metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-ethyl-1H-imidazol-3-ium) tetra­chloridomercurate(II)

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: zhurunqiang@163.com

(Received 13 December 2011; accepted 23 December 2011; online 14 January 2012)

The crystal structure of the title compound, (C5H9N2)2[HgCl4], consists of discrete tetra­chloridomercurate dications and discrete 2-methyl­imidazolium cations. In the complex anion, the mercury cations are coordinated by four chloride anions with distances between 2.4568 (14) and 2.4936 (15) Å in a tetra­hedral geometry. In the crystal, the cations and anions are connected by inter­molecular N—H⋯Cl inter­actions. One C atom of the cations is disordered and was refined using a split model (occupancy ratio 0.75:0.25).

Related literature

For a related structure and background to this study, see: Zhu (2011[Zhu, R.-Q. (2011). Acta Cryst. E67, m112.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H9N2)2[HgCl4]

  • Mr = 536.67

  • Triclinic, [P \overline 1]

  • a = 7.5784 (15) Å

  • b = 8.0972 (16) Å

  • c = 14.661 (3) Å

  • α = 92.42 (3)°

  • β = 97.88 (3)°

  • γ = 98.17 (3)°

  • V = 880.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 9.34 mm−1

  • T = 293 K

  • 0.33 × 0.28 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.216, Tmax = 0.459

  • 9149 measured reflections

  • 4032 independent reflections

  • 3437 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.064

  • S = 1.05

  • 4032 reflections

  • 178 parameters

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯Cl3i 0.86 2.42 3.227 (4) 157
N2—H2N⋯Cl4ii 0.86 2.37 3.188 (4) 158
N3—H3N⋯Cl2 0.86 2.37 3.220 (4) 171
N4—H4N⋯Cl2iii 0.86 2.47 3.285 (4) 159
Symmetry codes: (i) x, y+1, z+1; (ii) -x+2, -y+1, -z+1; (iii) x, y+1, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Related literature top

For a related structure and background to this study, see: Zhu (2011).

Experimental top

A mixture of HgCl2 (4.26 g, 25 mmol), hydrochloric acid (50 mmol, 36%, 8 ml), and 2 - ethyl imidazole (4.8 g, 50 mmol) in 30 ml water was stirred for 10 minutes at room temperature. On slow evaporation of solvent colourless crystals of the title compound grew within two weeks.

Refinement top

Hydrogen atom positions were calculated and allowed to ride on their respective C atoms and N atoms with C–H distances of 0.93–0.97Å and N–H = 0.86 Å, and with Uiso(H)=1.2Ueq(C or N) or or 1.5 Uiso(C) for methy H atoms. One C atom is disordered and was refined using a split model and sof of 0.75:0.25. The atom of lower occupany was refined isotropic.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with labeling and displacement ellipsoids drawn at the 30% probability level. Intermolecular hydrogen bonding is shown as dashed lines and disordering as full and open bonds..
[Figure 2] Fig. 2. Crystal structure of the title compound with intermolecular hydrogen bonding shown as dashed lines. A-atoms not involved in hydrogen bonding are omitted for clarity.
Bis(2-ethyl-1H-imidazol-3-ium) tetrachloridomercurate(II) top
Crystal data top
(C5H9N2)2[HgCl4]Z = 2
Mr = 536.67F(000) = 508
Triclinic, P1Dx = 2.025 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5784 (15) ÅCell parameters from 4032 reflections
b = 8.0972 (16) Åθ = 2.3–27.5°
c = 14.661 (3) ŵ = 9.34 mm1
α = 92.42 (3)°T = 293 K
β = 97.88 (3)°Block, colourless
γ = 98.17 (3)°0.33 × 0.28 × 0.20 mm
V = 880.4 (3) Å3
Data collection top
Rigaku SCXmini
diffractometer
3437 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
Graphite monochromatorθmax = 27.5°, θmin = 3.3°
ω scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1010
Tmin = 0.216, Tmax = 0.459l = 1919
9149 measured reflections2 standard reflections every 150 reflections
4032 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0134P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4032 reflectionsΔρmax = 0.80 e Å3
178 parametersΔρmin = 0.72 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0113 (4)
Crystal data top
(C5H9N2)2[HgCl4]γ = 98.17 (3)°
Mr = 536.67V = 880.4 (3) Å3
Triclinic, P1Z = 2
a = 7.5784 (15) ÅMo Kα radiation
b = 8.0972 (16) ŵ = 9.34 mm1
c = 14.661 (3) ÅT = 293 K
α = 92.42 (3)°0.33 × 0.28 × 0.20 mm
β = 97.88 (3)°
Data collection top
Rigaku SCXmini
diffractometer
3437 reflections with I > 2σ(I)
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
Rint = 0.044
Tmin = 0.216, Tmax = 0.4592 standard reflections every 150 reflections
9149 measured reflections intensity decay: none
4032 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.064H-atom parameters constrained
S = 1.05Δρmax = 0.80 e Å3
4032 reflectionsΔρmin = 0.72 e Å3
178 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Hg10.79183 (2)0.20862 (2)0.266500 (12)0.05040 (10)
C10.8846 (6)0.7508 (6)1.0072 (3)0.0491 (11)
C21.1813 (6)0.8008 (6)1.0293 (3)0.0573 (13)
H21.30040.80021.02060.069*
C31.1239 (7)0.8776 (7)1.0993 (3)0.0585 (13)
H31.19500.94031.14920.070*
C40.6932 (6)0.6871 (7)0.9695 (4)0.0713 (16)
H4A0.62550.78020.96680.086*
H4B0.64340.61011.01160.086*
C50.6688 (8)0.6002 (8)0.8757 (4)0.0884 (19)
H5A0.71080.67750.83270.133*
H5B0.54340.55890.85670.133*
H5C0.73650.50850.87750.133*
C60.5651 (7)0.7388 (7)0.3880 (4)0.0593 (13)
C70.2790 (7)0.7388 (7)0.3359 (3)0.0616 (14)
H70.17150.77780.31570.074*
C80.3024 (7)0.5809 (7)0.3409 (3)0.0594 (13)
H80.21530.48720.32550.071*
C90.7550 (11)0.8057 (10)0.4345 (7)0.079 (3)0.75
H9A0.81260.88200.39450.095*0.75
H9B0.74780.86900.49120.095*0.75
C9'0.771 (4)0.770 (4)0.3870 (18)0.066 (8)*0.25
H9C0.79690.73410.32680.080*0.25
H9D0.81520.88830.39770.080*0.25
C100.8631 (8)0.6817 (9)0.4553 (5)0.099 (2)
H10A0.98090.73300.48380.149*0.75
H10B0.87290.61930.39950.149*0.75
H10C0.80970.60780.49680.149*0.75
H10D0.97950.74450.47750.149*0.25
H10E0.87760.57460.42910.149*0.25
H10F0.79460.66640.50550.149*0.25
N10.9390 (5)0.8458 (5)1.0834 (3)0.0551 (10)
H1N0.86900.88281.11830.066*
N21.0314 (5)0.7232 (5)0.9728 (3)0.0530 (10)
H2N1.03230.66480.92250.064*
N30.4807 (6)0.5828 (5)0.3731 (3)0.0577 (11)
H3N0.53030.49480.38280.069*
N40.4401 (6)0.8336 (5)0.3658 (3)0.0570 (11)
H4N0.45830.94110.36960.068*
Cl11.08854 (17)0.11817 (17)0.30103 (10)0.0661 (4)
Cl20.62204 (16)0.22853 (13)0.39872 (8)0.0516 (3)
Cl30.60382 (15)0.01229 (18)0.15686 (8)0.0652 (4)
Cl40.84770 (16)0.47931 (15)0.19336 (8)0.0567 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.05255 (14)0.04618 (14)0.05352 (14)0.00583 (9)0.01238 (9)0.00504 (9)
C10.048 (3)0.043 (3)0.060 (3)0.010 (2)0.014 (2)0.014 (2)
C20.048 (3)0.058 (3)0.066 (3)0.006 (2)0.010 (3)0.007 (3)
C30.065 (3)0.051 (3)0.055 (3)0.002 (3)0.002 (3)0.009 (3)
C40.053 (3)0.076 (4)0.083 (4)0.001 (3)0.012 (3)0.011 (3)
C50.068 (4)0.101 (5)0.088 (4)0.004 (4)0.006 (3)0.003 (4)
C60.052 (3)0.051 (3)0.076 (4)0.004 (3)0.016 (3)0.012 (3)
C70.058 (3)0.065 (4)0.064 (3)0.012 (3)0.011 (3)0.016 (3)
C80.061 (3)0.055 (3)0.058 (3)0.001 (3)0.001 (3)0.002 (3)
C90.075 (6)0.044 (5)0.118 (8)0.006 (4)0.013 (6)0.011 (5)
C100.077 (4)0.105 (6)0.108 (5)0.011 (4)0.007 (4)0.002 (4)
N10.063 (3)0.052 (3)0.057 (3)0.013 (2)0.027 (2)0.010 (2)
N20.063 (2)0.050 (2)0.048 (2)0.009 (2)0.015 (2)0.0008 (19)
N30.074 (3)0.037 (2)0.068 (3)0.019 (2)0.017 (2)0.008 (2)
N40.071 (3)0.036 (2)0.067 (3)0.007 (2)0.020 (2)0.010 (2)
Cl10.0564 (7)0.0618 (8)0.0825 (9)0.0211 (6)0.0061 (7)0.0030 (7)
Cl20.0655 (7)0.0368 (6)0.0575 (7)0.0104 (5)0.0234 (6)0.0046 (5)
Cl30.0490 (6)0.0764 (9)0.0646 (8)0.0031 (6)0.0088 (6)0.0196 (7)
Cl40.0670 (7)0.0450 (7)0.0610 (7)0.0097 (6)0.0157 (6)0.0124 (6)
Geometric parameters (Å, º) top
Hg1—Cl12.4568 (14)C7—C81.320 (7)
Hg1—Cl22.4811 (13)C7—N41.353 (6)
Hg1—Cl42.4885 (14)C7—H70.9300
Hg1—Cl32.4936 (15)C8—N31.366 (6)
C1—N11.312 (6)C8—H80.9300
C1—N21.325 (5)C9—C101.402 (10)
C1—C41.490 (6)C9—H9A0.9700
C2—C31.332 (6)C9—H9B0.9700
C2—N21.366 (6)C9'—C101.41 (3)
C2—H20.9300C9'—H9C0.9700
C3—N11.373 (6)C9'—H9D0.9700
C3—H30.9300C10—H10A0.9600
C4—C51.494 (7)C10—H10B0.9600
C4—H4A0.9700C10—H10C0.9600
C4—H4B0.9700C10—H10D0.9600
C5—H5A0.9600C10—H10E0.9601
C5—H5B0.9600C10—H10F0.9600
C5—H5C0.9600N1—H1N0.8602
C6—N41.317 (6)N2—H2N0.8606
C6—N31.327 (6)N3—H3N0.8598
C6—C91.519 (10)N4—H4N0.8599
C6—C9'1.55 (3)
Cl1—Hg1—Cl2115.95 (5)C10—C9'—H9C109.3
Cl1—Hg1—Cl4105.47 (5)C6—C9'—H9C109.3
Cl2—Hg1—Cl4112.40 (4)C10—C9'—H9D109.3
Cl1—Hg1—Cl3106.12 (5)C6—C9'—H9D109.3
Cl2—Hg1—Cl3105.11 (4)H9C—C9'—H9D108.0
Cl4—Hg1—Cl3111.73 (5)C9—C10—C9'32.0 (9)
N1—C1—N2106.7 (4)C9—C10—H10A109.5
N1—C1—C4125.2 (4)C9'—C10—H10A117.4
N2—C1—C4128.1 (5)C9—C10—H10B109.5
C3—C2—N2106.8 (4)C9'—C10—H10B77.9
C3—C2—H2126.6H10A—C10—H10B109.5
N2—C2—H2126.6C9—C10—H10C109.5
C2—C3—N1106.4 (4)C9'—C10—H10C126.8
C2—C3—H3126.8H10A—C10—H10C109.5
N1—C3—H3126.8H10B—C10—H10C109.5
C1—C4—C5113.8 (5)C9—C10—H10D103.4
C1—C4—H4A108.8C9'—C10—H10D109.5
C5—C4—H4A108.8H10A—C10—H10D8.0
C1—C4—H4B108.8H10B—C10—H10D107.7
C5—C4—H4B108.8H10C—C10—H10D117.0
H4A—C4—H4B107.7C9—C10—H10E137.6
C4—C5—H5A109.5C9'—C10—H10E109.5
C4—C5—H5B109.5H10A—C10—H10E106.2
H5A—C5—H5B109.5H10B—C10—H10E35.0
C4—C5—H5C109.5H10C—C10—H10E78.5
H5A—C5—H5C109.5H10D—C10—H10E109.5
H5B—C5—H5C109.5C9—C10—H10F83.0
N4—C6—N3105.3 (4)C9'—C10—H10F109.5
N4—C6—C9123.8 (5)H10A—C10—H10F104.5
N3—C6—C9130.2 (6)H10B—C10—H10F136.5
N4—C6—C9'131.4 (12)H10C—C10—H10F31.4
N3—C6—C9'117.9 (11)H10D—C10—H10F109.5
C9—C6—C9'29.3 (9)H10E—C10—H10F109.5
C8—C7—N4107.3 (5)C1—N1—C3110.2 (4)
C8—C7—H7126.3C1—N1—H1N124.9
N4—C7—H7126.3C3—N1—H1N124.9
C7—C8—N3106.1 (5)C1—N2—C2109.9 (4)
C7—C8—H8126.9C1—N2—H2N125.1
N3—C8—H8126.9C2—N2—H2N125.0
C10—C9—C6114.1 (6)C6—N3—C8110.5 (4)
C10—C9—H9A108.7C6—N3—H3N125.1
C6—C9—H9A108.7C8—N3—H3N124.4
C10—C9—H9B108.7C6—N4—C7110.8 (4)
C6—C9—H9B108.7C6—N4—H4N124.7
H9A—C9—H9B107.6C7—N4—H4N124.5
C10—C9'—C6111.5 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl3i0.862.423.227 (4)157
N2—H2N···Cl4ii0.862.373.188 (4)158
N3—H3N···Cl20.862.373.220 (4)171
N4—H4N···Cl2iii0.862.473.285 (4)159
Symmetry codes: (i) x, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formula(C5H9N2)2[HgCl4]
Mr536.67
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.5784 (15), 8.0972 (16), 14.661 (3)
α, β, γ (°)92.42 (3), 97.88 (3), 98.17 (3)
V3)880.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)9.34
Crystal size (mm)0.33 × 0.28 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.216, 0.459
No. of measured, independent and
observed [I > 2σ(I)] reflections
9149, 4032, 3437
Rint0.044
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.064, 1.05
No. of reflections4032
No. of parameters178
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.72

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl3i0.862.423.227 (4)157.2
N2—H2N···Cl4ii0.862.373.188 (4)158.2
N3—H3N···Cl20.862.373.220 (4)170.9
N4—H4N···Cl2iii0.862.473.285 (4)159.1
Symmetry codes: (i) x, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x, y+1, z.
 

Acknowledgements

This work was supported by Southeast University.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, R.-Q. (2011). Acta Cryst. E67, m112.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds