metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Oxymatrinium tetra­chloridoferrate(III)

aSchool of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510000, People's Republic of China
*Correspondence e-mail: xing6363@126.com

(Received 9 December 2011; accepted 4 January 2012; online 11 January 2012)

The asymmetric unit of the title compound, (C15H25N2O2)[FeCl4], contains a tetra­chloridoferrate(III) anion and a oxymatrinium cation [oxymatrine is (4R,7aS,13aR,13bR,13cS)-dodeca­hydro-1H,5H,10H-dipyrido[2,1-f:3′,2′,1′-ij][1,6]naphthyridin-10-one 4-oxide]. The conformation of oxymatrine is similar to that of matrine with one ring having a half-chair conformation, while the others have chair conformations. Chiral chains of cations along the c axis are formed by O—H⋯O hydrogen bonds.

Related literature

For related structures, see: Chen et al. (2011[Chen, Z. F., Mao, L., Liu, L. M., Liu, Y. C., Peng, Y., Hong, X., Wang, H. H., Liu, H. G. & Liang, H. (2011). J. Inorg. Biochem. 105,171-180.]); Jin et al. (2005[Jin, Z.-M., Li, Z.-G., Li, L., Li, M.-C. & Hu, M.-L. (2005). Acta Cryst. E61, m2466-m2468.], 2009[Jin, Z. M., Ma, L. L., Wei, W. X. & Li, Y. Q. (2009). J. Struct. Chem. 50, 190-194.]); Zhang et al. (2003[Zhang, Z. T., Yang, B. L., Liu, Q. G. & Yu, K. B. (2003). Acta Chim. Sin. 61, 1058-1064.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the biological activity of oxymatrine, see: Song et al. (2006[Song, G. B., Luo, Q., Qin, J., Wang, L., Shi, Y. S. & Sun, C. X. (2006). Colloids Surf. B Biointerfaces, 48, 1-5.]); Wang et al. (2005[Wang, S. J., Wang, G. J., Li, X. T., Sun, J. G., Ma, R. L. & Sheng, L. S. (2005). J. Chromatogr. B, 817, 319-325.]); Xiang et al. (2002[Xiang, X. X., Wang, G. J., Cai, X. & Li, Y. L. (2002). Chin. Med. J. 115, 593-596.]); Zhang et al. (2001[Zhang, L. P., Jiang, J. K., Tam, J. W. O., Zhang, Y., Liu, X. S., Xu, X. R., Liu, B. Z. & He, Y. J. (2001). Leuk. Res. 25, 793-800.], 2009[Zhang, Y., Zhang, H., Yu, P., Liu, Q., Liu, K., Duan, H., Luan, G., Yagasaki, K. & Zhang, G. (2009). Cytotechnology, 59, 191-200.]); Sun et al. (2008[Sun, H. L., Li, L., Shang, L., Zhao, D., Dong, D. L., Qiao, G. F., Liu, Y., Chu, W. F. & Yang, B. F. (2008). Phytother. Res. 22, 985-989.]). Oxymatrine is an alkaloid extracted from the Chinese herb Sophora alopecuraides L, see: Lai et al. (2003[Lai, J. P., He, X. W., Jiang, Y. & Chen, F. (2003). Anal. Bioanal. Chem. 375, 264-269.]). For the preparation and studies of related salts, see: Mao et al. (2008[Mao, L., Liu, L. M., Liu, Y. C., Chen, Z. F., Liu, H. G. & Liang, H. (2008). J. Guangxi Normal Univ. Nat. Sci. Ed. 26, 60-63.]); Li (2006[Li, L. (2006). PhD Thesis, Zhejiang University of Technology, People's Republic of China.]).

[Scheme 1]

Experimental

Crystal data
  • (C15H25N2O2)[FeCl4]

  • Mr = 463.02

  • Orthorhombic, P 21 21 21

  • a = 7.7919 (4) Å

  • b = 11.9518 (6) Å

  • c = 21.1315 (10) Å

  • V = 1967.92 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.32 mm−1

  • T = 173 K

  • 0.45 × 0.26 × 0.25 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.588, Tmax = 0.734

  • 9963 measured reflections

  • 4267 independent reflections

  • 3812 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.061

  • S = 1.03

  • 4267 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1787 Friedel pairs

  • Flack parameter: 0.006 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.84 1.76 2.5935 (19) 171
Symmetry code: (i) x+1, y, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008)[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Oxymatrine is an alkaloid extracted from the Chinese herb Sophora alopecuraides L (Lai et al., 2003). It has been reported that oxymatrine plays important roles as an anti-arrhythmic, in immunity regulation, as an anti-tumor agent among other applications (Song et al., 2006). It is extensively used in China for treatment of viral hepatitis, cancer, cardiac diseases (such as viral myocarditis), and skin diseases (such as psoriasis and eczema) (Wang et al., 2005). A mechanistic study showed that oxymatrine could inhibit apoptotic cell death in hepatocytes (Xiang et al., 2002) as well as scavenge hydroxyradicals and influence ion channels of cardiomyocytes (Sun et al., 2008). The synthesis of similar compounds has been reported (Jin et al., 2005).

The asymmetric unit of (I) is illustrated in Fig. 1. The geometry of the [FeCl4]- ion compares favorably with that reported previously (Zhang et al., 2003). In the oxymatrinium cation (oxygen O2 is protonated) (Fig. 1), the D ring (containing atom C15) has a half-chair conformation while the other rings adopt chair forms. The cations are linked via O—H···O hydrogen bonds forming a zigzag chain motif (Fig. 2, Table 1).

Related literature top

For related structures, see: Chen et al. (2011); Jin et al. (2005, 2009); Zhang et al. (2003). For hydrogen-bond motifs see: Bernstein et al. (1995). For the biological activity of oxymatrine, see: Song et al. (2006); Wang et al. (2005); Xiang et al. (2002); Zhang et al. (2001, 2009); Sun et al. (2008). Oxymatrine is an alkaloid extracted from the Chinese herb Sophora alopecuraides L, see: Lai et al. (2003). For the preparation and studies of related salts see: Mao et al. (2008); Li (2006).

Experimental top

A mixture of FeCl3.6H2O (0.135 g, 0.5 mmol) and oxymatrine (0.132 g, 0.5 mmol) dissolved in ethanol (20 ml) was refluxed with stirring. A light-yellow precipitate appeared after a few minutes and an aqueous HCl solution (1 M) was added drop-wise until the solution became clear. After standing for two days yellow prismatic crystals were observed which were immediately recovered by filtration and copiously washed with methanol.Yellow single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement top

All H atoms were placed in calculated positions and allowed ride on their parent atoms at distances of 0.84 Å (O—H), 0.99 Å (methylene) and 1.00 Å (methyne), and constrained to ride on their parent atoms with Uiso(H) = 1.5 times Ueq(O) and 1.2 times Ueq (C–methylene and C–methyne), respectively.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with atom labels and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Part of the packing of (I) showing the chiral chain running along the c axis. Hydrogen bonds are depicted as dashed lines. H atoms not involved in these interactions have been omitted.
Oxymatrinium tetrachloridoferrate(III) top
Crystal data top
(C15H25N2O2)[FeCl4]F(000) = 956
Mr = 463.02Dx = 1.563 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6437 reflections
a = 7.7919 (4) Åθ = 2.6–27.1°
b = 11.9518 (6) ŵ = 1.32 mm1
c = 21.1315 (10) ÅT = 173 K
V = 1967.92 (17) Å3Prism, yellow
Z = 40.45 × 0.26 × 0.25 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
4267 independent reflections
Radiation source: fine-focus sealed tube3812 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 27.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 99
Tmin = 0.588, Tmax = 0.734k = 715
9963 measured reflectionsl = 2327
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0334P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4267 reflectionsΔρmax = 0.31 e Å3
218 parametersΔρmin = 0.28 e Å3
0 restraintsAbsolute structure: Flack (1983), 1787 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.006 (14)
Crystal data top
(C15H25N2O2)[FeCl4]V = 1967.92 (17) Å3
Mr = 463.02Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.7919 (4) ŵ = 1.32 mm1
b = 11.9518 (6) ÅT = 173 K
c = 21.1315 (10) Å0.45 × 0.26 × 0.25 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
4267 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3812 reflections with I > 2σ(I)
Tmin = 0.588, Tmax = 0.734Rint = 0.020
9963 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.061Δρmax = 0.31 e Å3
S = 1.03Δρmin = 0.28 e Å3
4267 reflectionsAbsolute structure: Flack (1983), 1787 Friedel pairs
218 parametersAbsolute structure parameter: 0.006 (14)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.48378 (4)0.01347 (2)0.169548 (12)0.02484 (8)
Cl10.48652 (8)0.12257 (4)0.23956 (2)0.03028 (12)
Cl20.72310 (9)0.10944 (6)0.17647 (3)0.04546 (17)
Cl30.25496 (9)0.11672 (6)0.18583 (3)0.04688 (18)
Cl40.46744 (8)0.05810 (5)0.07447 (2)0.03739 (14)
N11.1039 (2)0.60782 (15)0.13234 (8)0.0221 (4)
C21.1716 (3)0.72196 (19)0.14985 (10)0.0276 (5)
H2A1.28980.73050.13340.033*
H2B1.17590.72900.19650.033*
C31.0591 (3)0.81319 (19)0.12295 (11)0.0298 (5)
H3A1.06150.80940.07620.036*
H3B1.10480.88700.13580.036*
C40.8751 (3)0.8018 (2)0.14585 (11)0.0325 (5)
H4A0.80300.85760.12370.039*
H4B0.87080.81890.19170.039*
C50.8001 (3)0.68571 (19)0.13492 (10)0.0259 (5)
H50.69640.68060.16270.031*
C60.9204 (3)0.59318 (19)0.15665 (9)0.0248 (5)
H60.92710.59960.20380.030*
C70.8473 (3)0.47659 (19)0.14298 (10)0.0272 (5)
H70.74080.47030.16920.033*
C80.9697 (3)0.38652 (19)0.16806 (11)0.0381 (5)
H8A0.97180.38960.21490.046*
H8B0.92670.31180.15550.046*
C91.1505 (3)0.40203 (19)0.14288 (12)0.0366 (6)
H9A1.22690.34460.16150.044*
H9B1.15060.39210.09640.044*
C101.2176 (3)0.51723 (19)0.15907 (10)0.0298 (5)
H10A1.22390.52530.20560.036*
H10B1.33510.52580.14190.036*
C110.7893 (3)0.46034 (17)0.07363 (9)0.0235 (4)
H110.89230.46420.04550.028*
C120.7037 (3)0.34673 (18)0.06509 (11)0.0328 (5)
H12A0.79160.28700.06630.039*
H12B0.62160.33350.10000.039*
C130.6095 (3)0.3433 (2)0.00198 (12)0.0369 (6)
H13A0.68970.36110.03290.044*
H13B0.56200.26750.00540.044*
C140.4664 (3)0.4280 (2)0.00382 (12)0.0402 (6)
H14A0.42370.43950.03980.048*
H14B0.37060.39680.02910.048*
C150.5150 (3)0.53988 (18)0.03113 (9)0.0267 (4)
N160.6714 (2)0.55307 (14)0.05703 (8)0.0213 (4)
C170.7358 (3)0.66798 (17)0.06706 (10)0.0232 (4)
H17A0.64270.72200.05800.028*
H17B0.83080.68290.03710.028*
O10.41292 (18)0.62004 (14)0.02719 (7)0.0319 (4)
O21.09826 (17)0.59837 (13)0.06528 (6)0.0218 (3)
H21.19630.61090.05030.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.03331 (16)0.02190 (14)0.01931 (13)0.00039 (14)0.00051 (12)0.00073 (11)
Cl10.0359 (3)0.0272 (2)0.0277 (2)0.0024 (3)0.0005 (2)0.00547 (19)
Cl20.0571 (4)0.0398 (4)0.0395 (3)0.0238 (3)0.0061 (3)0.0081 (3)
Cl30.0607 (4)0.0372 (4)0.0427 (4)0.0213 (3)0.0135 (3)0.0028 (3)
Cl40.0444 (3)0.0461 (3)0.0216 (2)0.0090 (3)0.0043 (2)0.0082 (2)
N10.0239 (8)0.0255 (9)0.0169 (8)0.0008 (8)0.0052 (7)0.0010 (8)
C20.0260 (11)0.0290 (12)0.0277 (11)0.0047 (9)0.0072 (9)0.0038 (10)
C30.0318 (12)0.0205 (10)0.0372 (12)0.0016 (9)0.0087 (9)0.0025 (9)
C40.0284 (11)0.0307 (13)0.0383 (13)0.0028 (10)0.0043 (10)0.0100 (11)
C50.0211 (10)0.0325 (13)0.0240 (11)0.0007 (9)0.0035 (8)0.0054 (9)
C60.0249 (10)0.0335 (12)0.0160 (10)0.0037 (9)0.0030 (8)0.0001 (9)
C70.0281 (10)0.0297 (12)0.0237 (10)0.0040 (10)0.0018 (8)0.0046 (10)
C80.0486 (14)0.0297 (11)0.0359 (12)0.0076 (11)0.0129 (12)0.0132 (10)
C90.0415 (13)0.0247 (12)0.0436 (14)0.0044 (10)0.0142 (11)0.0045 (11)
C100.0322 (11)0.0299 (12)0.0272 (11)0.0048 (10)0.0105 (9)0.0030 (10)
C110.0203 (9)0.0239 (11)0.0265 (11)0.0011 (8)0.0002 (8)0.0028 (9)
C120.0337 (12)0.0228 (11)0.0419 (13)0.0032 (10)0.0013 (10)0.0007 (10)
C130.0362 (13)0.0304 (13)0.0441 (14)0.0097 (11)0.0005 (11)0.0084 (11)
C140.0318 (13)0.0401 (13)0.0487 (14)0.0093 (12)0.0080 (11)0.0059 (11)
C150.0210 (10)0.0336 (11)0.0257 (10)0.0028 (10)0.0029 (9)0.0030 (8)
N160.0190 (8)0.0225 (9)0.0226 (9)0.0022 (7)0.0014 (6)0.0005 (7)
C170.0204 (10)0.0214 (10)0.0278 (10)0.0004 (8)0.0010 (9)0.0013 (9)
O10.0194 (7)0.0359 (9)0.0404 (9)0.0004 (7)0.0015 (6)0.0040 (8)
O20.0190 (7)0.0307 (8)0.0157 (6)0.0011 (6)0.0001 (5)0.0008 (6)
Geometric parameters (Å, º) top
Fe1—Cl42.1874 (6)C8—H8A0.9900
Fe1—Cl22.1942 (7)C8—H8B0.9900
Fe1—Cl32.1954 (7)C9—C101.512 (3)
Fe1—Cl12.1984 (5)C9—H9A0.9900
N1—O21.422 (2)C9—H9B0.9900
N1—C21.509 (3)C10—H10A0.9900
N1—C101.509 (3)C10—H10B0.9900
N1—C61.529 (3)C11—N161.482 (3)
C2—C31.510 (3)C11—C121.523 (3)
C2—H2A0.9900C11—H111.0000
C2—H2B0.9900C12—C131.523 (3)
C3—C41.520 (3)C12—H12A0.9900
C3—H3A0.9900C12—H12B0.9900
C3—H3B0.9900C13—C141.507 (3)
C4—C51.523 (3)C13—H13A0.9900
C4—H4A0.9900C13—H13B0.9900
C4—H4B0.9900C14—C151.505 (3)
C5—C61.521 (3)C14—H14A0.9900
C5—C171.534 (3)C14—H14B0.9900
C5—H51.0000C15—O11.248 (3)
C6—C71.533 (3)C15—N161.345 (3)
C6—H61.0000N16—C171.478 (3)
C7—C81.533 (3)C17—H17A0.9900
C7—C111.546 (3)C17—H17B0.9900
C7—H71.0000O2—H20.8400
C8—C91.518 (4)
Cl4—Fe1—Cl2108.37 (3)C7—C8—H8B109.3
Cl4—Fe1—Cl3108.45 (3)H8A—C8—H8B107.9
Cl2—Fe1—Cl3112.70 (3)C10—C9—C8110.7 (2)
Cl4—Fe1—Cl1109.23 (2)C10—C9—H9A109.5
Cl2—Fe1—Cl1109.48 (3)C8—C9—H9A109.5
Cl3—Fe1—Cl1108.55 (3)C10—C9—H9B109.5
O2—N1—C2109.09 (15)C8—C9—H9B109.5
O2—N1—C10109.52 (15)H9A—C9—H9B108.1
C2—N1—C10110.59 (15)N1—C10—C9111.44 (17)
O2—N1—C6107.26 (14)N1—C10—H10A109.3
C2—N1—C6110.36 (17)C9—C10—H10A109.3
C10—N1—C6109.95 (16)N1—C10—H10B109.3
N1—C2—C3110.95 (16)C9—C10—H10B109.3
N1—C2—H2A109.4H10A—C10—H10B108.0
C3—C2—H2A109.4N16—C11—C12111.55 (17)
N1—C2—H2B109.4N16—C11—C7108.17 (16)
C3—C2—H2B109.4C12—C11—C7110.63 (18)
H2A—C2—H2B108.0N16—C11—H11108.8
C2—C3—C4111.3 (2)C12—C11—H11108.8
C2—C3—H3A109.4C7—C11—H11108.8
C4—C3—H3A109.4C13—C12—C11109.82 (18)
C2—C3—H3B109.4C13—C12—H12A109.7
C4—C3—H3B109.4C11—C12—H12A109.7
H3A—C3—H3B108.0C13—C12—H12B109.7
C3—C4—C5113.30 (19)C11—C12—H12B109.7
C3—C4—H4A108.9H12A—C12—H12B108.2
C5—C4—H4A108.9C14—C13—C12108.42 (19)
C3—C4—H4B108.9C14—C13—H13A110.0
C5—C4—H4B108.9C12—C13—H13A110.0
H4A—C4—H4B107.7C14—C13—H13B110.0
C6—C5—C4112.33 (17)C12—C13—H13B110.0
C6—C5—C17112.53 (17)H13A—C13—H13B108.4
C4—C5—C17113.14 (19)C15—C14—C13114.89 (19)
C6—C5—H5106.0C15—C14—H14A108.5
C4—C5—H5106.0C13—C14—H14A108.5
C17—C5—H5106.0C15—C14—H14B108.5
C5—C6—N1113.07 (17)C13—C14—H14B108.5
C5—C6—C7112.02 (17)H14A—C14—H14B107.5
N1—C6—C7112.84 (18)O1—C15—N16120.96 (19)
C5—C6—H6106.1O1—C15—C14119.75 (19)
N1—C6—H6106.1N16—C15—C14119.22 (19)
C7—C6—H6106.1C15—N16—C17118.37 (17)
C8—C7—C6110.00 (17)C15—N16—C11124.78 (17)
C8—C7—C11114.93 (19)C17—N16—C11116.77 (15)
C6—C7—C11113.68 (17)N16—C17—C5111.93 (17)
C8—C7—H7105.8N16—C17—H17A109.2
C6—C7—H7105.8C5—C17—H17A109.2
C11—C7—H7105.8N16—C17—H17B109.2
C9—C8—C7111.76 (18)C5—C17—H17B109.2
C9—C8—H8A109.3H17A—C17—H17B107.9
C7—C8—H8A109.3N1—O2—H2109.5
C9—C8—H8B109.3
O2—N1—C2—C359.1 (2)C2—N1—C10—C9179.15 (19)
C10—N1—C2—C3179.66 (18)C6—N1—C10—C957.0 (2)
C6—N1—C2—C358.5 (2)C8—C9—C10—N158.5 (2)
N1—C2—C3—C457.9 (2)C8—C7—C11—N16179.53 (16)
C2—C3—C4—C552.4 (3)C6—C7—C11—N1652.5 (2)
C3—C4—C5—C647.8 (2)C8—C7—C11—C1257.1 (2)
C3—C4—C5—C1781.0 (2)C6—C7—C11—C12174.92 (18)
C4—C5—C6—N148.8 (2)N16—C11—C12—C1345.7 (2)
C17—C5—C6—N180.3 (2)C7—C11—C12—C13166.21 (18)
C4—C5—C6—C7177.63 (17)C11—C12—C13—C1464.4 (2)
C17—C5—C6—C748.6 (2)C12—C13—C14—C1544.5 (3)
O2—N1—C6—C564.5 (2)C13—C14—C15—O1170.62 (19)
C2—N1—C6—C554.2 (2)C13—C14—C15—N166.5 (3)
C10—N1—C6—C5176.50 (16)O1—C15—N16—C1714.0 (3)
O2—N1—C6—C763.9 (2)C14—C15—N16—C17163.0 (2)
C2—N1—C6—C7177.34 (16)O1—C15—N16—C11169.15 (18)
C10—N1—C6—C755.1 (2)C14—C15—N16—C1113.8 (3)
C5—C6—C7—C8177.77 (18)C12—C11—N16—C156.8 (3)
N1—C6—C7—C853.3 (2)C7—C11—N16—C15128.66 (19)
C5—C6—C7—C1151.7 (2)C12—C11—N16—C17176.39 (17)
N1—C6—C7—C1177.2 (2)C7—C11—N16—C1754.5 (2)
C6—C7—C8—C953.7 (2)C15—N16—C17—C5129.11 (19)
C11—C7—C8—C976.1 (2)C11—N16—C17—C553.8 (2)
C7—C8—C9—C1056.7 (2)C6—C5—C17—N1648.7 (2)
O2—N1—C10—C960.6 (2)C4—C5—C17—N16177.31 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.841.762.5935 (19)171
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula(C15H25N2O2)[FeCl4]
Mr463.02
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)7.7919 (4), 11.9518 (6), 21.1315 (10)
V3)1967.92 (17)
Z4
Radiation typeMo Kα
µ (mm1)1.32
Crystal size (mm)0.45 × 0.26 × 0.25
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.588, 0.734
No. of measured, independent and
observed [I > 2σ(I)] reflections
9963, 4267, 3812
Rint0.020
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.061, 1.03
No. of reflections4267
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.28
Absolute structureFlack (1983), 1787 Friedel pairs
Absolute structure parameter0.006 (14)

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.841.762.5935 (19)171
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors are grateful to Guangzhou University.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Z. F., Mao, L., Liu, L. M., Liu, Y. C., Peng, Y., Hong, X., Wang, H. H., Liu, H. G. & Liang, H. (2011). J. Inorg. Biochem. 105,171–180.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJin, Z.-M., Li, Z.-G., Li, L., Li, M.-C. & Hu, M.-L. (2005). Acta Cryst. E61, m2466–m2468.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJin, Z. M., Ma, L. L., Wei, W. X. & Li, Y. Q. (2009). J. Struct. Chem. 50, 190–194.  Web of Science CrossRef CAS Google Scholar
First citationLai, J. P., He, X. W., Jiang, Y. & Chen, F. (2003). Anal. Bioanal. Chem. 375, 264–269.  Web of Science PubMed CAS Google Scholar
First citationLi, L. (2006). PhD Thesis, Zhejiang University of Technology, People's Republic of China.  Google Scholar
First citationMao, L., Liu, L. M., Liu, Y. C., Chen, Z. F., Liu, H. G. & Liang, H. (2008). J. Guangxi Normal Univ. Nat. Sci. Ed. 26, 60–63.  CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, G. B., Luo, Q., Qin, J., Wang, L., Shi, Y. S. & Sun, C. X. (2006). Colloids Surf. B Biointerfaces, 48, 1–5.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSun, H. L., Li, L., Shang, L., Zhao, D., Dong, D. L., Qiao, G. F., Liu, Y., Chu, W. F. & Yang, B. F. (2008). Phytother. Res. 22, 985–989.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, S. J., Wang, G. J., Li, X. T., Sun, J. G., Ma, R. L. & Sheng, L. S. (2005). J. Chromatogr. B, 817, 319–325.  Web of Science CrossRef CAS Google Scholar
First citationXiang, X. X., Wang, G. J., Cai, X. & Li, Y. L. (2002). Chin. Med. J. 115, 593–596.  Web of Science PubMed CAS Google Scholar
First citationZhang, L. P., Jiang, J. K., Tam, J. W. O., Zhang, Y., Liu, X. S., Xu, X. R., Liu, B. Z. & He, Y. J. (2001). Leuk. Res. 25, 793–800.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, Z. T., Yang, B. L., Liu, Q. G. & Yu, K. B. (2003). Acta Chim. Sin. 61, 1058–1064.  CAS Google Scholar
First citationZhang, Y., Zhang, H., Yu, P., Liu, Q., Liu, K., Duan, H., Luan, G., Yagasaki, K. & Zhang, G. (2009). Cytotechnology, 59, 191–200.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds