organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o539-o540

Redetermination of loperamide monohydrate

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and cR. L. Fine Chem, Bengaluru, 560 064, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 3 January 2012; accepted 24 January 2012; online 31 January 2012)

The structure of the title compound {systematic name: 4-[4-(4-chloro­phen­yl)-4-hy­droxy­piperidin-1-yl]-N,N-dimethyl-2,2-di­phenyl­butanamide monohydrate}, C29H33ClN2O2·H2O, has been redetermined at 170 (2) K. The redetermination is of significantly higher precision than the previous structure determination at room temperature and includes the H-atom coordinates that were not included in the previous report [Germain et al. (1977[Germain, G., Declercq, J. P., Van Meerssche, M. & Koch, M. H. J. (1977). Acta Cryst. B33, 942-944.]). Acta Cryst. B33, 942–944]. It consists of a piperidin-1-yl ring in a distorted chair conformation, with the N,N-dimethyl-α,α-diphenyl­butyramide and the 4-chloro­phenyl and hy­droxy groups bonded in para positions and an external water mol­ecule within the asymmetric unit. The dihedral angles between the mean plane of the piperidine ring and the 4-chloro­phenyl and two benzene rings are 83.4 (5), 76.4 (2) and 85.9 (2)°, respectively. The two benzene rings are inclined to one another by 50.8 (6)°. In the crystal, mol­ecules are linked by O—H⋯O and O—H⋯N hydrogen bonds and weak C—H⋯O intermolecular interactions, forming an infinite two-dimensional network along [110].

Related literature

For the pharmacological properties and therapeutic efficacy of loperamide, see: Heel et al. (1978[Heel, R. C., Brogden, R. N., Speight, T. M. & Avery, G. S. (1978). Drugs, 15, 33-52.]). For the crystal structure of loperamide hydro­chloride tetra­hydrate, see: Caira et al. (1995[Caira, M. R., Gerber, J. J. & Lotter, A. P. (1995). Supramol. Chem. 5, 225-230.]). For the crystal structure of loperamide N-oxide hydrate, see: Peeters et al. (1996[Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1996). Acta Cryst. C52, 2100-2102.]). For the crystal structure of the title compound, see: Germain et al. (1977[Germain, G., Declercq, J. P., Van Meerssche, M. & Koch, M. H. J. (1977). Acta Cryst. B33, 942-944.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C29H33ClN2O2·H2O

  • Mr = 495.04

  • Orthorhombic, P b c a

  • a = 16.7869 (4) Å

  • b = 15.1506 (6) Å

  • c = 20.6617 (6) Å

  • V = 5254.9 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 170 K

  • 0.45 × 0.30 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.989, Tmax = 1.000

  • 48373 measured reflections

  • 6247 independent reflections

  • 5231 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.107

  • S = 1.04

  • 6247 reflections

  • 330 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W⋯O2i 0.89 (2) 2.10 (2) 2.9684 (19) 168 (3)
O1W—H1W⋯N2 0.90 (2) 2.06 (2) 2.9132 (18) 160 (2)
O2—H2O⋯O1ii 0.83 (2) 1.97 (2) 2.7333 (15) 153 (2)
C28—H28B⋯O1Wiii 0.96 2.42 3.369 (3) 171
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Loperamide, a butyramide derivative is a new agent for use in symptomatic control of acute non-specific diarrhoea and chronic diarrhoea. Loperamide is a synthetic piperidine derivative, an opioid drug effective against diarrhea resulting from gastroenteritis or inflammatory bowel disease. Loperamide is an opioid-receptor agonist and acts on the µ-opioid receptors in the myenteric plexus of the large intestine; by itself it does not affect the central nervous system like other opioids. A review of its pharmacological properties and therapeutic efficacy in diarrhoea is reported (Heel et al., 1978). The crystal structures of loperamide hydrochloride tetrahydrate (Caira et al., 1995) and loperamide N-oxide hydrate (Peeters et al., 1996) have been reported. The crystal structure of the title compound was first reported [Germain, et al. (1977) Acta Cryst. B33, 942–944] with an R value of 9% at room temperature. The present paper is a redetermination of the title compound, C29H33ClN2O2Cl . H2O, at 170 (2) K with a high accuracy, hydrogen atom coordinates and an R value of 4.39%.

The title compound, is a synthetic piperidine derivative, an opioid drug effective against diarrhea resulting from gastroenteritis or inflammatory bowel disease. It consists of a piperidin–1–yl ring (distorted chair conformation with (Cremer & Pople, 1975) puckering parameters Q, θ and ϕ of 0.5771 (4)Å, 173.87 (14)° and 195.2 (14)°), with N,N-dimethyl-α,α-diphenylbutyramide and p-chlorophenyl and hydroxy groups bonded in para positions and an external water molecule within the asymmetric unit (Fig. 1). The dihedral angles between the mean planes of the piperidin–1–yl ring, chlorophenyl and two benzene rings are 83.4 (5)°, 76.4 (2)° and 85.9 (2)°, respectively. The two benzene rings are separated by 50.8 (6)°. Crystal packing (fig. 2) is stabilized by O2—H2O···O1 hydrogen bonds from the molecule along with O1w—H2w···O2 and O1w—H1w···N2 hydrogen bonds and weak C28—H28B···O1w intermolecular interactions between the monohydrate water molecule and the title compound (Table 1) forming an infinite 2–D network along [110].

Related literature top

For the pharmacological properties and therapeutic efficacy of loperamide, see: Heel et al. (1978). For the crystal structure of loperamide hydrochloride tetrahydrate, see: Caira et al. (1995). For the crystal structure of loperamide N-oxide hydrate, see: Peeters et al. (1996). For the crystal structure of the title compound, see: Germain et al. (1977). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

The title compound was obtained as a gift sample from R. L. Fine Chem, Bangalore. X–ray quality crystals were obtained by slow evaporation of dimethylformamide solution (m.p.: 403-407 K).

Refinement top

H1w, H2w and H2O were located by a difference map and refined isotropically. Ow1 with H1w and H2w were set to DFIX = 0.85 (2)Å, while Hw1 and Hw2 were set to 1.35 (2)Å. H20 with O2 was set to 0.82 (2)Å. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH), 0.96Å (CH2) or 0.97Å (CH3). Isotropic displacement parameters for these atoms were set to 1.18–1.21 (CH, CH2) or 1.49–1.50 (CH3) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the Ow—H···O, Ow—H···N, O—H···O and C—H···Ow interactions (dotted lines, Ow : H2O) in the crystal structure of the title compound. H atoms non–participating in hydrogen–bonding were omitted for clarity. [Symmetry codes : (i) -x + 3/2, y - 1/2, z; (ii) - x + 3/2, y + 1/2, z; (iii) x - 1/2, - y + 1/2, - z + 1.]
4-[4-(4-chlorophenyl)-4-hydroxypiperidin-1-yl]-N,N-dimethyl- 2,2-diphenylbutanamide monohydrate top
Crystal data top
C29H33ClN2O2·H2OF(000) = 2112
Mr = 495.04Dx = 1.251 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 15584 reflections
a = 16.7869 (4) Åθ = 3.1–32.3°
b = 15.1506 (6) ŵ = 0.18 mm1
c = 20.6617 (6) ÅT = 170 K
V = 5254.9 (3) Å3Chunk, colorless
Z = 80.45 × 0.30 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
6247 independent reflections
Radiation source: Enhance (Mo) X-ray Source5231 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 16.1500 pixels mm-1θmax = 27.9°, θmin = 3.1°
ω scansh = 2222
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 1919
Tmin = 0.989, Tmax = 1.000l = 2727
48373 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: difference Fourier map
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0415P)2 + 2.2656P]
where P = (Fo2 + 2Fc2)/3
6247 reflections(Δ/σ)max = 0.001
330 parametersΔρmax = 0.27 e Å3
4 restraintsΔρmin = 0.29 e Å3
Crystal data top
C29H33ClN2O2·H2OV = 5254.9 (3) Å3
Mr = 495.04Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 16.7869 (4) ŵ = 0.18 mm1
b = 15.1506 (6) ÅT = 170 K
c = 20.6617 (6) Å0.45 × 0.30 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
6247 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
5231 reflections with I > 2σ(I)
Tmin = 0.989, Tmax = 1.000Rint = 0.033
48373 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0444 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.27 e Å3
6247 reflectionsΔρmin = 0.29 e Å3
330 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.17722 (2)0.58038 (4)0.26920 (2)0.06055 (15)
N10.47942 (7)0.28878 (9)0.58732 (6)0.0379 (3)
N20.74378 (6)0.48771 (7)0.48602 (5)0.0261 (2)
O10.56971 (7)0.30669 (7)0.50943 (5)0.0394 (3)
O20.85002 (6)0.68017 (7)0.44131 (5)0.0367 (2)
H2O0.8828 (11)0.7037 (13)0.4658 (9)0.059 (6)*
O1W0.75307 (10)0.33121 (10)0.40445 (7)0.0636 (4)
H1W0.7543 (17)0.3701 (14)0.4371 (11)0.101 (9)*
H2W0.7248 (16)0.2875 (14)0.4215 (13)0.114 (11)*
C11.09073 (8)0.58308 (12)0.31591 (7)0.0390 (4)
C21.06820 (9)0.66035 (11)0.34473 (8)0.0435 (4)
H21.09980.71040.34080.052*
C30.99766 (9)0.66366 (10)0.37999 (8)0.0369 (3)
H30.98220.71650.39920.044*
C40.95013 (8)0.58960 (9)0.38694 (6)0.0288 (3)
C50.97593 (9)0.51173 (11)0.35815 (8)0.0417 (4)
H50.94550.46090.36300.050*
C61.04572 (10)0.50782 (12)0.32247 (8)0.0454 (4)
H61.06180.45520.30330.054*
C70.87288 (8)0.59170 (9)0.42628 (6)0.0269 (3)
C80.80218 (8)0.55421 (10)0.38837 (6)0.0303 (3)
H8A0.79060.59260.35200.036*
H8B0.81630.49660.37140.036*
C90.72810 (8)0.54558 (10)0.43032 (6)0.0305 (3)
H9A0.71200.60350.44560.037*
H9B0.68480.52140.40480.037*
C100.80641 (9)0.52790 (11)0.52601 (6)0.0335 (3)
H10A0.81570.49140.56380.040*
H10B0.78880.58540.54080.040*
C110.88357 (8)0.53792 (10)0.48847 (6)0.0326 (3)
H11A0.90380.47980.47750.039*
H11B0.92280.56670.51570.039*
C120.67039 (8)0.47411 (9)0.52392 (7)0.0298 (3)
H12A0.62680.45960.49500.036*
H12B0.65680.52820.54650.036*
C130.68173 (8)0.39967 (9)0.57288 (6)0.0287 (3)
H13A0.72250.41760.60350.034*
H13B0.70170.34830.55000.034*
C140.60632 (7)0.37140 (8)0.61187 (6)0.0246 (3)
C150.57026 (8)0.45613 (8)0.63995 (6)0.0256 (3)
C160.49950 (9)0.49212 (10)0.61733 (7)0.0354 (3)
H160.47010.46170.58630.042*
C170.47176 (10)0.57271 (11)0.64016 (8)0.0428 (4)
H170.42410.59560.62460.051*
C180.51458 (10)0.61866 (10)0.68566 (8)0.0403 (4)
H180.49530.67180.70180.048*
C190.58649 (9)0.58545 (10)0.70730 (8)0.0371 (3)
H190.61650.61720.73710.044*
C200.61395 (8)0.50510 (9)0.68474 (7)0.0307 (3)
H200.66240.48330.69970.037*
C210.63539 (8)0.30328 (9)0.66256 (6)0.0260 (3)
C220.67485 (10)0.22848 (10)0.63995 (7)0.0363 (3)
H220.68050.22010.59560.044*
C230.70578 (11)0.16645 (11)0.68201 (8)0.0437 (4)
H230.73200.11710.66580.052*
C240.69791 (10)0.17757 (10)0.74803 (8)0.0394 (3)
H240.71970.13670.77650.047*
C250.65740 (9)0.24984 (10)0.77106 (7)0.0345 (3)
H250.65110.25720.81550.041*
C260.62582 (8)0.31198 (9)0.72898 (6)0.0300 (3)
H260.59790.36000.74540.036*
C270.54922 (8)0.32055 (9)0.56588 (6)0.0289 (3)
C280.43120 (11)0.23911 (14)0.54098 (10)0.0598 (5)
H28A0.42150.27480.50340.090*
H28B0.38130.22340.56060.090*
H28C0.45910.18650.52850.090*
C290.44931 (10)0.29174 (13)0.65343 (9)0.0502 (4)
H29A0.45730.23540.67370.075*
H29B0.39350.30530.65280.075*
H29C0.47730.33640.67730.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0316 (2)0.0921 (4)0.0580 (3)0.0086 (2)0.01224 (18)0.0166 (2)
N10.0325 (6)0.0378 (7)0.0433 (7)0.0056 (5)0.0020 (5)0.0085 (6)
N20.0259 (5)0.0302 (6)0.0222 (5)0.0031 (4)0.0004 (4)0.0026 (4)
O10.0500 (6)0.0377 (6)0.0304 (5)0.0004 (5)0.0027 (5)0.0083 (4)
O20.0356 (5)0.0290 (5)0.0454 (6)0.0024 (4)0.0008 (5)0.0055 (5)
O1W0.0782 (10)0.0581 (9)0.0545 (8)0.0109 (8)0.0067 (7)0.0136 (7)
C10.0258 (7)0.0588 (10)0.0326 (7)0.0022 (7)0.0012 (6)0.0100 (7)
C20.0328 (8)0.0425 (9)0.0551 (10)0.0067 (7)0.0044 (7)0.0118 (7)
C30.0348 (7)0.0325 (8)0.0433 (8)0.0040 (6)0.0021 (6)0.0036 (6)
C40.0292 (6)0.0325 (7)0.0247 (6)0.0029 (5)0.0019 (5)0.0021 (5)
C50.0376 (8)0.0384 (8)0.0491 (9)0.0082 (7)0.0070 (7)0.0096 (7)
C60.0379 (8)0.0505 (10)0.0478 (9)0.0008 (7)0.0060 (7)0.0130 (8)
C70.0281 (6)0.0262 (6)0.0264 (6)0.0038 (5)0.0007 (5)0.0002 (5)
C80.0325 (7)0.0359 (7)0.0226 (6)0.0066 (6)0.0026 (5)0.0036 (5)
C90.0287 (7)0.0345 (7)0.0282 (6)0.0031 (6)0.0035 (5)0.0058 (6)
C100.0352 (7)0.0433 (8)0.0221 (6)0.0091 (6)0.0025 (5)0.0014 (6)
C110.0293 (7)0.0406 (8)0.0280 (6)0.0061 (6)0.0050 (5)0.0047 (6)
C120.0272 (6)0.0314 (7)0.0309 (7)0.0015 (5)0.0046 (5)0.0038 (5)
C130.0269 (6)0.0313 (7)0.0280 (6)0.0026 (5)0.0060 (5)0.0035 (5)
C140.0252 (6)0.0237 (6)0.0249 (6)0.0019 (5)0.0032 (5)0.0000 (5)
C150.0260 (6)0.0238 (6)0.0269 (6)0.0008 (5)0.0048 (5)0.0014 (5)
C160.0337 (7)0.0324 (7)0.0400 (8)0.0046 (6)0.0053 (6)0.0037 (6)
C170.0365 (8)0.0348 (8)0.0571 (10)0.0116 (7)0.0044 (7)0.0015 (7)
C180.0440 (8)0.0253 (7)0.0515 (9)0.0068 (6)0.0079 (7)0.0037 (6)
C190.0392 (8)0.0293 (7)0.0427 (8)0.0036 (6)0.0002 (6)0.0069 (6)
C200.0275 (6)0.0283 (7)0.0363 (7)0.0003 (5)0.0008 (5)0.0009 (6)
C210.0261 (6)0.0241 (6)0.0277 (6)0.0002 (5)0.0018 (5)0.0005 (5)
C220.0482 (8)0.0329 (8)0.0280 (7)0.0101 (6)0.0012 (6)0.0027 (6)
C230.0559 (10)0.0341 (8)0.0411 (8)0.0172 (7)0.0005 (7)0.0005 (7)
C240.0463 (8)0.0352 (8)0.0369 (7)0.0051 (7)0.0063 (7)0.0078 (6)
C250.0403 (8)0.0370 (8)0.0263 (6)0.0042 (6)0.0009 (6)0.0034 (6)
C260.0335 (7)0.0266 (7)0.0299 (7)0.0005 (6)0.0066 (5)0.0011 (5)
C270.0326 (7)0.0238 (6)0.0302 (7)0.0043 (5)0.0001 (5)0.0019 (5)
C280.0468 (10)0.0601 (12)0.0723 (12)0.0139 (9)0.0054 (9)0.0236 (10)
C290.0404 (9)0.0603 (11)0.0500 (10)0.0135 (8)0.0127 (7)0.0020 (8)
Geometric parameters (Å, º) top
Cl1—C11.7440 (15)C12—H12A0.9700
N1—C271.3419 (18)C12—H12B0.9700
N1—C291.457 (2)C13—C141.5606 (17)
N1—C281.462 (2)C13—H13A0.9700
N2—C101.4693 (17)C13—H13B0.9700
N2—C91.4705 (16)C14—C151.5332 (17)
N2—C121.4743 (16)C14—C211.5493 (18)
O1—C271.2340 (16)C14—C271.5542 (18)
O2—C71.4284 (17)C15—C161.3880 (19)
O2—H2O0.827 (15)C15—C201.3946 (19)
O1W—H1W0.896 (16)C16—C171.389 (2)
O1W—H2W0.888 (16)C16—H160.9300
C1—C21.367 (2)C17—C181.373 (2)
C1—C61.375 (2)C17—H170.9300
C2—C31.391 (2)C18—C191.382 (2)
C2—H20.9300C18—H180.9300
C3—C41.384 (2)C19—C201.383 (2)
C3—H30.9300C19—H190.9300
C4—C51.390 (2)C20—H200.9300
C4—C71.5307 (18)C21—C261.3879 (18)
C5—C61.386 (2)C21—C221.3934 (19)
C5—H50.9300C22—C231.381 (2)
C6—H60.9300C22—H220.9300
C7—C81.5312 (18)C23—C241.381 (2)
C7—C111.5321 (18)C23—H230.9300
C8—C91.5214 (19)C24—C251.374 (2)
C8—H8A0.9700C24—H240.9300
C8—H8B0.9700C25—C261.387 (2)
C9—H9A0.9700C25—H250.9300
C9—H9B0.9700C26—H260.9300
C10—C111.5174 (19)C28—H28A0.9600
C10—H10A0.9700C28—H28B0.9600
C10—H10B0.9700C28—H28C0.9600
C11—H11A0.9700C29—H29A0.9600
C11—H11B0.9700C29—H29B0.9600
C12—C131.5269 (18)C29—H29C0.9600
C27—N1—C29126.97 (13)C12—C13—H13A108.2
C27—N1—C28116.86 (13)C14—C13—H13A108.2
C29—N1—C28115.94 (14)C12—C13—H13B108.2
C10—N2—C9108.73 (11)C14—C13—H13B108.2
C10—N2—C12110.93 (10)H13A—C13—H13B107.4
C9—N2—C12110.46 (10)C15—C14—C21115.23 (10)
C7—O2—H2O111.0 (15)C15—C14—C27113.76 (10)
H1W—O1W—H2W101.9 (19)C21—C14—C27106.10 (10)
C2—C1—C6121.03 (14)C15—C14—C13106.61 (10)
C2—C1—Cl1119.44 (13)C21—C14—C13106.04 (10)
C6—C1—Cl1119.52 (13)C27—C14—C13108.71 (10)
C1—C2—C3119.64 (15)C16—C15—C20117.68 (12)
C1—C2—H2120.2C16—C15—C14122.64 (12)
C3—C2—H2120.2C20—C15—C14119.27 (11)
C4—C3—C2121.05 (15)C15—C16—C17121.18 (14)
C4—C3—H3119.5C15—C16—H16119.4
C2—C3—H3119.5C17—C16—H16119.4
C3—C4—C5117.63 (13)C18—C17—C16120.17 (14)
C3—C4—C7121.77 (13)C18—C17—H17119.9
C5—C4—C7120.58 (12)C16—C17—H17119.9
C6—C5—C4121.82 (15)C17—C18—C19119.61 (14)
C6—C5—H5119.1C17—C18—H18120.2
C4—C5—H5119.1C19—C18—H18120.2
C1—C6—C5118.80 (16)C18—C19—C20120.19 (14)
C1—C6—H6120.6C18—C19—H19119.9
C5—C6—H6120.6C20—C19—H19119.9
O2—C7—C4111.26 (11)C19—C20—C15121.11 (13)
O2—C7—C8104.54 (11)C19—C20—H20119.4
C4—C7—C8112.17 (11)C15—C20—H20119.4
O2—C7—C11110.37 (11)C26—C21—C22117.64 (12)
C4—C7—C11109.57 (11)C26—C21—C14124.66 (12)
C8—C7—C11108.81 (11)C22—C21—C14117.70 (11)
C9—C8—C7111.97 (11)C23—C22—C21121.41 (13)
C9—C8—H8A109.2C23—C22—H22119.3
C7—C8—H8A109.2C21—C22—H22119.3
C9—C8—H8B109.2C24—C23—C22120.18 (14)
C7—C8—H8B109.2C24—C23—H23119.9
H8A—C8—H8B107.9C22—C23—H23119.9
N2—C9—C8110.54 (11)C25—C24—C23119.12 (14)
N2—C9—H9A109.5C25—C24—H24120.4
C8—C9—H9A109.5C23—C24—H24120.4
N2—C9—H9B109.5C24—C25—C26120.86 (13)
C8—C9—H9B109.5C24—C25—H25119.6
H9A—C9—H9B108.1C26—C25—H25119.6
N2—C10—C11111.40 (11)C25—C26—C21120.74 (13)
N2—C10—H10A109.3C25—C26—H26119.6
C11—C10—H10A109.3C21—C26—H26119.6
N2—C10—H10B109.3O1—C27—N1119.63 (13)
C11—C10—H10B109.3O1—C27—C14119.36 (12)
H10A—C10—H10B108.0N1—C27—C14120.96 (12)
C10—C11—C7112.46 (11)N1—C28—H28A109.5
C10—C11—H11A109.1N1—C28—H28B109.5
C7—C11—H11A109.1H28A—C28—H28B109.5
C10—C11—H11B109.1N1—C28—H28C109.5
C7—C11—H11B109.1H28A—C28—H28C109.5
H11A—C11—H11B107.8H28B—C28—H28C109.5
N2—C12—C13110.54 (11)N1—C29—H29A109.5
N2—C12—H12A109.5N1—C29—H29B109.5
C13—C12—H12A109.5H29A—C29—H29B109.5
N2—C12—H12B109.5N1—C29—H29C109.5
C13—C12—H12B109.5H29A—C29—H29C109.5
H12A—C12—H12B108.1H29B—C29—H29C109.5
C12—C13—C14116.33 (11)
C6—C1—C2—C31.6 (2)C13—C14—C15—C16108.68 (14)
Cl1—C1—C2—C3177.56 (12)C21—C14—C15—C2053.60 (16)
C1—C2—C3—C40.6 (2)C27—C14—C15—C20176.46 (12)
C2—C3—C4—C50.8 (2)C13—C14—C15—C2063.74 (15)
C2—C3—C4—C7179.21 (13)C20—C15—C16—C172.2 (2)
C3—C4—C5—C61.3 (2)C14—C15—C16—C17174.70 (14)
C7—C4—C5—C6179.78 (14)C15—C16—C17—C180.3 (3)
C2—C1—C6—C51.0 (3)C16—C17—C18—C191.8 (3)
Cl1—C1—C6—C5178.10 (13)C17—C18—C19—C202.0 (2)
C4—C5—C6—C10.5 (3)C18—C19—C20—C150.1 (2)
C3—C4—C7—O212.31 (18)C16—C15—C20—C191.9 (2)
C5—C4—C7—O2169.32 (13)C14—C15—C20—C19174.73 (13)
C3—C4—C7—C8129.02 (14)C15—C14—C21—C264.52 (18)
C5—C4—C7—C852.61 (17)C27—C14—C21—C26122.32 (14)
C3—C4—C7—C11110.02 (15)C13—C14—C21—C26122.19 (14)
C5—C4—C7—C1168.35 (16)C15—C14—C21—C22174.61 (12)
O2—C7—C8—C966.58 (14)C27—C14—C21—C2258.54 (15)
C4—C7—C8—C9172.74 (11)C13—C14—C21—C2256.95 (15)
C11—C7—C8—C951.34 (15)C26—C21—C22—C232.1 (2)
C10—N2—C9—C862.26 (14)C14—C21—C22—C23177.10 (15)
C12—N2—C9—C8175.80 (11)C21—C22—C23—C240.1 (3)
C7—C8—C9—N258.86 (15)C22—C23—C24—C251.5 (3)
C9—N2—C10—C1161.25 (15)C23—C24—C25—C261.1 (2)
C12—N2—C10—C11177.10 (12)C24—C25—C26—C210.9 (2)
N2—C10—C11—C756.54 (17)C22—C21—C26—C252.5 (2)
O2—C7—C11—C1064.01 (15)C14—C21—C26—C25176.64 (13)
C4—C7—C11—C10173.13 (12)C29—N1—C27—O1173.93 (16)
C8—C7—C11—C1050.16 (16)C28—N1—C27—O10.3 (2)
C10—N2—C12—C1371.26 (15)C29—N1—C27—C143.6 (2)
C9—N2—C12—C13168.11 (11)C28—N1—C27—C14177.83 (14)
N2—C12—C13—C14174.15 (11)C15—C14—C27—O1121.16 (13)
C12—C13—C14—C1550.72 (15)C21—C14—C27—O1111.12 (13)
C12—C13—C14—C21173.99 (11)C13—C14—C27—O12.55 (17)
C12—C13—C14—C2772.30 (15)C15—C14—C27—N161.33 (16)
C21—C14—C15—C16133.97 (13)C21—C14—C27—N166.39 (15)
C27—C14—C15—C1611.12 (18)C13—C14—C27—N1179.94 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O2i0.89 (2)2.10 (2)2.9684 (19)168 (3)
O1W—H1W···N20.90 (2)2.06 (2)2.9132 (18)160 (2)
O2—H2O···O1ii0.83 (2)1.97 (2)2.7333 (15)153 (2)
C28—H28B···O1Wiii0.962.423.369 (3)171
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+3/2, y+1/2, z; (iii) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC29H33ClN2O2·H2O
Mr495.04
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)170
a, b, c (Å)16.7869 (4), 15.1506 (6), 20.6617 (6)
V3)5254.9 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.45 × 0.30 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.989, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
48373, 6247, 5231
Rint0.033
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.107, 1.04
No. of reflections6247
No. of parameters330
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.29

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O2i0.888 (16)2.095 (17)2.9684 (19)168 (3)
O1W—H1W···N20.896 (16)2.056 (17)2.9132 (18)160 (2)
O2—H2O···O1ii0.827 (15)1.971 (17)2.7333 (15)153 (2)
C28—H28B···O1Wiii0.962.423.369 (3)171.0
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+3/2, y+1/2, z; (iii) x1/2, y+1/2, z+1.
 

Acknowledgements

ASD and HSY thank the University of Mysore for research facilities and R. L. Fine Chem, Bangalore, India, for the gift sample. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCaira, M. R., Gerber, J. J. & Lotter, A. P. (1995). Supramol. Chem. 5, 225–230.  CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGermain, G., Declercq, J. P., Van Meerssche, M. & Koch, M. H. J. (1977). Acta Cryst. B33, 942–944.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHeel, R. C., Brogden, R. N., Speight, T. M. & Avery, G. S. (1978). Drugs, 15, 33–52.  CrossRef CAS PubMed Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationPeeters, O. M., Blaton, N. M. & De Ranter, C. J. (1996). Acta Cryst. C52, 2100–2102.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o539-o540
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds