G., Selleri, S., Cantore, M., Failli, P., Mini, E. & Costanzo, A. (2008). Bioorg. Med. Chem. 16, 9409-9419.]); Cunico et al. (2006[Cunico, W., Cechinel, C. A., Bonacorso, H. G., Martins, M. A. P., Zanatta, N., Souza, M. V. N., Freitas, I. O., Soaresa, R. P. & Krettli, A. U. (2006). Bioorg. Med. Chem. Lett. 16, 649-653.]); Ahmad et al. (2010[Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698-704.]). For a related structure, see: Siddiqui et al. (2008[Siddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4-o6.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19N3O4S

  • Mr = 397.44

  • Monoclinic, P 21 /n

  • a = 13.862 (5) Å

  • b = 8.079 (2) Å

  • c = 17.748 (7) Å

  • β = 108.372 (18)°

  • V = 1886.3 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 173 K

  • 0.14 × 0.09 × 0.07 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.972, Tmax = 0.986

  • 7270 measured reflections

  • 4221 independent reflections

  • 3206 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.132

  • S = 1.15

  • 4221 reflections

  • 256 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.95 2.34 3.216 (3) 154
C4—H4⋯O4ii 0.95 2.53 3.435 (4) 159
C9—H9A⋯O3iii 0.98 2.54 3.335 (4) 138
C11—H11C⋯O2iv 0.98 2.56 3.498 (4) 161
C12—H12B⋯O2iv 0.99 2.33 3.309 (4) 170
Symmetry codes: (i) x, y-1, z; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius B V, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Both benzothiazines and pyrazoles are known as versatile biologically active heterocyclic nuclei. Pyrazoles are found to be cytotoxic agents (Ciciani et al., 2008), anti–tumor (Farag et al., 2008), anti–malarial (Cunico et al., 2006), etc. In continuation to our research interests in biologically active molecules (Ahmad et al., 2010), we have fused both of these heterocycles and herein report the synthesis and crystal structure of the title compound.

The bond distances and angles in the title compound (Fig. 1) agree very well with the corresponding bond distances and angles reported in closely related compounds (Siddiqui et al., 2008). The heterocyclic thiazine ring adopts a half chair conformation with the atoms S1 and N1 displaced by 0.492 (5) and 0.199 (5) Å, respectively, on the opposite sides from the mean plane formed by the remaining ring atoms. The ethanone group O3/C12/C13/C14 is oriented at 9.4 (2)° with the benzene ring (C14–C19) which forms a dihedral angle 78.07 (9)° with the pyrazolyl ring (N2/N3/C7/C8/C10). The crystal packing (Fig. 2) is stabilized by weak intermolecular C—H···O hydrogen bonds (see, Table 1).

Related literature top

For the biological activity of pyrazoles, see: Farag et al. (2008); Ciciani et al. (2008); Cunico et al. (2006); Ahmad et al. (2010). For a related structure, see: Siddiqui et al. (2008).

Experimental top

Equimolar quantities of 3,4–dimethyl–2,4–dihydropyrazolo[4,3–c][1,2] benzothiazine 5,5–dioxide (1.0 g, 4.01 mmol) and p–methoxyphenacyl bromide (0.92 g, 4.01 mmol) were dissolved in acetonitrile (20 ml) followed by the addition of equimolar K2CO3 (0.55 g, 4.01 mmol). The mixture was subjected to reflux for 7 h. The completion of reaction was monitored with the help of TLC. The precipitates of the title compound formed were collected and washed with methanol. The crystals suitable for X–ray crystallographic analysis were grown from a solution of CHCl3:MeOH in 1:1 ratio.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95, 0.98 and 0.99 Å, for aryl, methyl and methylene H–atoms, respectively. The Uiso(H) were allowed at 1.5Ueq(C methyl) or 1.2Ueq(C non–methyl).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—-H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen- bonding were omitted for clarity. [Symmetry codes: (i) x, y + 1, z; (ii) - x + 1/2, y + 1/2, - z + 1/2; (iii) - x + 3/2, y + 1/2, - z + 1/2; (iv) x - 1/2, y - 1/2, z + 1/2.]
2-(3,4-Dimethyl-5,5-dioxo-2H,4H-pyrazolo[4,3- c][1,2]benzothiazin-2-yl)-1-(4-methoxyphenyl)ethanone top
Crystal data top
C20H19N3O4SF(000) = 832
Mr = 397.44Dx = 1.399 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7270 reflections
a = 13.862 (5) Åθ = 1.0–27.5°
b = 8.079 (2) ŵ = 0.20 mm1
c = 17.748 (7) ÅT = 173 K
β = 108.372 (18)°Block, colorless
V = 1886.3 (11) Å30.14 × 0.09 × 0.07 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
4221 independent reflections
Radiation source: fine-focus sealed tube3206 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ω and ϕ scansθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 1717
Tmin = 0.972, Tmax = 0.986k = 910
7270 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: difference Fourier map
wR(F2) = 0.132H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0125P)2 + 3.1849P]
where P = (Fo2 + 2Fc2)/3
4221 reflections(Δ/σ)max < 0.001
256 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C20H19N3O4SV = 1886.3 (11) Å3
Mr = 397.44Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.862 (5) ŵ = 0.20 mm1
b = 8.079 (2) ÅT = 173 K
c = 17.748 (7) Å0.14 × 0.09 × 0.07 mm
β = 108.372 (18)°
Data collection top
Nonius KappaCCD
diffractometer
4221 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
3206 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.986Rint = 0.046
7270 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.15Δρmax = 0.27 e Å3
4221 reflectionsΔρmin = 0.34 e Å3
256 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.74841 (6)0.70621 (8)0.04740 (5)0.02818 (18)
O10.80588 (18)0.8557 (2)0.03966 (15)0.0421 (6)
O20.65575 (16)0.6908 (3)0.11268 (13)0.0364 (5)
O30.69947 (17)0.1379 (3)0.20986 (14)0.0450 (6)
O40.42507 (16)0.3992 (2)0.30314 (12)0.0328 (5)
N10.71869 (18)0.6790 (3)0.03472 (15)0.0278 (5)
N20.68248 (17)0.2335 (3)0.02702 (14)0.0249 (5)
N30.61920 (17)0.2872 (3)0.06695 (14)0.0247 (5)
C10.8567 (2)0.2439 (3)0.04096 (18)0.0285 (6)
H10.84460.13750.02300.034*
C20.9282 (2)0.2633 (4)0.08003 (19)0.0318 (7)
H20.96300.16890.09030.038*
C30.9497 (2)0.4180 (4)0.10439 (18)0.0305 (7)
H30.99940.42920.13060.037*
C40.8986 (2)0.5564 (4)0.09057 (17)0.0290 (6)
H40.91380.66330.10610.035*
C50.8247 (2)0.5358 (3)0.05350 (16)0.0225 (6)
C60.8025 (2)0.3805 (3)0.02802 (16)0.0226 (6)
C70.7262 (2)0.3726 (3)0.01260 (16)0.0222 (5)
C80.6893 (2)0.5120 (3)0.04242 (16)0.0238 (6)
C90.7789 (3)0.7683 (4)0.1072 (2)0.0394 (8)
H9A0.74810.75170.14930.059*
H9B0.77990.88670.09560.059*
H9C0.84860.72550.12480.059*
C100.6204 (2)0.4540 (3)0.07777 (17)0.0248 (6)
C110.5603 (2)0.5422 (4)0.12170 (19)0.0353 (7)
H11A0.55450.65940.10680.053*
H11B0.59470.53190.17890.053*
H11C0.49230.49320.10830.053*
C120.5584 (2)0.1665 (4)0.09241 (18)0.0287 (6)
H12A0.53940.07590.05290.034*
H12B0.49490.21990.09430.034*
C130.6139 (2)0.0936 (4)0.17351 (17)0.0266 (6)
C140.5596 (2)0.0342 (3)0.20525 (16)0.0235 (6)
C150.4571 (2)0.0723 (3)0.16869 (17)0.0259 (6)
H150.41970.01470.12200.031*
C160.4092 (2)0.1932 (3)0.19962 (17)0.0260 (6)
H160.33930.21700.17470.031*
C170.4642 (2)0.2790 (3)0.26725 (16)0.0248 (6)
C180.5671 (2)0.2441 (3)0.30382 (17)0.0276 (6)
H180.60480.30390.34980.033*
C190.6139 (2)0.1229 (3)0.27307 (17)0.0257 (6)
H190.68380.09930.29820.031*
C200.3188 (2)0.4360 (4)0.2697 (2)0.0394 (8)
H20A0.29890.51610.30350.059*
H20B0.30570.48290.21640.059*
H20C0.27920.33420.26620.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0339 (4)0.0189 (3)0.0368 (4)0.0020 (3)0.0185 (3)0.0031 (3)
O10.0553 (15)0.0190 (10)0.0655 (17)0.0036 (10)0.0381 (13)0.0001 (10)
O20.0346 (12)0.0403 (12)0.0350 (12)0.0117 (10)0.0121 (10)0.0103 (10)
O30.0344 (13)0.0554 (15)0.0397 (13)0.0191 (11)0.0039 (10)0.0091 (11)
O40.0365 (12)0.0297 (11)0.0334 (12)0.0089 (9)0.0127 (10)0.0030 (9)
N10.0366 (14)0.0194 (11)0.0333 (14)0.0045 (10)0.0192 (11)0.0043 (10)
N20.0261 (12)0.0233 (11)0.0282 (13)0.0023 (9)0.0128 (10)0.0000 (9)
N30.0280 (12)0.0231 (11)0.0255 (12)0.0010 (9)0.0120 (10)0.0012 (9)
C10.0302 (15)0.0218 (14)0.0339 (16)0.0019 (11)0.0106 (13)0.0032 (12)
C20.0284 (15)0.0289 (15)0.0399 (17)0.0046 (12)0.0133 (13)0.0059 (13)
C30.0276 (15)0.0327 (15)0.0354 (17)0.0001 (12)0.0157 (13)0.0026 (13)
C40.0284 (15)0.0294 (15)0.0293 (15)0.0024 (12)0.0092 (13)0.0034 (12)
C50.0238 (14)0.0204 (13)0.0243 (14)0.0013 (10)0.0088 (11)0.0010 (10)
C60.0228 (13)0.0207 (13)0.0242 (14)0.0026 (10)0.0073 (11)0.0028 (10)
C70.0245 (14)0.0203 (13)0.0221 (13)0.0030 (10)0.0078 (11)0.0008 (10)
C80.0269 (14)0.0193 (13)0.0247 (14)0.0009 (11)0.0075 (12)0.0006 (10)
C90.047 (2)0.0304 (16)0.0435 (19)0.0080 (14)0.0187 (16)0.0124 (14)
C100.0248 (14)0.0254 (13)0.0240 (14)0.0004 (11)0.0075 (12)0.0017 (11)
C110.0389 (18)0.0334 (16)0.0387 (18)0.0004 (13)0.0197 (15)0.0057 (14)
C120.0277 (15)0.0262 (14)0.0339 (16)0.0051 (12)0.0122 (13)0.0029 (12)
C130.0248 (15)0.0292 (14)0.0273 (15)0.0037 (12)0.0105 (12)0.0029 (12)
C140.0250 (14)0.0225 (13)0.0256 (14)0.0008 (11)0.0116 (12)0.0019 (11)
C150.0245 (14)0.0261 (14)0.0278 (15)0.0006 (11)0.0094 (12)0.0039 (11)
C160.0199 (13)0.0287 (14)0.0302 (15)0.0011 (11)0.0092 (11)0.0001 (12)
C170.0297 (15)0.0207 (13)0.0269 (14)0.0039 (11)0.0131 (12)0.0039 (11)
C180.0307 (15)0.0268 (14)0.0245 (14)0.0027 (12)0.0074 (12)0.0027 (11)
C190.0217 (14)0.0264 (14)0.0271 (14)0.0003 (11)0.0051 (12)0.0018 (11)
C200.0378 (18)0.0431 (19)0.0376 (18)0.0157 (15)0.0124 (15)0.0034 (15)
Geometric parameters (Å, º) top
S1—O11.429 (2)C8—C101.380 (4)
S1—O21.439 (2)C9—H9A0.9800
S1—N11.650 (3)C9—H9B0.9800
S1—C51.760 (3)C9—H9C0.9800
O3—C131.212 (3)C10—C111.489 (4)
O4—C171.365 (3)C11—H11A0.9800
O4—C201.435 (4)C11—H11B0.9800
N1—C81.428 (3)C11—H11C0.9800
N1—C91.482 (4)C12—C131.521 (4)
N2—C71.340 (3)C12—H12A0.9900
N2—N31.361 (3)C12—H12B0.9900
N3—C101.360 (3)C13—C141.489 (4)
N3—C121.451 (3)C14—C151.397 (4)
C1—C21.386 (4)C14—C191.399 (4)
C1—C61.394 (4)C15—C161.387 (4)
C1—H10.9500C15—H150.9500
C2—C31.385 (4)C16—C171.388 (4)
C2—H20.9500C16—H160.9500
C3—C41.386 (4)C17—C181.397 (4)
C3—H30.9500C18—C191.378 (4)
C4—C51.391 (4)C18—H180.9500
C4—H40.9500C19—H190.9500
C5—C61.400 (4)C20—H20A0.9800
C6—C71.457 (4)C20—H20B0.9800
C7—C81.407 (4)C20—H20C0.9800
O1—S1—O2118.68 (14)H9B—C9—H9C109.5
O1—S1—N1108.34 (13)N3—C10—C8104.5 (2)
O2—S1—N1106.97 (13)N3—C10—C11124.4 (3)
O1—S1—C5109.83 (13)C8—C10—C11131.1 (3)
O2—S1—C5106.49 (13)C10—C11—H11A109.5
N1—S1—C5105.80 (13)C10—C11—H11B109.5
C17—O4—C20117.5 (2)H11A—C11—H11B109.5
C8—N1—C9118.4 (2)C10—C11—H11C109.5
C8—N1—S1111.63 (18)H11A—C11—H11C109.5
C9—N1—S1118.2 (2)H11B—C11—H11C109.5
C7—N2—N3103.7 (2)N3—C12—C13112.6 (2)
C10—N3—N2114.1 (2)N3—C12—H12A109.1
C10—N3—C12127.2 (2)C13—C12—H12A109.1
N2—N3—C12118.7 (2)N3—C12—H12B109.1
C2—C1—C6120.0 (3)C13—C12—H12B109.1
C2—C1—H1120.0H12A—C12—H12B107.8
C6—C1—H1120.0O3—C13—C14122.0 (3)
C3—C2—C1121.1 (3)O3—C13—C12120.5 (3)
C3—C2—H2119.5C14—C13—C12117.5 (2)
C1—C2—H2119.5C15—C14—C19118.6 (2)
C2—C3—C4120.1 (3)C15—C14—C13122.6 (2)
C2—C3—H3120.0C19—C14—C13118.8 (2)
C4—C3—H3120.0C16—C15—C14121.0 (3)
C3—C4—C5118.7 (3)C16—C15—H15119.5
C3—C4—H4120.7C14—C15—H15119.5
C5—C4—H4120.7C15—C16—C17119.5 (3)
C4—C5—C6122.0 (3)C15—C16—H16120.2
C4—C5—S1118.8 (2)C17—C16—H16120.2
C6—C5—S1118.9 (2)O4—C17—C16124.6 (3)
C1—C6—C5118.1 (2)O4—C17—C18115.2 (2)
C1—C6—C7124.0 (2)C16—C17—C18120.2 (3)
C5—C6—C7117.8 (2)C19—C18—C17119.9 (3)
N2—C7—C8111.0 (2)C19—C18—H18120.1
N2—C7—C6125.0 (2)C17—C18—H18120.1
C8—C7—C6123.9 (2)C18—C19—C14120.8 (3)
C10—C8—C7106.6 (2)C18—C19—H19119.6
C10—C8—N1128.6 (2)C14—C19—H19119.6
C7—C8—N1124.8 (2)O4—C20—H20A109.5
N1—C9—H9A109.5O4—C20—H20B109.5
N1—C9—H9B109.5H20A—C20—H20B109.5
H9A—C9—H9B109.5O4—C20—H20C109.5
N1—C9—H9C109.5H20A—C20—H20C109.5
H9A—C9—H9C109.5H20B—C20—H20C109.5
O1—S1—N1—C8162.2 (2)C6—C7—C8—N12.2 (4)
O2—S1—N1—C868.8 (2)C9—N1—C8—C1069.1 (4)
C5—S1—N1—C844.4 (2)S1—N1—C8—C10148.3 (3)
O1—S1—N1—C919.6 (3)C9—N1—C8—C7112.1 (3)
O2—S1—N1—C9148.6 (2)S1—N1—C8—C730.4 (4)
C5—S1—N1—C998.2 (2)N2—N3—C10—C80.1 (3)
C7—N2—N3—C100.6 (3)C12—N3—C10—C8179.5 (3)
C7—N2—N3—C12180.0 (2)N2—N3—C10—C11178.1 (3)
C6—C1—C2—C32.2 (5)C12—N3—C10—C112.5 (5)
C1—C2—C3—C40.7 (5)C7—C8—C10—N30.4 (3)
C2—C3—C4—C51.3 (4)N1—C8—C10—N3178.5 (3)
C3—C4—C5—C61.7 (4)C7—C8—C10—C11177.4 (3)
C3—C4—C5—S1171.8 (2)N1—C8—C10—C113.7 (5)
O1—S1—C5—C433.1 (3)C10—N3—C12—C1392.9 (3)
O2—S1—C5—C496.6 (2)N2—N3—C12—C1387.7 (3)
N1—S1—C5—C4149.8 (2)N3—C12—C13—O30.4 (4)
O1—S1—C5—C6153.1 (2)N3—C12—C13—C14179.0 (2)
O2—S1—C5—C677.2 (2)O3—C13—C14—C15172.2 (3)
N1—S1—C5—C636.4 (3)C12—C13—C14—C158.5 (4)
C2—C1—C6—C51.8 (4)O3—C13—C14—C199.7 (4)
C2—C1—C6—C7179.8 (3)C12—C13—C14—C19169.6 (3)
C4—C5—C6—C10.2 (4)C19—C14—C15—C161.3 (4)
S1—C5—C6—C1173.3 (2)C13—C14—C15—C16179.4 (3)
C4—C5—C6—C7178.0 (3)C14—C15—C16—C170.9 (4)
S1—C5—C6—C78.5 (3)C20—O4—C17—C161.8 (4)
N3—N2—C7—C80.8 (3)C20—O4—C17—C18177.9 (3)
N3—N2—C7—C6178.8 (2)C15—C16—C17—O4179.5 (3)
C1—C6—C7—N215.4 (4)C15—C16—C17—C180.1 (4)
C5—C6—C7—N2166.6 (3)O4—C17—C18—C19179.0 (2)
C1—C6—C7—C8164.2 (3)C16—C17—C18—C190.7 (4)
C5—C6—C7—C813.9 (4)C17—C18—C19—C140.2 (4)
N2—C7—C8—C100.8 (3)C15—C14—C19—C180.7 (4)
C6—C7—C8—C10178.8 (3)C13—C14—C19—C18179.0 (3)
N2—C7—C8—N1178.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.952.343.216 (3)154
C4—H4···O4ii0.952.533.435 (4)159
C9—H9A···O3iii0.982.543.335 (4)138
C11—H11C···O2iv0.982.563.498 (4)161
C12—H12B···O2iv0.992.333.309 (4)170
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+1/2, z1/2; (iii) x+3/2, y+1/2, z+1/2; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H19N3O4S
Mr397.44
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)13.862 (5), 8.079 (2), 17.748 (7)
β (°) 108.372 (18)
V3)1886.3 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.14 × 0.09 × 0.07
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.972, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
7270, 4221, 3206
Rint0.046
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.132, 1.15
No. of reflections4221
No. of parameters256
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.34

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.952.343.216 (3)153.8
C4—H4···O4ii0.952.533.435 (4)158.9
C9—H9A···O3iii0.982.543.335 (4)137.7
C11—H11C···O2iv0.982.563.498 (4)161.4
C12—H12B···O2iv0.992.333.309 (4)170.4
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+1/2, z1/2; (iii) x+3/2, y+1/2, z+1/2; (iv) x+1, y+1, z.
 

Acknowledgements

The authors are grateful to the Higher Education Commission, Pakistan, and the Institute of Chemistry, University of the Punjab, Lahore, Pakistan, for financial support.

References

First citationAhmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698–704.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCiciani, G., Coronnello, M., Guerrini, G., Selleri, S., Cantore, M., Failli, P., Mini, E. & Costanzo, A. (2008). Bioorg. Med. Chem. 16, 9409–9419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCunico, W., Cechinel, C. A., Bonacorso, H. G., Martins, M. A. P., Zanatta, N., Souza, M. V. N., Freitas, I. O., Soaresa, R. P. & Krettli, A. U. (2006). Bioorg. Med. Chem. Lett. 16, 649–653.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarag, A. M., Mayhoub, A. S., Barakatb, S. E. & Bayomi, A. H. (2008). Bioorg. Med. Chem. 16, 881–889.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius B V, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4–o6.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o458-o459
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds