organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o496-o497

2,4-Di­phenyl-6-tri­fluoro­methyl-2,3-di­hydro-1H,5H-pyrrolo­[3,4-c]pyrrole-1,3-dione

aDepartment of Chemistry and Biochemistry, 1041 E. Lowell St, The University of Arizona, Tucson, AZ 85721, USA, bDepartamento de Quimica, Division de Ciencias Naturales y Exactas, Universidad de Guanajuato, Col. Noria Alta s/n C.P. 36050, Guanajuato, Gto., Mexico, and cSouthwest Center for Drug Discovery and Development, College of Pharmacy, BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
*Correspondence e-mail: suer@email.arizona.edu

(Received 22 November 2011; accepted 13 January 2012; online 21 January 2012)

The asymmetric unit of the title compound, C19H11F3N2O2, contains two crystallographically unique mol­ecules which differ in the rotation of a phenyl ring and a –CF3 substituent. The dihedral angles involving the pyrrole ring and the attached phenyl ring are 62.82 (8) and 71.54 (7)° in the two molecules. The difference in the rotation of the CF3 groups with respect to the pyrrolo rings to which they are attached is 23.5(1)°. For one mol­ecule, there is a close contact between an H atom and the centroid of the phenyl ring of an adjacent mol­ecule (2.572 Å). A similar contact is lacking in the second mol­ecule. In the crystal, N—H⋯O inter­actions connect adjacent mol­ecules into a chain normal to (01[\overline{1}]). Crystallographically unique mol­ecules alternate along the hydrogen-bonded chains.

Related literature

For background information on the biological activity of compounds with pyrrol-3,4-dicarboximide scaffolds, see: Malinka et al. (1999[Malinka, W., Sieklucka-Dziuba, M., Rajtar, G., Rubaj, A. & Kleinrok, Z. (1999). Farmaco, 54, 390-401.], 2005[Malinka, W., Kaczmarz, M., Redzicka, A., Filipek, B. & Sapa, J. (2005). Farmaco, 60, 15-22.]); Shen et al. (2010[Shen, Y.-M., Lv, P.-C., Chen, W., Liu, P.-G., Zhang, M.-Z. & Zhu, H.-L. (2010). Eur. J. Med. Chem. 45, 3184-3190.]). For a description of structurally similar lamellarins, see: Yu et al. (2011[Yu, C., Zhang, Y., Zhang, S., Li, H. & Wang, W. (2011). Chem. Commun. 47, 1036-1038.]).

[Scheme 1]

Experimental

Crystal data
  • C19H11F3N2O2

  • Mr = 356.30

  • Triclinic, [P \overline 1]

  • a = 10.4730 (4) Å

  • b = 12.2394 (5) Å

  • c = 13.4379 (5) Å

  • α = 67.542 (2)°

  • β = 82.511 (2)°

  • γ = 80.294 (2)°

  • V = 1564.98 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]) Tmin = 0.86, Tmax = 0.98

  • 32220 measured reflections

  • 6660 independent reflections

  • 5882 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.089

  • S = 0.98

  • 6660 reflections

  • 469 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1i 0.88 2.01 2.8395 (14) 156
N1—H1⋯O4 0.88 2.00 2.8757 (14) 173
Symmetry code: (i) x, y+1, z-1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).; software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The biological activity of compounds with pyrrol-3,4-dicarboximide scaffolds includes analgesic, central nervous system depressive action, and antiproliferative activities (Malinka et al. 2005; Malinka et al. 1999; Shen et al. 2010). Furthermore, pyrrol-3,4-dicarboximides are very interesting compounds because of their structural similarity to lamellarins (Yu et al. 2011). The title compound was synthesized and its crystal structure is reported herein.

The asymmetric unit contains two molecules of the title compound (see Figure 1 for a view of the molecular structure). After overlapping the central fused ring of the independent molecules using OLEX2 (see Figure 2; Dolomanov et al., 2009), it is clear that the molecules differ only in rotation of the phenyl ring and CF3 substituents. The phenyl ring planes differ by approximately a 41° rotation about the N—C bond. The CF3 substituent is rotated by 16.5°. The r.m.s. deviation of atomic positions between the two molecules is 0.56 Å (all atoms), 0.065 Å for matched atoms. The center of one of the phenyl rings that differ in orientation (C7—C12) has a close contact (2.572 Å) to the hydrogen atom bonded to C14 on a symmetry related molecule. This contact is lacking for the other molecule.

Intermolecular hydrogen bonds connect molecules into a ribbon throughout the crystal. Figure 3 shows molecular packing and hydrogen bonds in the crystal. Hydrogen bonds exist between O1 and N3 (2.8395 Å) and O4 and N1 (2.8757 Å) and connect molecules into a chain normal to (0 1 - 1). Crystallographically unique molecules alternate along the hydrogen bonded chains. The graph set description is C2,2(12)>a>b (determined using Mercury (Macrae et al., 2008)).

Related literature top

For background information on the biological activity of compounds with pyrrol-3,4-dicarboximide scaffolds, see: Malinka et al. (1999, 2005); Shen et al. (2010). For a description of structurally similar lamellarins, see: Yu et al. (2011).

Experimental top

To a stirred solution of 4-phenyl-2-(trifluoromethyl) oxazol-5(4H)-one (0.3 g, 1.3 mmol) and 3-bromo-1-phenyl-1H-pyrrole-2,5-dione (0.33 g, 1.3 mmol) in toluene (20 mL), N,N-diisopropylethylamine (0.33 g, 0.45 ml, 2.6 mmol) was added at 298 K. The reaction mixture was stirred at room temperature for 15 minutes. Thereafter, the solvent was evaporated in vacuo and crude material purified by automated flash chromatography using a gradient from 100% Hexane to 70% Hexane/AcOEt. Crystals suitable for X-ray diffraction studies were obtained by recrystallization of the pure product from methylene chloride and hexane.

Refinement top

All hydrogen atoms were visible in a difference Fourier map and were added at calculated positions. Bonds distances are set to 0.95 Å for carbon-hydrogen bonds, and 0.88 Å for nitrogen-hydrogen bonds.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997), Mercury (Macrae et al., 2008) and OLEX2 (Dolomanov et al., 2009).; software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The two independent molecules in the asymmetric unit are shown. Anisotropically refined atoms are shown as 50% probability ellipsoids.
[Figure 2] Fig. 2. An overlay of the independent molecules in the asymmetric unit, one shown in a ball-and-stick representation, the other as wireframe. The only significant differences between the molecules are rotations of the phenyl and CF3 substituents.
[Figure 3] Fig. 3. A view emphasizing chains of hydrogen bonded molecules. Hydrogen bonds are shown as blue dotted lines.
2,4-Diphenyl-6-trifluoromethyl-2,3-dihydro-1H,5H- pyrrolo[3,4-c]pyrrole-1,3-dione top
Crystal data top
C19H11F3N2O2Z = 4
Mr = 356.30F(000) = 728
Triclinic, P1Dx = 1.512 Mg m3
a = 10.4730 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.2394 (5) ÅCell parameters from 9948 reflections
c = 13.4379 (5) Åθ = 2.5–26.7°
α = 67.542 (2)°µ = 0.12 mm1
β = 82.511 (2)°T = 100 K
γ = 80.294 (2)°Prismatic, white
V = 1564.98 (11) Å30.30 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
6660 independent reflections
Radiation source: fine-focus sealed tube5882 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 8.3333 pixels mm-1θmax = 26.8°, θmin = 1.6°
ϕ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
k = 1515
Tmin = 0.86, Tmax = 0.98l = 1716
32220 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0353P)2 + 1.1733P]
where P = (Fo2 + 2Fc2)/3
6660 reflections(Δ/σ)max < 0.001
469 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C19H11F3N2O2γ = 80.294 (2)°
Mr = 356.30V = 1564.98 (11) Å3
Triclinic, P1Z = 4
a = 10.4730 (4) ÅMo Kα radiation
b = 12.2394 (5) ŵ = 0.12 mm1
c = 13.4379 (5) ÅT = 100 K
α = 67.542 (2)°0.30 × 0.20 × 0.20 mm
β = 82.511 (2)°
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
6660 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
5882 reflections with I > 2σ(I)
Tmin = 0.86, Tmax = 0.98Rint = 0.024
32220 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 0.98Δρmax = 0.38 e Å3
6660 reflectionsΔρmin = 0.40 e Å3
469 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.35532 (11)0.26068 (9)0.56592 (9)0.0148 (2)
H10.3250.33220.52230.018*
N20.50857 (11)0.07836 (9)0.78471 (9)0.0160 (2)
F20.21712 (9)0.35605 (8)0.72938 (8)0.0317 (2)
F30.14763 (10)0.18726 (8)0.81133 (8)0.0427 (3)
F10.08781 (9)0.30162 (10)0.65371 (8)0.0374 (2)
O10.34017 (9)0.03336 (8)0.89917 (8)0.0201 (2)
O20.65695 (9)0.06867 (8)0.63809 (8)0.0202 (2)
C120.63795 (13)0.15446 (12)0.41080 (11)0.0177 (3)
H120.63640.07130.44830.021*
C10.30092 (12)0.20234 (11)0.66742 (10)0.0152 (3)
C60.46392 (12)0.19190 (11)0.54172 (10)0.0143 (2)
C30.39775 (12)0.00958 (11)0.81056 (10)0.0151 (3)
C20.37467 (12)0.09388 (11)0.70964 (10)0.0148 (2)
C70.55052 (12)0.23597 (11)0.44434 (10)0.0152 (3)
C40.56091 (12)0.02501 (11)0.67653 (10)0.0152 (3)
C50.47444 (12)0.08653 (11)0.63056 (10)0.0141 (2)
C130.56303 (13)0.19193 (11)0.85754 (11)0.0171 (3)
C80.55377 (13)0.35825 (12)0.38800 (11)0.0182 (3)
H80.49480.41430.40990.022*
C90.64284 (14)0.39777 (13)0.30042 (11)0.0220 (3)
H90.64430.48090.26230.026*
C140.56688 (14)0.29193 (12)0.83170 (12)0.0214 (3)
H140.53320.28510.7670.026*
C110.72685 (14)0.19496 (13)0.32298 (11)0.0218 (3)
H110.78570.13940.30040.026*
C180.61225 (15)0.20018 (13)0.95143 (12)0.0243 (3)
H180.60990.13120.96830.029*
C100.72999 (14)0.31659 (13)0.26804 (11)0.0232 (3)
H100.79160.34410.20850.028*
C150.62048 (15)0.40205 (13)0.90134 (13)0.0279 (3)
H150.62350.47110.88440.034*
C160.66956 (16)0.41145 (14)0.99549 (13)0.0323 (4)
H160.70630.48691.0430.039*
C170.66517 (17)0.31135 (15)1.02056 (12)0.0326 (4)
H170.69850.31851.08550.039*
C190.18769 (13)0.26076 (12)0.71546 (11)0.0189 (3)
F40.44762 (10)0.84161 (10)0.14618 (8)0.0383 (3)
F50.31060 (9)0.84493 (9)0.27591 (8)0.0373 (2)
F60.44468 (11)0.68802 (9)0.29453 (10)0.0485 (3)
O40.25551 (9)0.48629 (8)0.41050 (7)0.0179 (2)
O30.02763 (9)0.49810 (8)0.17043 (8)0.0192 (2)
N30.23046 (11)0.79102 (10)0.08260 (9)0.0165 (2)
H30.25610.85850.03710.02*
N40.10361 (11)0.46869 (9)0.30785 (9)0.0154 (2)
C220.19988 (12)0.52244 (11)0.32763 (10)0.0147 (2)
C260.06391 (12)0.78966 (12)0.03297 (10)0.0157 (3)
C250.13700 (12)0.73589 (11)0.06384 (10)0.0151 (3)
C210.21500 (12)0.62799 (11)0.22789 (10)0.0152 (3)
C230.05479 (12)0.53067 (11)0.20333 (10)0.0151 (3)
C240.12802 (12)0.63298 (11)0.15423 (10)0.0150 (3)
C200.27846 (13)0.72673 (12)0.18161 (11)0.0168 (3)
C310.00339 (14)0.71767 (12)0.06663 (11)0.0190 (3)
H310.01260.63380.02860.023*
C320.05449 (13)0.36364 (11)0.38542 (10)0.0157 (3)
C280.02495 (14)0.96323 (12)0.17831 (11)0.0217 (3)
H280.03471.04710.21650.026*
C270.04938 (13)0.91299 (12)0.08956 (11)0.0187 (3)
H270.09050.96250.06720.022*
C370.13017 (14)0.25396 (12)0.40797 (11)0.0193 (3)
H370.21510.2480.37390.023*
C360.08002 (15)0.15257 (12)0.48124 (12)0.0236 (3)
H360.13130.07680.49830.028*
C300.07021 (14)0.76880 (13)0.15566 (12)0.0224 (3)
H300.11080.71960.17870.027*
C340.11889 (14)0.27239 (13)0.50622 (12)0.0242 (3)
H340.20410.27830.53970.029*
C330.06943 (14)0.37408 (12)0.43446 (11)0.0206 (3)
H330.11980.45010.4190.025*
C290.08508 (14)0.89119 (13)0.21134 (11)0.0222 (3)
H290.13620.92570.27190.027*
C380.37168 (14)0.77383 (12)0.22422 (11)0.0199 (3)
C350.04424 (15)0.16186 (13)0.52922 (11)0.0245 (3)
H350.07870.09220.57820.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0173 (5)0.0114 (5)0.0137 (5)0.0008 (4)0.0019 (4)0.0026 (4)
N20.0183 (5)0.0130 (5)0.0143 (5)0.0014 (4)0.0012 (4)0.0026 (4)
F20.0338 (5)0.0266 (5)0.0431 (6)0.0007 (4)0.0007 (4)0.0242 (4)
F30.0475 (6)0.0241 (5)0.0342 (5)0.0060 (4)0.0236 (5)0.0010 (4)
F10.0219 (5)0.0552 (6)0.0438 (6)0.0131 (4)0.0119 (4)0.0324 (5)
O10.0212 (5)0.0188 (5)0.0164 (5)0.0041 (4)0.0026 (4)0.0030 (4)
O20.0202 (5)0.0185 (5)0.0189 (5)0.0020 (4)0.0005 (4)0.0061 (4)
C120.0195 (6)0.0172 (6)0.0164 (6)0.0021 (5)0.0031 (5)0.0055 (5)
C10.0164 (6)0.0139 (6)0.0149 (6)0.0025 (5)0.0018 (5)0.0044 (5)
C60.0151 (6)0.0142 (6)0.0147 (6)0.0015 (5)0.0037 (5)0.0058 (5)
C30.0160 (6)0.0132 (6)0.0167 (6)0.0043 (5)0.0012 (5)0.0053 (5)
C20.0158 (6)0.0143 (6)0.0150 (6)0.0035 (5)0.0008 (5)0.0057 (5)
C70.0157 (6)0.0171 (6)0.0129 (6)0.0035 (5)0.0027 (5)0.0047 (5)
C40.0172 (6)0.0140 (6)0.0146 (6)0.0032 (5)0.0028 (5)0.0045 (5)
C50.0148 (6)0.0141 (6)0.0142 (6)0.0024 (5)0.0018 (5)0.0058 (5)
C130.0170 (6)0.0139 (6)0.0153 (6)0.0010 (5)0.0004 (5)0.0003 (5)
C80.0195 (6)0.0171 (6)0.0182 (6)0.0026 (5)0.0024 (5)0.0063 (5)
C90.0243 (7)0.0197 (7)0.0192 (7)0.0074 (5)0.0024 (5)0.0022 (5)
C140.0233 (7)0.0179 (7)0.0211 (7)0.0019 (5)0.0024 (5)0.0052 (6)
C110.0193 (7)0.0268 (7)0.0190 (7)0.0002 (5)0.0001 (5)0.0096 (6)
C180.0283 (8)0.0243 (7)0.0186 (7)0.0010 (6)0.0029 (6)0.0067 (6)
C100.0207 (7)0.0296 (8)0.0161 (7)0.0070 (6)0.0021 (5)0.0044 (6)
C150.0309 (8)0.0157 (7)0.0307 (8)0.0000 (6)0.0024 (6)0.0042 (6)
C160.0350 (9)0.0228 (8)0.0229 (8)0.0068 (6)0.0013 (6)0.0047 (6)
C170.0379 (9)0.0355 (9)0.0163 (7)0.0030 (7)0.0077 (6)0.0020 (6)
C190.0212 (7)0.0153 (6)0.0180 (6)0.0004 (5)0.0002 (5)0.0049 (5)
F40.0402 (6)0.0568 (6)0.0266 (5)0.0341 (5)0.0090 (4)0.0172 (5)
F50.0337 (5)0.0514 (6)0.0435 (6)0.0149 (4)0.0028 (4)0.0339 (5)
F60.0552 (7)0.0263 (5)0.0633 (7)0.0056 (5)0.0444 (6)0.0029 (5)
O40.0207 (5)0.0152 (4)0.0159 (5)0.0006 (4)0.0047 (4)0.0032 (4)
O30.0220 (5)0.0173 (5)0.0189 (5)0.0057 (4)0.0032 (4)0.0056 (4)
N30.0199 (6)0.0138 (5)0.0142 (5)0.0054 (4)0.0022 (4)0.0018 (4)
N40.0181 (5)0.0121 (5)0.0143 (5)0.0025 (4)0.0014 (4)0.0027 (4)
C220.0156 (6)0.0127 (6)0.0153 (6)0.0001 (5)0.0002 (5)0.0058 (5)
C260.0159 (6)0.0173 (6)0.0121 (6)0.0017 (5)0.0002 (5)0.0041 (5)
C250.0164 (6)0.0138 (6)0.0155 (6)0.0021 (5)0.0002 (5)0.0062 (5)
C210.0158 (6)0.0142 (6)0.0148 (6)0.0009 (5)0.0008 (5)0.0048 (5)
C230.0168 (6)0.0123 (6)0.0148 (6)0.0004 (5)0.0001 (5)0.0049 (5)
C240.0158 (6)0.0141 (6)0.0145 (6)0.0010 (5)0.0010 (5)0.0053 (5)
C200.0184 (6)0.0161 (6)0.0148 (6)0.0026 (5)0.0017 (5)0.0040 (5)
C310.0239 (7)0.0163 (6)0.0165 (6)0.0037 (5)0.0021 (5)0.0049 (5)
C320.0211 (6)0.0129 (6)0.0123 (6)0.0042 (5)0.0024 (5)0.0027 (5)
C280.0240 (7)0.0166 (6)0.0201 (7)0.0017 (5)0.0042 (5)0.0014 (5)
C270.0205 (7)0.0176 (6)0.0178 (6)0.0038 (5)0.0019 (5)0.0057 (5)
C370.0240 (7)0.0159 (6)0.0177 (6)0.0008 (5)0.0018 (5)0.0064 (5)
C360.0369 (8)0.0127 (6)0.0201 (7)0.0017 (6)0.0052 (6)0.0044 (5)
C300.0255 (7)0.0239 (7)0.0203 (7)0.0059 (6)0.0048 (6)0.0087 (6)
C340.0221 (7)0.0286 (8)0.0188 (7)0.0081 (6)0.0004 (5)0.0039 (6)
C330.0210 (7)0.0176 (6)0.0193 (7)0.0008 (5)0.0018 (5)0.0033 (5)
C290.0218 (7)0.0252 (7)0.0174 (7)0.0027 (6)0.0062 (5)0.0039 (6)
C380.0218 (7)0.0193 (7)0.0173 (7)0.0067 (5)0.0031 (5)0.0033 (5)
C350.0368 (8)0.0197 (7)0.0160 (7)0.0138 (6)0.0029 (6)0.0010 (5)
Geometric parameters (Å, º) top
N1—C11.3731 (16)F4—C381.3269 (16)
N1—C61.3776 (16)F5—C381.3444 (17)
N1—H10.8800F6—C381.3190 (17)
N2—C31.4018 (17)O4—C221.2170 (16)
N2—C41.4240 (16)O3—C231.2040 (16)
N2—C131.4332 (16)N3—C201.3723 (17)
F2—C191.3391 (16)N3—C251.3761 (17)
F3—C191.3213 (16)N3—H30.8800
F1—C191.3288 (17)N4—C221.3954 (17)
O1—C31.2139 (16)N4—C231.4324 (16)
O2—C41.2076 (16)N4—C321.4366 (16)
C12—C111.3884 (19)C22—C211.4769 (17)
C12—C71.4018 (18)C26—C311.3964 (19)
C12—H120.9500C26—C271.3985 (18)
C1—C21.3689 (18)C26—C251.4654 (18)
C1—C191.4837 (18)C25—C241.3827 (18)
C6—C51.3823 (18)C21—C201.3704 (18)
C6—C71.4636 (18)C21—C241.4083 (18)
C3—C21.4735 (18)C23—C241.4670 (18)
C2—C51.4074 (18)C20—C381.4835 (18)
C7—C81.3996 (18)C31—C301.3867 (19)
C4—C51.4663 (17)C31—H310.9500
C13—C181.386 (2)C32—C371.3840 (18)
C13—C141.3873 (19)C32—C331.3858 (19)
C8—C91.3858 (19)C28—C271.3881 (19)
C8—H80.9500C28—C291.389 (2)
C9—C101.389 (2)C28—H280.9500
C9—H90.9500C27—H270.9500
C14—C151.388 (2)C37—C361.3917 (19)
C14—H140.9500C37—H370.9500
C11—C101.390 (2)C36—C351.382 (2)
C11—H110.9500C36—H360.9500
C18—C171.391 (2)C30—C291.387 (2)
C18—H180.9500C30—H300.9500
C10—H100.9500C34—C331.3847 (19)
C15—C161.384 (2)C34—C351.387 (2)
C15—H150.9500C34—H340.9500
C16—C171.382 (2)C33—H330.9500
C16—H160.9500C29—H290.9500
C17—H170.9500C35—H350.9500
C1—N1—C6110.75 (10)C20—N3—C25111.02 (11)
C1—N1—H1124.6C20—N3—H3124.5
C6—N1—H1124.6C25—N3—H3124.5
C3—N2—C4112.92 (10)C22—N4—C23113.47 (10)
C3—N2—C13124.26 (11)C22—N4—C32123.71 (11)
C4—N2—C13122.80 (11)C23—N4—C32122.80 (11)
C11—C12—C7120.19 (12)O4—C22—N4125.38 (12)
C11—C12—H12119.9O4—C22—C21130.17 (12)
C7—C12—H12119.9N4—C22—C21104.44 (11)
C2—C1—N1107.49 (11)C31—C26—C27119.49 (12)
C2—C1—C19131.11 (12)C31—C26—C25119.70 (12)
N1—C1—C19121.27 (11)C27—C26—C25120.75 (12)
N1—C6—C5105.48 (11)N3—C25—C24105.57 (11)
N1—C6—C7123.03 (11)N3—C25—C26122.20 (11)
C5—C6—C7131.18 (12)C24—C25—C26132.11 (12)
O1—C3—N2125.03 (12)C20—C21—C24107.44 (11)
O1—C3—C2130.37 (12)C20—C21—C22143.29 (12)
N2—C3—C2104.56 (10)C24—C21—C22109.19 (11)
C1—C2—C5107.14 (11)O3—C23—N4123.71 (12)
C1—C2—C3142.97 (12)O3—C23—C24132.10 (12)
C5—C2—C3109.22 (11)N4—C23—C24104.19 (10)
C8—C7—C12119.19 (12)C25—C24—C21108.83 (11)
C8—C7—C6121.21 (12)C25—C24—C23142.33 (12)
C12—C7—C6119.47 (12)C21—C24—C23108.72 (11)
O2—C4—N2123.74 (12)C21—C20—N3107.14 (11)
O2—C4—C5131.42 (12)C21—C20—C38131.64 (12)
N2—C4—C5104.84 (11)N3—C20—C38120.92 (11)
C6—C5—C2109.10 (11)C30—C31—C26119.88 (12)
C6—C5—C4142.06 (12)C30—C31—H31120.1
C2—C5—C4108.36 (11)C26—C31—H31120.1
C18—C13—C14121.11 (13)C37—C32—C33121.29 (12)
C18—C13—N2119.90 (12)C37—C32—N4119.62 (12)
C14—C13—N2118.98 (12)C33—C32—N4119.07 (12)
C9—C8—C7120.18 (13)C27—C28—C29120.13 (13)
C9—C8—H8119.9C27—C28—H28119.9
C7—C8—H8119.9C29—C28—H28119.9
C8—C9—C10120.40 (13)C28—C27—C26120.12 (13)
C8—C9—H9119.8C28—C27—H27119.9
C10—C9—H9119.8C26—C27—H27119.9
C13—C14—C15119.34 (14)C32—C37—C36118.99 (13)
C13—C14—H14120.3C32—C37—H37120.5
C15—C14—H14120.3C36—C37—H37120.5
C12—C11—C10120.19 (13)C35—C36—C37120.13 (13)
C12—C11—H11119.9C35—C36—H36119.9
C10—C11—H11119.9C37—C36—H36119.9
C13—C18—C17118.80 (14)C31—C30—C29120.55 (13)
C13—C18—H18120.6C31—C30—H30119.7
C17—C18—H18120.6C29—C30—H30119.7
C9—C10—C11119.85 (13)C33—C34—C35120.09 (14)
C9—C10—H10120.1C33—C34—H34120.0
C11—C10—H10120.1C35—C34—H34120.0
C16—C15—C14120.06 (15)C34—C33—C32119.20 (13)
C16—C15—H15120.0C34—C33—H33120.4
C14—C15—H15120.0C32—C33—H33120.4
C17—C16—C15120.17 (14)C30—C29—C28119.82 (13)
C17—C16—H16119.9C30—C29—H29120.1
C15—C16—H16119.9C28—C29—H29120.1
C16—C17—C18120.51 (15)F6—C38—F4109.15 (12)
C16—C17—H17119.7F6—C38—F5106.22 (12)
C18—C17—H17119.7F4—C38—F5104.84 (11)
F3—C19—F1108.45 (12)F6—C38—C20112.20 (11)
F3—C19—F2106.94 (12)F4—C38—C20112.23 (11)
F1—C19—F2105.21 (11)F5—C38—C20111.78 (11)
F3—C19—C1111.26 (11)C36—C35—C34120.29 (13)
F1—C19—C1113.09 (11)C36—C35—H35119.9
F2—C19—C1111.52 (11)C34—C35—H35119.9
C6—N1—C1—C20.33 (14)C23—N4—C22—O4179.89 (12)
C6—N1—C1—C19175.96 (11)C32—N4—C22—O41.8 (2)
C1—N1—C6—C51.50 (14)C23—N4—C22—C210.01 (14)
C1—N1—C6—C7172.82 (11)C32—N4—C22—C21178.08 (11)
C4—N2—C3—O1175.96 (12)C20—N3—C25—C240.67 (15)
C13—N2—C3—O15.5 (2)C20—N3—C25—C26175.96 (12)
C4—N2—C3—C22.17 (14)C31—C26—C25—N3159.02 (12)
C13—N2—C3—C2176.41 (11)C27—C26—C25—N323.69 (19)
N1—C1—C2—C50.97 (14)C31—C26—C25—C2425.4 (2)
C19—C1—C2—C5176.76 (13)C27—C26—C25—C24151.93 (14)
N1—C1—C2—C3167.80 (16)O4—C22—C21—C203.9 (3)
C19—C1—C2—C38.0 (3)N4—C22—C21—C20176.03 (18)
O1—C3—C2—C16.3 (3)O4—C22—C21—C24179.59 (13)
N2—C3—C2—C1171.73 (17)N4—C22—C21—C240.30 (14)
O1—C3—C2—C5174.89 (13)C22—N4—C23—O3179.29 (12)
N2—C3—C2—C53.10 (14)C32—N4—C23—O32.62 (19)
C11—C12—C7—C80.25 (19)C22—N4—C23—C240.26 (14)
C11—C12—C7—C6175.56 (12)C32—N4—C23—C24177.83 (11)
N1—C6—C7—C820.70 (19)N3—C25—C24—C211.02 (14)
C5—C6—C7—C8152.02 (14)C26—C25—C24—C21175.14 (13)
N1—C6—C7—C12163.58 (12)N3—C25—C24—C23176.03 (16)
C5—C6—C7—C1223.7 (2)C26—C25—C24—C230.1 (3)
C3—N2—C4—O2179.17 (12)C20—C21—C24—C251.01 (15)
C13—N2—C4—O22.2 (2)C22—C21—C24—C25176.32 (11)
C3—N2—C4—C50.48 (14)C20—C21—C24—C23177.80 (11)
C13—N2—C4—C5178.13 (11)C22—C21—C24—C230.47 (14)
N1—C6—C5—C22.08 (14)O3—C23—C24—C255.9 (3)
C7—C6—C5—C2171.59 (13)N4—C23—C24—C25174.58 (17)
N1—C6—C5—C4172.55 (16)O3—C23—C24—C21179.05 (14)
C7—C6—C5—C41.1 (3)N4—C23—C24—C210.44 (13)
C1—C2—C5—C61.93 (15)C24—C21—C20—N30.58 (15)
C3—C2—C5—C6170.94 (11)C22—C21—C20—N3175.20 (17)
C1—C2—C5—C4175.77 (11)C24—C21—C20—C38174.17 (14)
C3—C2—C5—C42.91 (14)C22—C21—C20—C381.6 (3)
O2—C4—C5—C610.6 (3)C25—N3—C20—C210.06 (15)
N2—C4—C5—C6168.98 (16)C25—N3—C20—C38174.36 (12)
O2—C4—C5—C2178.85 (14)C27—C26—C31—C300.1 (2)
N2—C4—C5—C21.54 (13)C25—C26—C31—C30177.41 (13)
C3—N2—C13—C1863.64 (18)C22—N4—C32—C3773.65 (17)
C4—N2—C13—C18117.91 (15)C23—N4—C32—C37108.45 (14)
C3—N2—C13—C14117.16 (15)C22—N4—C32—C33107.80 (15)
C4—N2—C13—C1461.29 (17)C23—N4—C32—C3370.09 (17)
C12—C7—C8—C90.22 (19)C29—C28—C27—C260.1 (2)
C6—C7—C8—C9175.51 (12)C31—C26—C27—C280.2 (2)
C7—C8—C9—C100.3 (2)C25—C26—C27—C28177.12 (12)
C18—C13—C14—C150.3 (2)C33—C32—C37—C360.1 (2)
N2—C13—C14—C15179.44 (13)N4—C32—C37—C36178.38 (12)
C7—C12—C11—C100.2 (2)C32—C37—C36—C350.9 (2)
C14—C13—C18—C170.5 (2)C26—C31—C30—C290.4 (2)
N2—C13—C18—C17179.69 (13)C35—C34—C33—C320.7 (2)
C12—C11—C10—C90.7 (2)C37—C32—C33—C340.9 (2)
C8—C9—C10—C110.8 (2)N4—C32—C33—C34177.59 (12)
C13—C14—C15—C160.0 (2)C31—C30—C29—C280.5 (2)
C14—C15—C16—C170.1 (2)C27—C28—C29—C300.3 (2)
C15—C16—C17—C180.4 (3)C21—C20—C38—F632.2 (2)
C13—C18—C17—C160.6 (2)N3—C20—C38—F6154.97 (13)
C2—C1—C19—F37.4 (2)C21—C20—C38—F4155.50 (14)
N1—C1—C19—F3177.30 (12)N3—C20—C38—F431.64 (18)
C2—C1—C19—F1129.75 (15)C21—C20—C38—F587.03 (18)
N1—C1—C19—F154.95 (17)N3—C20—C38—F585.83 (15)
C2—C1—C19—F2111.91 (16)C37—C36—C35—C341.2 (2)
N1—C1—C19—F263.39 (16)C33—C34—C35—C360.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.882.012.8395 (14)156
N1—H1···O40.882.002.8757 (14)173
Symmetry code: (i) x, y+1, z1.

Experimental details

Crystal data
Chemical formulaC19H11F3N2O2
Mr356.30
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.4730 (4), 12.2394 (5), 13.4379 (5)
α, β, γ (°)67.542 (2), 82.511 (2), 80.294 (2)
V3)1564.98 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.86, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
32220, 6660, 5882
Rint0.024
(sin θ/λ)max1)0.634
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.089, 0.98
No. of reflections6660
No. of parameters469
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.40

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), Mercury (Macrae et al., 2008) and OLEX2 (Dolomanov et al., 2009)., publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.882.012.8395 (14)155.7
N1—H1···O40.882.002.8757 (14)173.4
Symmetry code: (i) x, y+1, z1.
 

Acknowledgements

The Bruker Kappa APEXII DUO was purchased with funding from NSF grant CHE-0741837.

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMalinka, W., Kaczmarz, M., Redzicka, A., Filipek, B. & Sapa, J. (2005). Farmaco, 60, 15-22.  CrossRef PubMed CAS Google Scholar
First citationMalinka, W., Sieklucka-Dziuba, M., Rajtar, G., Rubaj, A. & Kleinrok, Z. (1999). Farmaco, 54, 390–401.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, Y.-M., Lv, P.-C., Chen, W., Liu, P.-G., Zhang, M.-Z. & Zhu, H.-L. (2010). Eur. J. Med. Chem. 45, 3184–3190.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, C., Zhang, Y., Zhang, S., Li, H. & Wang, W. (2011). Chem. Commun. 47, 1036–1038.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o496-o497
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds