organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Morpholin-4-yl)[2-(morpholin-4-yl)-3,5-di­nitro­phen­yl]methanone

aState Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, People's Republic of China
*Correspondence e-mail: yuluot@scu.edu.cn

(Received 30 December 2011; accepted 5 January 2012; online 14 January 2012)

In the title compound, C15H18N4O7, the morpholine rings adopt chair conformations. The benzene ring forms dihedral angles of 55.94 (7) and 63.19 (7)° with the planes through the C atoms of the two morpholine rings.

Related literature

For the biological activity of benzamide derivatives, see: Christophe et al. (2009[Christophe, T., Jackson, M., Jeon, H. K., Fenistein, D., Contreras-Dominguez, M., Kim, J., Genovesio, A., Carralot, J. P., Ewann, F., Kim, E. H., Lee, S. Y., Kang, S., Seo, M. J., Park, E. J., Skovierova, H., Pham, H., Riccardi, G., Nam, J. Y., Marsollier, L., Kempf, M., Joly-Guillou, M. L., Oh, T., Shin, W. K., No, Z., Nehrbass, U., Brosch, R., Cole, S. T. & Brodin, P. (2009). PLoS Pathog. 5, 1-10.]).

[Scheme 1]

Experimental

Crystal data
  • C15H18N4O7

  • Mr = 366.33

  • Monoclinic, P 21 /c

  • a = 10.2640 (4) Å

  • b = 21.5488 (7) Å

  • c = 8.0061 (3) Å

  • β = 108.587 (4)°

  • V = 1678.40 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.38 × 0.35 × 0.35 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.994, Tmax = 1.000

  • 7068 measured reflections

  • 3422 independent reflections

  • 2440 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.110

  • S = 1.03

  • 3422 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Benzamide derivatives are of great importance owing to their antibacterial properties (Christophe et al., 2009). The title compound is one of the key intermediates in our synthetic investigations of antibacterial drugs. Therefore, its crystal structure was determined.

In the crystal structure of the title compound, C15H18N4O7, the morpholine rings adopt a chair conformation. The benzene ring forms dihedral angles of 55.94 (7)° and 63.19 (7)° with the two morpholine rings.

Related literature top

For the biological activity of benzamide derivatives, see: Christophe et al. (2009).

Experimental top

3.42 g (12.9 mmol) of 2-chloro-3,5-dinitrobenzoyl chloride was added to a solution of 2.36 g (27.1 mmol) morpholine in 20 ml of dichloromethane and 1.82 g (17.9 mmol) triethylamine. The mixture was stirred for 2 h at room temperature extracted with water and dichloromethane and the organic solvent was evaporated and the title compound was recrystallized from ethanol (yield 4.25 g, 90%). Crystals suitable for X-ray analysis were obtained by slow evaporation of the solvent from a solution of the title compound in acetonitrile.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO (Oxford Diffraction, 2006); data reduction: CrysAlis PRO (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with labeling and displacement ellipsoids drawn at the 30% probability level.
(Morpholin-4-yl)[2-(morpholin-4-yl)-3,5-dinitrophenyl]methanone top
Crystal data top
C15H18N4O7F(000) = 768
Mr = 366.33Dx = 1.450 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
a = 10.2640 (4) ÅCell parameters from 2613 reflections
b = 21.5488 (7) Åθ = 3.0–29.0°
c = 8.0061 (3) ŵ = 0.12 mm1
β = 108.587 (4)°T = 293 K
V = 1678.40 (10) Å3Block, yellow
Z = 40.38 × 0.35 × 0.35 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3422 independent reflections
Radiation source: Enhance (Mo) X-ray Source2440 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 16.0874 pixels mm-1θmax = 26.4°, θmin = 3.0°
ω scansh = 127
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
k = 2618
Tmin = 0.994, Tmax = 1.000l = 910
7068 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0426P)2 + 0.3019P]
where P = (Fo2 + 2Fc2)/3
3422 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C15H18N4O7V = 1678.40 (10) Å3
Mr = 366.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.2640 (4) ŵ = 0.12 mm1
b = 21.5488 (7) ÅT = 293 K
c = 8.0061 (3) Å0.38 × 0.35 × 0.35 mm
β = 108.587 (4)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3422 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
2440 reflections with I > 2σ(I)
Tmin = 0.994, Tmax = 1.000Rint = 0.017
7068 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.03Δρmax = 0.16 e Å3
3422 reflectionsΔρmin = 0.20 e Å3
235 parameters
Special details top

Experimental. CrysAlisPro (Oxford Diffraction, 2006). Agilent Technologies, Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.38171 (14)0.03743 (7)0.58276 (17)0.0608 (4)
O20.58939 (14)0.11924 (7)0.02632 (18)0.0588 (4)
O30.27069 (12)0.25026 (6)0.21720 (17)0.0468 (3)
O40.13992 (17)0.22884 (9)0.4060 (2)0.0884 (6)
O50.30029 (15)0.16911 (8)0.38749 (19)0.0723 (5)
O60.11367 (15)0.07133 (8)0.3247 (2)0.0697 (5)
O70.17948 (18)0.01161 (7)0.0962 (2)0.0825 (5)
N10.18359 (16)0.18932 (8)0.3309 (2)0.0500 (4)
N20.12006 (16)0.05713 (8)0.1748 (2)0.0510 (4)
N30.17106 (14)0.09335 (6)0.30645 (17)0.0375 (4)
N40.36454 (13)0.17369 (6)0.09991 (17)0.0342 (3)
C10.09372 (17)0.16569 (8)0.1628 (2)0.0361 (4)
C20.14151 (17)0.12014 (8)0.0794 (2)0.0373 (4)
H20.22910.10360.12890.045*
C30.05571 (17)0.09943 (8)0.0810 (2)0.0342 (4)
C40.07972 (16)0.12074 (7)0.1600 (2)0.0307 (4)
C50.12146 (16)0.16958 (7)0.0703 (2)0.0306 (4)
C60.03563 (17)0.19131 (8)0.0891 (2)0.0357 (4)
H60.06480.22320.14710.043*
C70.25205 (19)0.12947 (9)0.4592 (2)0.0464 (5)
H7A0.20590.13020.54760.056*
H7B0.26130.17190.42380.056*
C80.3922 (2)0.10043 (11)0.5348 (3)0.0563 (6)
H8A0.44020.10240.44850.068*
H8B0.44510.12360.63790.068*
C90.3045 (2)0.00286 (10)0.4328 (3)0.0570 (5)
H9A0.29900.04000.46680.068*
H9B0.35150.00370.34520.068*
C100.16127 (19)0.02827 (8)0.3529 (3)0.0460 (5)
H10A0.11250.00470.24850.055*
H10B0.11100.02490.43660.055*
C110.25990 (16)0.20097 (8)0.1370 (2)0.0317 (4)
C120.49371 (17)0.20777 (9)0.1316 (3)0.0456 (5)
H12A0.50830.23480.23290.055*
H12B0.48860.23340.03010.055*
C130.61214 (19)0.16320 (11)0.1647 (3)0.0594 (6)
H13A0.69570.18620.17540.071*
H13B0.62460.14160.27490.071*
C140.4726 (2)0.08302 (9)0.0182 (3)0.0493 (5)
H14A0.48710.06250.13050.059*
H14B0.46030.05130.07140.059*
C150.34554 (18)0.12219 (8)0.0241 (2)0.0419 (4)
H15A0.32400.13830.14290.050*
H15B0.26880.09680.01890.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0474 (8)0.0784 (11)0.0501 (8)0.0055 (7)0.0066 (7)0.0204 (8)
O20.0462 (8)0.0699 (10)0.0680 (9)0.0094 (7)0.0290 (7)0.0044 (8)
O30.0433 (7)0.0360 (7)0.0618 (8)0.0055 (6)0.0177 (6)0.0154 (6)
O40.0654 (11)0.1098 (14)0.0752 (11)0.0167 (10)0.0017 (9)0.0537 (11)
O50.0423 (8)0.0936 (12)0.0631 (9)0.0114 (8)0.0086 (7)0.0163 (8)
O60.0582 (10)0.0991 (13)0.0616 (10)0.0069 (8)0.0327 (8)0.0293 (9)
O70.0735 (11)0.0540 (10)0.1152 (14)0.0298 (9)0.0236 (10)0.0129 (10)
N10.0393 (9)0.0576 (11)0.0462 (9)0.0007 (8)0.0038 (7)0.0108 (8)
N20.0357 (9)0.0519 (11)0.0666 (11)0.0001 (8)0.0183 (8)0.0201 (9)
N30.0382 (8)0.0352 (8)0.0352 (7)0.0014 (6)0.0062 (6)0.0034 (6)
N40.0290 (7)0.0343 (8)0.0393 (8)0.0048 (6)0.0111 (6)0.0061 (6)
C10.0323 (9)0.0381 (10)0.0361 (9)0.0012 (7)0.0084 (7)0.0040 (8)
C20.0268 (8)0.0387 (10)0.0446 (10)0.0034 (7)0.0090 (7)0.0009 (8)
C30.0336 (9)0.0305 (9)0.0423 (9)0.0025 (7)0.0176 (8)0.0024 (8)
C40.0300 (8)0.0306 (9)0.0325 (8)0.0006 (7)0.0114 (7)0.0032 (7)
C50.0295 (8)0.0279 (8)0.0356 (8)0.0003 (7)0.0122 (7)0.0014 (7)
C60.0332 (9)0.0343 (9)0.0406 (9)0.0020 (7)0.0131 (7)0.0048 (8)
C70.0502 (11)0.0525 (12)0.0341 (9)0.0053 (9)0.0100 (8)0.0001 (8)
C80.0444 (11)0.0781 (16)0.0420 (11)0.0116 (11)0.0076 (9)0.0061 (11)
C90.0494 (12)0.0536 (13)0.0646 (13)0.0120 (10)0.0134 (10)0.0161 (11)
C100.0458 (11)0.0374 (10)0.0510 (11)0.0012 (8)0.0102 (9)0.0137 (9)
C110.0320 (9)0.0291 (9)0.0334 (8)0.0023 (7)0.0097 (7)0.0018 (7)
C120.0339 (10)0.0499 (12)0.0546 (11)0.0099 (8)0.0163 (8)0.0076 (9)
C130.0320 (10)0.0768 (16)0.0670 (13)0.0005 (10)0.0125 (10)0.0057 (12)
C140.0572 (13)0.0440 (11)0.0521 (11)0.0086 (10)0.0252 (10)0.0016 (9)
C150.0421 (10)0.0372 (10)0.0477 (10)0.0012 (8)0.0164 (8)0.0102 (8)
Geometric parameters (Å, º) top
O1—C81.424 (2)C5—C61.381 (2)
O1—C91.420 (2)C5—C111.509 (2)
O2—C131.419 (2)C6—H60.9300
O2—C141.414 (2)C7—H7A0.9700
O3—C111.2275 (19)C7—H7B0.9700
O4—N11.208 (2)C7—C81.507 (3)
O5—N11.218 (2)C8—H8A0.9700
O6—N21.220 (2)C8—H8B0.9700
O7—N21.219 (2)C9—H9A0.9700
N1—C11.460 (2)C9—H9B0.9700
N2—C31.465 (2)C9—C101.507 (2)
N3—C41.379 (2)C10—H10A0.9700
N3—C71.464 (2)C10—H10B0.9700
N3—C101.463 (2)C12—H12A0.9700
N4—C111.338 (2)C12—H12B0.9700
N4—C121.465 (2)C12—C131.505 (3)
N4—C151.460 (2)C13—H13A0.9700
C1—C21.363 (2)C13—H13B0.9700
C1—C61.384 (2)C14—H14A0.9700
C2—H20.9300C14—H14B0.9700
C2—C31.379 (2)C14—C151.499 (2)
C3—C41.408 (2)C15—H15A0.9700
C4—C51.415 (2)C15—H15B0.9700
C9—O1—C8109.99 (14)C7—C8—H8B109.4
C14—O2—C13109.29 (14)H8A—C8—H8B108.0
O4—N1—O5122.95 (17)O1—C9—H9A109.2
O4—N1—C1118.63 (16)O1—C9—H9B109.2
O5—N1—C1118.41 (16)O1—C9—C10111.99 (17)
O6—N2—C3117.18 (17)H9A—C9—H9B107.9
O7—N2—O6124.81 (18)C10—C9—H9A109.2
O7—N2—C3117.97 (18)C10—C9—H9B109.2
C4—N3—C7122.26 (14)N3—C10—C9108.64 (15)
C4—N3—C10122.91 (14)N3—C10—H10A110.0
C10—N3—C7111.36 (14)N3—C10—H10B110.0
C11—N4—C12119.16 (14)C9—C10—H10A110.0
C11—N4—C15122.84 (13)C9—C10—H10B110.0
C15—N4—C12114.60 (13)H10A—C10—H10B108.3
C2—C1—N1118.85 (15)O3—C11—N4123.45 (15)
C2—C1—C6121.64 (15)O3—C11—C5119.39 (15)
C6—C1—N1119.47 (15)N4—C11—C5117.13 (14)
C1—C2—H2121.1N4—C12—H12A109.6
C1—C2—C3117.78 (15)N4—C12—H12B109.6
C3—C2—H2121.1N4—C12—C13110.25 (16)
C2—C3—N2114.83 (15)H12A—C12—H12B108.1
C2—C3—C4123.97 (15)C13—C12—H12A109.6
C4—C3—N2120.94 (15)C13—C12—H12B109.6
N3—C4—C3123.28 (15)O2—C13—C12111.48 (16)
N3—C4—C5121.07 (14)O2—C13—H13A109.3
C3—C4—C5115.44 (14)O2—C13—H13B109.3
C4—C5—C11123.82 (14)C12—C13—H13A109.3
C6—C5—C4120.93 (14)C12—C13—H13B109.3
C6—C5—C11115.25 (14)H13A—C13—H13B108.0
C1—C6—H6120.0O2—C14—H14A109.4
C5—C6—C1120.07 (15)O2—C14—H14B109.4
C5—C6—H6120.0O2—C14—C15111.31 (16)
N3—C7—H7A109.8H14A—C14—H14B108.0
N3—C7—H7B109.8C15—C14—H14A109.4
N3—C7—C8109.28 (16)C15—C14—H14B109.4
H7A—C7—H7B108.3N4—C15—C14110.89 (15)
C8—C7—H7A109.8N4—C15—H15A109.5
C8—C7—H7B109.8N4—C15—H15B109.5
O1—C8—C7111.10 (16)C14—C15—H15A109.5
O1—C8—H8A109.4C14—C15—H15B109.5
O1—C8—H8B109.4H15A—C15—H15B108.0
C7—C8—H8A109.4
O1—C9—C10—N357.5 (2)C4—N3—C10—C9144.78 (16)
O2—C14—C15—N454.3 (2)C4—C5—C6—C10.6 (2)
O4—N1—C1—C2178.60 (18)C4—C5—C11—O397.7 (2)
O4—N1—C1—C63.5 (3)C4—C5—C11—N484.29 (19)
O5—N1—C1—C22.8 (3)C6—C1—C2—C30.9 (3)
O5—N1—C1—C6175.07 (18)C6—C5—C11—O383.08 (19)
O6—N2—C3—C2124.82 (18)C6—C5—C11—N494.98 (18)
O6—N2—C3—C449.6 (2)C7—N3—C4—C3131.89 (17)
O7—N2—C3—C252.9 (2)C7—N3—C4—C553.6 (2)
O7—N2—C3—C4132.64 (19)C7—N3—C10—C955.9 (2)
N1—C1—C2—C3178.74 (15)C8—O1—C9—C1059.5 (2)
N1—C1—C6—C5179.70 (15)C9—O1—C8—C759.2 (2)
N2—C3—C4—N316.1 (2)C10—N3—C4—C325.3 (2)
N2—C3—C4—C5169.09 (15)C10—N3—C4—C5149.27 (16)
N3—C4—C5—C6171.26 (15)C10—N3—C7—C856.40 (19)
N3—C4—C5—C118.0 (2)C11—N4—C12—C13153.48 (16)
N3—C7—C8—O157.6 (2)C11—N4—C15—C14154.09 (16)
N4—C12—C13—O254.2 (2)C11—C5—C6—C1179.86 (15)
C1—C2—C3—N2171.64 (16)C12—N4—C11—O39.5 (2)
C1—C2—C3—C42.6 (3)C12—N4—C11—C5168.46 (14)
C2—C1—C6—C51.9 (3)C12—N4—C15—C1447.0 (2)
C2—C3—C4—N3170.01 (15)C13—O2—C14—C1562.6 (2)
C2—C3—C4—C54.8 (2)C14—O2—C13—C1262.8 (2)
C3—C4—C5—C63.7 (2)C15—N4—C11—O3167.52 (16)
C3—C4—C5—C11177.09 (14)C15—N4—C11—C510.4 (2)
C4—N3—C7—C8144.08 (16)C15—N4—C12—C1346.8 (2)

Experimental details

Crystal data
Chemical formulaC15H18N4O7
Mr366.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.2640 (4), 21.5488 (7), 8.0061 (3)
β (°) 108.587 (4)
V3)1678.40 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.38 × 0.35 × 0.35
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
Tmin, Tmax0.994, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7068, 3422, 2440
Rint0.017
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.110, 1.03
No. of reflections3422
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.20

Computer programs: CrysAlis PRO (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

We thank the Analytical and Testing Center of Sichuan University for the X-ray measurements.

References

First citationChristophe, T., Jackson, M., Jeon, H. K., Fenistein, D., Contreras-Dominguez, M., Kim, J., Genovesio, A., Carralot, J. P., Ewann, F., Kim, E. H., Lee, S. Y., Kang, S., Seo, M. J., Park, E. J., Skovierova, H., Pham, H., Riccardi, G., Nam, J. Y., Marsollier, L., Kempf, M., Joly-Guillou, M. L., Oh, T., Shin, W. K., No, Z., Nehrbass, U., Brosch, R., Cole, S. T. & Brodin, P. (2009). PLoS Pathog. 5, 1–10.  Web of Science CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds