metal-organic compounds
Tetraethylammonium tetrakis(1,1,1,5,5,5-hexafluoroacetylacetonato)terbate(III)
aDepartment of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281–S3, B-9000 Ghent, Belgium
*Correspondence e-mail: Kristof.VanHecke@UGent.be
The title compound, (C8H20N)[Tb(C5HF6O2)4], is a tetrakis β-diketonate complex of hexafluoroacetylacetone with terbium(III), and tetraethylammonium as the counter-ion. This compound shows typical green terbium(III) luminescence upon excitation at about 335 nm. The coordination geometry around the TbIII atom is a slightly distorted square antiprism. One hexafluoroacetylacetone ligand has a disordered CF3 group [occupancies of 0.575 (4) and 0.425 (4)]. A three-dimensional network is built up by linkage of TbIII complexes via C—H⋯F interactions.
Related literature
For a review on rare-earth β-diketonate complexes, their crystal structures and applications, see: Binnemans (2005). We have widely studied rare-earth β-diketonate complexes for their luminescence properties (Mech et al., 2008; Van Deun et al., 2007), either as pure materials, doped in liquid crystals (Van Deun et al., 2003; Nockemann et al., 2005), or processed into thin films (Lenaerts et al., 2005, O'Riordan et al., 2005). For related structures, see: Tang & Mudring (2009); Danford et al. (1970); Lunstroot et al. (2009); Mehdi et al. (2010). For general procedues for the synthesis of rare-earth β-diketonate complexes, see: Melby et al. (1964). For a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrysAlis PRO (Agilent, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811055437/pk2378sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811055437/pk2378Isup2.hkl
General synthetic procedues for the synthesis of rare-earth β-diketonate complexes are given in Melby et al., 1964.
The title compound was synthesized by mixing 3.6 ml of a 1 N sodium hydroxide solution with 9 ml of an ethanol (95%(v/v)) solution of hexafluoroacetylacetone (0.505 ml, 3.6 mmol) in a 50 ml Erlenmeyer flask at 60 °C. Subsequently, under stirring, 9 ml of aqueous Tb(NO3)3.5H2O solution (0.3906 g, 0.9 mmol) was added dropwise and finally 1.8 ml of aqueous tetraethylammonium chloride solution (0.0705 g, 0.426 mmol) was added dropwise. The mixture was concentrated by heating until the onset of crystallization. Finally, the solution was filtered and kept overnight to stand at room temperature, to allow the formation of single crystals.
All hydrogen atoms were placed at calculated positions and further refined with isotropic temperature factors fixed at 1.2 times Ueq of the parent atoms (1.5 times for methyl groups). 1,2 and 1,3 distance restraints to target values, together with restrained Uij components (for the fluorine atoms) had to be added to model the disorder of the CF3 group on one of the hfa ligands [refined occupancy factors were 0.575 (4) and 0.425 (4)].
Data collection: CrysAlis PRO (Agilent, 2010); cell
CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: PLATON (Spek, 2009).(C8H20N)[Tb(C5HF6O2)4] | F(000) = 2176 |
Mr = 1117.41 | Dx = 1.885 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 3060 reflections |
a = 12.7113 (9) Å | θ = 2.4–28.4° |
b = 16.9355 (13) Å | µ = 1.96 mm−1 |
c = 18.3540 (11) Å | T = 100 K |
β = 94.657 (6)° | Needle, colourless |
V = 3938.1 (5) Å3 | 0.4 × 0.1 × 0.1 mm |
Z = 4 |
Agilent SuperNova Dual Cu at zero Atlas diffractometer | 6876 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 4772 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.064 |
Detector resolution: 10.35 pixels mm-1 | θmax = 25.0°, θmin = 2.4° |
ω scans | h = −10→15 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | k = −20→19 |
Tmin = 0.531, Tmax = 0.820 | l = −21→21 |
14178 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.054 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.123 | H-atom parameters constrained |
S = 0.98 | w = 1/[σ2(Fo2) + (0.0477P)2] where P = (Fo2 + 2Fc2)/3 |
6876 reflections | (Δ/σ)max = 0.001 |
591 parameters | Δρmax = 1.51 e Å−3 |
90 restraints | Δρmin = −1.24 e Å−3 |
(C8H20N)[Tb(C5HF6O2)4] | V = 3938.1 (5) Å3 |
Mr = 1117.41 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 12.7113 (9) Å | µ = 1.96 mm−1 |
b = 16.9355 (13) Å | T = 100 K |
c = 18.3540 (11) Å | 0.4 × 0.1 × 0.1 mm |
β = 94.657 (6)° |
Agilent SuperNova Dual Cu at zero Atlas diffractometer | 6876 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) | 4772 reflections with I > 2σ(I) |
Tmin = 0.531, Tmax = 0.820 | Rint = 0.064 |
14178 measured reflections |
R[F2 > 2σ(F2)] = 0.054 | 90 restraints |
wR(F2) = 0.123 | H-atom parameters constrained |
S = 0.98 | Δρmax = 1.51 e Å−3 |
6876 reflections | Δρmin = −1.24 e Å−3 |
591 parameters |
Experimental. CrysAlisPro. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm (Agilent Technologies, 2010) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.8770 (4) | −0.0312 (3) | 0.0638 (2) | 0.0408 (18) | |
C2 | 0.8119 (5) | 0.0356 (3) | 0.0246 (3) | 0.0269 (14) | |
C3 | 0.7175 (5) | 0.0124 (3) | −0.0131 (3) | 0.0344 (16) | |
H3 | 0.6992 | −0.0420 | −0.0135 | 0.041* | |
C4 | 0.6495 (4) | 0.0647 (3) | −0.0499 (3) | 0.0262 (14) | |
C5 | 0.5548 (5) | 0.0315 (4) | −0.0952 (3) | 0.0397 (17) | |
C6 | 0.6132 (4) | 0.1453 (3) | 0.2003 (3) | 0.0259 (14) | |
C7 | 0.6239 (5) | 0.1927 (3) | 0.1298 (2) | 0.0251 (14) | |
C8 | 0.5408 (4) | 0.2398 (3) | 0.1044 (3) | 0.0206 (13) | |
H8 | 0.4770 | 0.2379 | 0.1280 | 0.025* | |
C9 | 0.5479 (5) | 0.2907 (3) | 0.0443 (3) | 0.0240 (14) | |
C10 | 0.4618 (5) | 0.3541 (3) | 0.0308 (3) | 0.0299 (15) | |
C11 | 0.8151 (6) | 0.4535 (3) | 0.1453 (3) | 0.0407 (18) | |
C12 | 0.8176 (5) | 0.4065 (3) | 0.0732 (3) | 0.0314 (15) | |
C13 | 0.8257 (5) | 0.4492 (3) | 0.0096 (3) | 0.0414 (18) | |
H13 | 0.8368 | 0.5046 | 0.0127 | 0.050* | |
C14 | 0.8179 (5) | 0.4129 (3) | −0.0592 (3) | 0.0292 (15) | |
C15 | 0.8325 (5) | 0.4656 (3) | −0.1259 (3) | 0.0400 (18) | |
C16 | 1.1411 (5) | 0.2831 (3) | −0.0144 (3) | 0.0295 (15) | |
C17 | 1.0321 (4) | 0.2525 (3) | −0.0428 (3) | 0.0227 (14) | |
C18 | 1.0187 (4) | 0.2291 (3) | −0.1155 (3) | 0.0240 (14) | |
H18 | 1.0745 | 0.2370 | −0.1462 | 0.029* | |
C19 | 0.9261 (4) | 0.1948 (3) | −0.1440 (3) | 0.0204 (13) | |
C20 | 0.9233 (5) | 0.1624 (3) | −0.2223 (3) | 0.0301 (15) | |
C21 | 0.0392 (5) | 0.1360 (3) | 0.3084 (3) | 0.0389 (17) | |
H21A | 0.0257 | 0.1631 | 0.3546 | 0.047* | |
H21B | 0.1117 | 0.1143 | 0.3145 | 0.047* | |
C22 | −0.0386 (6) | 0.0668 (4) | 0.2971 (3) | 0.053 (2) | |
H22A | −0.1111 | 0.0870 | 0.2946 | 0.080* | |
H22B | −0.0276 | 0.0298 | 0.3380 | 0.080* | |
H22C | −0.0268 | 0.0396 | 0.2513 | 0.080* | |
C23 | −0.0751 (5) | 0.2336 (4) | 0.2359 (3) | 0.0406 (17) | |
H23A | −0.0736 | 0.2741 | 0.1970 | 0.049* | |
H23B | −0.1255 | 0.1921 | 0.2179 | 0.049* | |
C24 | −0.1160 (6) | 0.2718 (4) | 0.3030 (4) | 0.058 (2) | |
H24A | −0.1166 | 0.2327 | 0.3423 | 0.086* | |
H24B | −0.1878 | 0.2914 | 0.2908 | 0.086* | |
H24C | −0.0700 | 0.3159 | 0.3191 | 0.086* | |
C25 | 0.1164 (5) | 0.2586 (3) | 0.2736 (3) | 0.0367 (17) | |
H25A | 0.1862 | 0.2328 | 0.2823 | 0.044* | |
H25B | 0.0976 | 0.2809 | 0.3207 | 0.044* | |
C27 | 0.0568 (5) | 0.1617 (4) | 0.1757 (3) | 0.0431 (18) | |
H27A | 0.0536 | 0.2041 | 0.1385 | 0.052* | |
H27B | 0.0007 | 0.1230 | 0.1609 | 0.052* | |
C28 | 0.1652 (5) | 0.1201 (4) | 0.1762 (3) | 0.049 (2) | |
H28A | 0.2211 | 0.1569 | 0.1940 | 0.074* | |
H28B | 0.1772 | 0.1031 | 0.1265 | 0.074* | |
H28C | 0.1662 | 0.0740 | 0.2085 | 0.074* | |
C26 | 0.1247 (5) | 0.3262 (3) | 0.2183 (3) | 0.050 (2) | |
H26A | 0.1509 | 0.3053 | 0.1734 | 0.076* | |
H26B | 0.1737 | 0.3664 | 0.2393 | 0.076* | |
H26C | 0.0550 | 0.3498 | 0.2071 | 0.076* | |
N1 | 0.0347 (3) | 0.1967 (2) | 0.2478 (2) | 0.0238 (11) | |
O1 | 0.8526 (3) | 0.1026 (2) | 0.03109 (17) | 0.0249 (9) | |
O2 | 0.6578 (3) | 0.1386 (2) | −0.05394 (18) | 0.0276 (10) | |
O3 | 0.7119 (3) | 0.1847 (2) | 0.10428 (17) | 0.0260 (9) | |
O4 | 0.6180 (3) | 0.2930 (2) | 0.00045 (17) | 0.0266 (10) | |
O5 | 0.8142 (3) | 0.3344 (2) | 0.08163 (17) | 0.0271 (10) | |
O6 | 0.7992 (3) | 0.34237 (19) | −0.07428 (17) | 0.0243 (9) | |
O7 | 0.9674 (3) | 0.24911 (18) | 0.00547 (17) | 0.0221 (9) | |
O8 | 0.8409 (3) | 0.18631 (19) | −0.11522 (17) | 0.0233 (9) | |
F1B | 0.8437 (7) | −0.0451 (6) | 0.1273 (3) | 0.069 (3) | 0.425 (4) |
F2B | 0.9779 (5) | −0.0073 (4) | 0.0802 (4) | 0.044 (2) | 0.425 (4) |
F3B | 0.8865 (8) | −0.0927 (4) | 0.0223 (4) | 0.060 (3) | 0.425 (4) |
F1A | 0.8147 (5) | −0.0854 (3) | 0.0929 (3) | 0.0524 (18) | 0.575 (4) |
F2A | 0.9494 (6) | −0.0096 (4) | 0.1126 (3) | 0.069 (2) | 0.575 (4) |
F3A | 0.9235 (5) | −0.0736 (3) | 0.0135 (3) | 0.0427 (18) | 0.575 (4) |
F4 | 0.5671 (3) | 0.0363 (2) | −0.16613 (18) | 0.0701 (13) | |
F5 | 0.5332 (3) | −0.0435 (2) | −0.07899 (19) | 0.0610 (12) | |
F6 | 0.4669 (3) | 0.0730 (2) | −0.0848 (2) | 0.0661 (13) | |
F7 | 0.6745 (3) | 0.17776 (19) | 0.25596 (15) | 0.0388 (9) | |
F8 | 0.6463 (3) | 0.07081 (17) | 0.19320 (15) | 0.0371 (9) | |
F9 | 0.5163 (3) | 0.14256 (19) | 0.22091 (16) | 0.0390 (9) | |
F10 | 0.4251 (3) | 0.3581 (2) | −0.03773 (16) | 0.0535 (11) | |
F11 | 0.5033 (3) | 0.4249 (2) | 0.0478 (2) | 0.0693 (14) | |
F12 | 0.3802 (3) | 0.3450 (2) | 0.07027 (17) | 0.0517 (11) | |
F13 | 0.8205 (4) | 0.5301 (2) | 0.13763 (19) | 0.0816 (15) | |
F14 | 0.8916 (3) | 0.4309 (2) | 0.19396 (16) | 0.0477 (11) | |
F15 | 0.7254 (3) | 0.4379 (3) | 0.17600 (19) | 0.0700 (13) | |
F16 | 0.9110 (3) | 0.5157 (2) | −0.11361 (19) | 0.0645 (12) | |
F17 | 0.8480 (4) | 0.4257 (2) | −0.18469 (18) | 0.0783 (15) | |
F18 | 0.7465 (4) | 0.5087 (2) | −0.1421 (2) | 0.0771 (14) | |
F19 | 1.1866 (3) | 0.2368 (2) | 0.03637 (18) | 0.0454 (10) | |
F20 | 1.1322 (3) | 0.3534 (2) | 0.0180 (2) | 0.0636 (13) | |
F21 | 1.2065 (3) | 0.2928 (3) | −0.06505 (18) | 0.0653 (13) | |
F22 | 0.8784 (3) | 0.09067 (18) | −0.22706 (16) | 0.0432 (10) | |
F23 | 1.0188 (3) | 0.1542 (2) | −0.24729 (15) | 0.0422 (10) | |
F24 | 0.8672 (3) | 0.20959 (19) | −0.26958 (14) | 0.0343 (9) | |
Tb1 | 0.78328 (2) | 0.228824 (14) | −0.002340 (13) | 0.02031 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.062 (5) | 0.020 (3) | 0.040 (3) | 0.002 (3) | 0.000 (3) | −0.007 (3) |
C2 | 0.037 (4) | 0.024 (3) | 0.021 (3) | 0.008 (3) | 0.008 (2) | 0.003 (2) |
C3 | 0.051 (4) | 0.020 (3) | 0.029 (3) | 0.002 (3) | −0.011 (3) | −0.009 (2) |
C4 | 0.032 (3) | 0.015 (3) | 0.033 (3) | −0.001 (2) | 0.013 (3) | 0.003 (2) |
C5 | 0.046 (4) | 0.037 (3) | 0.035 (3) | −0.020 (3) | −0.010 (3) | 0.009 (3) |
C6 | 0.024 (3) | 0.026 (3) | 0.030 (3) | −0.002 (3) | 0.010 (2) | 0.003 (2) |
C7 | 0.036 (4) | 0.025 (3) | 0.014 (2) | −0.007 (3) | 0.001 (2) | −0.007 (2) |
C8 | 0.018 (3) | 0.022 (3) | 0.022 (3) | −0.003 (2) | 0.006 (2) | −0.005 (2) |
C9 | 0.035 (3) | 0.017 (3) | 0.020 (3) | 0.002 (2) | 0.001 (2) | −0.004 (2) |
C10 | 0.036 (4) | 0.029 (3) | 0.025 (3) | 0.003 (3) | 0.003 (3) | −0.002 (3) |
C11 | 0.075 (5) | 0.023 (3) | 0.023 (3) | 0.012 (3) | −0.002 (3) | −0.003 (3) |
C12 | 0.039 (4) | 0.028 (3) | 0.028 (3) | 0.003 (3) | 0.004 (3) | −0.004 (3) |
C13 | 0.077 (5) | 0.021 (3) | 0.027 (3) | 0.001 (3) | 0.008 (3) | −0.005 (3) |
C14 | 0.042 (4) | 0.012 (3) | 0.034 (3) | 0.005 (3) | 0.004 (3) | 0.009 (2) |
C15 | 0.052 (4) | 0.026 (3) | 0.042 (3) | 0.001 (3) | 0.004 (3) | 0.007 (3) |
C16 | 0.028 (3) | 0.029 (3) | 0.033 (3) | −0.012 (3) | 0.007 (3) | 0.002 (3) |
C17 | 0.032 (3) | 0.012 (2) | 0.025 (3) | −0.001 (2) | 0.005 (2) | 0.001 (2) |
C18 | 0.027 (3) | 0.024 (3) | 0.021 (3) | −0.005 (3) | 0.008 (2) | 0.009 (2) |
C19 | 0.030 (3) | 0.010 (2) | 0.021 (3) | 0.001 (2) | 0.003 (2) | 0.002 (2) |
C20 | 0.038 (4) | 0.031 (3) | 0.023 (3) | 0.002 (3) | 0.012 (3) | −0.001 (2) |
C21 | 0.051 (4) | 0.027 (3) | 0.041 (3) | 0.008 (3) | 0.015 (3) | 0.011 (3) |
C22 | 0.074 (5) | 0.030 (3) | 0.057 (4) | −0.022 (3) | 0.011 (4) | 0.005 (3) |
C23 | 0.039 (4) | 0.038 (3) | 0.045 (3) | −0.003 (3) | 0.000 (3) | 0.006 (3) |
C24 | 0.059 (5) | 0.049 (4) | 0.069 (4) | −0.008 (4) | 0.032 (4) | −0.022 (4) |
C25 | 0.041 (4) | 0.036 (3) | 0.033 (3) | −0.007 (3) | 0.002 (3) | −0.005 (3) |
C27 | 0.054 (4) | 0.041 (4) | 0.034 (3) | −0.012 (3) | 0.005 (3) | −0.007 (3) |
C28 | 0.066 (5) | 0.036 (4) | 0.048 (4) | −0.001 (3) | 0.022 (3) | −0.013 (3) |
C26 | 0.052 (4) | 0.025 (3) | 0.077 (4) | −0.004 (3) | 0.023 (4) | 0.014 (3) |
N1 | 0.027 (3) | 0.026 (2) | 0.019 (2) | −0.006 (2) | 0.0032 (19) | −0.0013 (19) |
O1 | 0.029 (2) | 0.0205 (19) | 0.0264 (18) | 0.0043 (17) | 0.0078 (16) | 0.0028 (16) |
O2 | 0.026 (2) | 0.032 (2) | 0.0256 (18) | −0.0020 (18) | 0.0034 (16) | 0.0074 (17) |
O3 | 0.029 (2) | 0.0207 (18) | 0.0304 (19) | 0.0034 (17) | 0.0129 (17) | 0.0044 (16) |
O4 | 0.032 (2) | 0.0250 (19) | 0.0242 (18) | 0.0027 (17) | 0.0092 (17) | 0.0089 (16) |
O5 | 0.034 (2) | 0.023 (2) | 0.0253 (19) | 0.0037 (18) | 0.0094 (17) | −0.0015 (16) |
O6 | 0.025 (2) | 0.0208 (18) | 0.0280 (19) | −0.0021 (17) | 0.0061 (16) | 0.0069 (16) |
O7 | 0.030 (2) | 0.0121 (17) | 0.0242 (18) | −0.0036 (16) | 0.0042 (17) | −0.0036 (15) |
O8 | 0.028 (2) | 0.0177 (18) | 0.0242 (18) | −0.0004 (17) | 0.0051 (16) | −0.0004 (16) |
F1B | 0.070 (5) | 0.081 (5) | 0.056 (4) | 0.013 (4) | 0.012 (4) | 0.028 (4) |
F2B | 0.055 (5) | 0.038 (4) | 0.038 (4) | 0.014 (4) | −0.009 (4) | 0.004 (3) |
F3B | 0.068 (5) | 0.033 (4) | 0.077 (5) | 0.005 (4) | −0.010 (4) | −0.003 (4) |
F1A | 0.053 (4) | 0.044 (3) | 0.062 (3) | 0.010 (3) | 0.019 (3) | 0.037 (3) |
F2A | 0.094 (5) | 0.045 (4) | 0.060 (4) | 0.008 (4) | −0.046 (4) | 0.003 (3) |
F3A | 0.047 (4) | 0.033 (3) | 0.051 (3) | 0.014 (3) | 0.022 (3) | 0.008 (3) |
F4 | 0.097 (3) | 0.080 (3) | 0.0300 (19) | −0.047 (2) | −0.013 (2) | 0.0041 (19) |
F5 | 0.084 (3) | 0.0315 (19) | 0.062 (2) | −0.023 (2) | −0.031 (2) | 0.0131 (18) |
F6 | 0.045 (3) | 0.066 (3) | 0.083 (3) | −0.020 (2) | −0.019 (2) | 0.014 (2) |
F7 | 0.046 (2) | 0.049 (2) | 0.0212 (15) | −0.0158 (18) | 0.0030 (15) | 0.0005 (15) |
F8 | 0.056 (2) | 0.0237 (16) | 0.0318 (16) | 0.0019 (16) | 0.0073 (16) | 0.0088 (14) |
F9 | 0.034 (2) | 0.047 (2) | 0.0382 (17) | −0.0094 (17) | 0.0149 (15) | 0.0119 (15) |
F10 | 0.047 (2) | 0.086 (3) | 0.0270 (17) | 0.032 (2) | 0.0002 (16) | 0.0033 (18) |
F11 | 0.054 (3) | 0.0249 (19) | 0.126 (3) | 0.0111 (19) | −0.011 (2) | −0.012 (2) |
F12 | 0.046 (2) | 0.069 (3) | 0.0436 (18) | 0.0258 (19) | 0.0239 (17) | 0.0135 (18) |
F13 | 0.172 (4) | 0.030 (2) | 0.040 (2) | 0.017 (2) | −0.006 (2) | −0.0085 (17) |
F14 | 0.064 (3) | 0.045 (2) | 0.0326 (18) | 0.0107 (19) | −0.0061 (18) | −0.0105 (16) |
F15 | 0.056 (3) | 0.105 (3) | 0.050 (2) | 0.018 (2) | 0.0146 (19) | −0.040 (2) |
F16 | 0.081 (3) | 0.058 (2) | 0.053 (2) | −0.036 (2) | 0.004 (2) | 0.021 (2) |
F17 | 0.171 (4) | 0.035 (2) | 0.0339 (19) | −0.021 (3) | 0.036 (2) | 0.0034 (17) |
F18 | 0.085 (3) | 0.070 (3) | 0.077 (3) | 0.018 (3) | 0.013 (2) | 0.051 (2) |
F19 | 0.041 (2) | 0.047 (2) | 0.0453 (19) | −0.0115 (18) | −0.0128 (17) | 0.0125 (17) |
F20 | 0.053 (3) | 0.033 (2) | 0.102 (3) | −0.0132 (19) | −0.005 (2) | −0.020 (2) |
F21 | 0.036 (2) | 0.124 (4) | 0.0367 (19) | −0.038 (2) | 0.0125 (17) | 0.001 (2) |
F22 | 0.067 (3) | 0.0304 (18) | 0.0317 (17) | −0.0021 (18) | 0.0037 (17) | −0.0135 (15) |
F23 | 0.041 (2) | 0.059 (2) | 0.0284 (17) | 0.0141 (18) | 0.0105 (15) | −0.0070 (16) |
F24 | 0.036 (2) | 0.049 (2) | 0.0180 (15) | 0.0086 (16) | 0.0026 (14) | 0.0032 (15) |
Tb1 | 0.02640 (15) | 0.01570 (12) | 0.01963 (12) | 0.00014 (12) | 0.00668 (10) | 0.00082 (11) |
C1—F2A | 1.284 (6) | C17—O7 | 1.258 (6) |
C1—F1B | 1.293 (7) | C17—C18 | 1.390 (7) |
C1—F3B | 1.300 (7) | C18—C19 | 1.376 (7) |
C1—F3A | 1.344 (6) | C18—H18 | 0.9500 |
C1—F1A | 1.350 (6) | C19—O8 | 1.251 (6) |
C1—F2B | 1.356 (7) | C19—C20 | 1.538 (7) |
C1—C2 | 1.545 (7) | C20—F23 | 1.339 (6) |
C2—O1 | 1.249 (6) | C20—F22 | 1.341 (6) |
C2—C3 | 1.393 (8) | C20—F24 | 1.341 (6) |
C3—C4 | 1.375 (8) | C21—N1 | 1.513 (7) |
C3—H3 | 0.9500 | C21—C22 | 1.536 (8) |
C4—O2 | 1.259 (6) | C21—H21A | 0.9900 |
C4—C5 | 1.514 (8) | C21—H21B | 0.9900 |
C5—F4 | 1.326 (6) | C22—H22A | 0.9800 |
C5—F5 | 1.338 (6) | C22—H22B | 0.9800 |
C5—F6 | 1.348 (7) | C22—H22C | 0.9800 |
C6—F9 | 1.318 (6) | C23—C24 | 1.520 (8) |
C6—F8 | 1.340 (6) | C23—N1 | 1.528 (7) |
C6—F7 | 1.350 (6) | C23—H23A | 0.9900 |
C6—C7 | 1.537 (7) | C23—H23B | 0.9900 |
C7—O3 | 1.255 (6) | C24—H24A | 0.9800 |
C7—C8 | 1.375 (7) | C24—H24B | 0.9800 |
C8—C9 | 1.410 (7) | C24—H24C | 0.9800 |
C8—H8 | 0.9500 | C25—N1 | 1.524 (7) |
C9—O4 | 1.249 (6) | C25—C26 | 1.539 (8) |
C9—C10 | 1.539 (8) | C25—H25A | 0.9900 |
C10—F10 | 1.307 (6) | C25—H25B | 0.9900 |
C10—F12 | 1.322 (6) | C27—N1 | 1.498 (7) |
C10—F11 | 1.336 (6) | C27—C28 | 1.547 (9) |
C11—F13 | 1.307 (6) | C27—H27A | 0.9900 |
C11—F14 | 1.322 (7) | C27—H27B | 0.9900 |
C11—F15 | 1.337 (8) | C28—H28A | 0.9800 |
C11—C12 | 1.547 (7) | C28—H28B | 0.9800 |
C12—O5 | 1.233 (6) | C28—H28C | 0.9800 |
C12—C13 | 1.384 (7) | C26—H26A | 0.9800 |
C13—C14 | 1.401 (7) | C26—H26B | 0.9800 |
C13—H13 | 0.9500 | C26—H26C | 0.9800 |
C14—O6 | 1.244 (6) | Tb1—O1 | 2.373 (3) |
C14—C15 | 1.538 (8) | Tb1—O2 | 2.351 (4) |
C15—F17 | 1.302 (7) | Tb1—O3 | 2.345 (3) |
C15—F16 | 1.315 (7) | Tb1—O4 | 2.369 (4) |
C15—F18 | 1.328 (7) | Tb1—O5 | 2.372 (3) |
C16—F21 | 1.307 (6) | Tb1—O6 | 2.351 (3) |
C16—F19 | 1.315 (6) | Tb1—O7 | 2.359 (4) |
C16—F20 | 1.340 (6) | Tb1—O8 | 2.365 (3) |
C16—C17 | 1.531 (8) | ||
F2A—C1—F1B | 72.1 (5) | F23—C20—C19 | 113.8 (5) |
F2A—C1—F3B | 122.7 (6) | F22—C20—C19 | 111.2 (4) |
F1B—C1—F3B | 115.8 (6) | F24—C20—C19 | 111.3 (4) |
F2A—C1—F3A | 107.5 (5) | N1—C21—C22 | 115.7 (5) |
F1B—C1—F3A | 135.8 (6) | N1—C21—H21A | 108.4 |
F2A—C1—F1A | 109.2 (5) | C22—C21—H21A | 108.4 |
F3B—C1—F1A | 76.9 (5) | N1—C21—H21B | 108.4 |
F3A—C1—F1A | 102.4 (5) | C22—C21—H21B | 108.4 |
F1B—C1—F2B | 103.2 (6) | H21A—C21—H21B | 107.4 |
F3B—C1—F2B | 103.7 (6) | C21—C22—H22A | 109.5 |
F3A—C1—F2B | 81.4 (5) | C21—C22—H22B | 109.5 |
F1A—C1—F2B | 133.7 (5) | H22A—C22—H22B | 109.5 |
F2A—C1—C2 | 116.2 (5) | C21—C22—H22C | 109.5 |
F1B—C1—C2 | 110.5 (5) | H22A—C22—H22C | 109.5 |
F3B—C1—C2 | 112.7 (5) | H22B—C22—H22C | 109.5 |
F3A—C1—C2 | 108.6 (4) | C24—C23—N1 | 115.2 (5) |
F1A—C1—C2 | 111.9 (4) | C24—C23—H23A | 108.5 |
F2B—C1—C2 | 110.2 (5) | N1—C23—H23A | 108.5 |
O1—C2—C3 | 129.5 (5) | C24—C23—H23B | 108.5 |
O1—C2—C1 | 114.9 (5) | N1—C23—H23B | 108.5 |
C3—C2—C1 | 115.6 (5) | H23A—C23—H23B | 107.5 |
C4—C3—C2 | 123.0 (5) | C23—C24—H24A | 109.5 |
C4—C3—H3 | 118.5 | C23—C24—H24B | 109.5 |
C2—C3—H3 | 118.5 | H24A—C24—H24B | 109.5 |
O2—C4—C3 | 128.0 (5) | C23—C24—H24C | 109.5 |
O2—C4—C5 | 113.8 (5) | H24A—C24—H24C | 109.5 |
C3—C4—C5 | 118.1 (5) | H24B—C24—H24C | 109.5 |
F4—C5—F5 | 108.6 (5) | N1—C25—C26 | 112.8 (5) |
F4—C5—F6 | 105.9 (5) | N1—C25—H25A | 109.0 |
F5—C5—F6 | 106.0 (5) | C26—C25—H25A | 109.0 |
F4—C5—C4 | 111.4 (5) | N1—C25—H25B | 109.0 |
F5—C5—C4 | 113.5 (5) | C26—C25—H25B | 109.0 |
F6—C5—C4 | 111.1 (5) | H25A—C25—H25B | 107.8 |
F9—C6—F8 | 107.6 (4) | N1—C27—C28 | 113.9 (5) |
F9—C6—F7 | 107.0 (4) | N1—C27—H27A | 108.8 |
F8—C6—F7 | 106.8 (4) | C28—C27—H27A | 108.8 |
F9—C6—C7 | 114.1 (4) | N1—C27—H27B | 108.8 |
F8—C6—C7 | 111.1 (4) | C28—C27—H27B | 108.8 |
F7—C6—C7 | 109.8 (4) | H27A—C27—H27B | 107.7 |
O3—C7—C8 | 128.3 (5) | C27—C28—H28A | 109.5 |
O3—C7—C6 | 113.7 (5) | C27—C28—H28B | 109.5 |
C8—C7—C6 | 118.0 (5) | H28A—C28—H28B | 109.5 |
C7—C8—C9 | 121.7 (5) | C27—C28—H28C | 109.5 |
C7—C8—H8 | 119.2 | H28A—C28—H28C | 109.5 |
C9—C8—H8 | 119.2 | H28B—C28—H28C | 109.5 |
O4—C9—C8 | 128.1 (5) | C25—C26—H26A | 109.5 |
O4—C9—C10 | 114.2 (4) | C25—C26—H26B | 109.5 |
C8—C9—C10 | 117.6 (5) | H26A—C26—H26B | 109.5 |
F10—C10—F12 | 107.4 (5) | C25—C26—H26C | 109.5 |
F10—C10—F11 | 106.4 (5) | H26A—C26—H26C | 109.5 |
F12—C10—F11 | 106.8 (4) | H26B—C26—H26C | 109.5 |
F10—C10—C9 | 112.6 (4) | C27—N1—C21 | 112.4 (4) |
F12—C10—C9 | 114.2 (4) | C27—N1—C25 | 112.0 (4) |
F11—C10—C9 | 109.1 (5) | C21—N1—C25 | 104.8 (4) |
F13—C11—F14 | 108.5 (5) | C27—N1—C23 | 105.6 (4) |
F13—C11—F15 | 107.2 (5) | C21—N1—C23 | 111.3 (4) |
F14—C11—F15 | 105.3 (4) | C25—N1—C23 | 110.8 (4) |
F13—C11—C12 | 114.4 (5) | C2—O1—Tb1 | 130.7 (3) |
F14—C11—C12 | 111.3 (5) | C4—O2—Tb1 | 132.8 (3) |
F15—C11—C12 | 109.7 (5) | C7—O3—Tb1 | 134.0 (3) |
O5—C12—C13 | 129.0 (5) | C9—O4—Tb1 | 132.9 (3) |
O5—C12—C11 | 113.5 (4) | C12—O5—Tb1 | 132.2 (3) |
C13—C12—C11 | 117.5 (5) | C14—O6—Tb1 | 133.1 (3) |
C12—C13—C14 | 121.8 (5) | C17—O7—Tb1 | 131.8 (3) |
C12—C13—H13 | 119.1 | C19—O8—Tb1 | 132.4 (3) |
C14—C13—H13 | 119.1 | O3—Tb1—O6 | 141.84 (12) |
O6—C14—C13 | 128.3 (5) | O3—Tb1—O2 | 80.42 (12) |
O6—C14—C15 | 114.4 (5) | O6—Tb1—O2 | 113.06 (12) |
C13—C14—C15 | 117.2 (5) | O3—Tb1—O7 | 116.42 (12) |
F17—C15—F16 | 108.3 (5) | O6—Tb1—O7 | 77.57 (11) |
F17—C15—F18 | 106.0 (5) | O2—Tb1—O7 | 139.15 (12) |
F16—C15—F18 | 106.4 (5) | O3—Tb1—O8 | 143.35 (12) |
F17—C15—C14 | 113.2 (5) | O6—Tb1—O8 | 73.15 (11) |
F16—C15—C14 | 112.2 (5) | O2—Tb1—O8 | 72.40 (12) |
F18—C15—C14 | 110.3 (5) | O7—Tb1—O8 | 73.80 (12) |
F21—C16—F19 | 108.1 (5) | O3—Tb1—O4 | 74.01 (12) |
F21—C16—F20 | 106.6 (5) | O6—Tb1—O4 | 75.75 (12) |
F19—C16—F20 | 105.3 (4) | O2—Tb1—O4 | 74.53 (12) |
F21—C16—C17 | 114.3 (4) | O7—Tb1—O4 | 144.01 (11) |
F19—C16—C17 | 111.9 (4) | O8—Tb1—O4 | 119.80 (12) |
F20—C16—C17 | 110.1 (5) | O3—Tb1—O5 | 75.68 (12) |
O7—C17—C18 | 128.9 (5) | O6—Tb1—O5 | 74.41 (11) |
O7—C17—C16 | 113.6 (4) | O2—Tb1—O5 | 145.33 (12) |
C18—C17—C16 | 117.4 (5) | O7—Tb1—O5 | 74.91 (12) |
C19—C18—C17 | 121.3 (5) | O8—Tb1—O5 | 138.75 (12) |
C19—C18—H18 | 119.4 | O4—Tb1—O5 | 74.97 (12) |
C17—C18—H18 | 119.4 | O3—Tb1—O1 | 69.99 (11) |
O8—C19—C18 | 129.2 (5) | O6—Tb1—O1 | 146.60 (12) |
O8—C19—C20 | 113.5 (4) | O2—Tb1—O1 | 75.19 (12) |
C18—C19—C20 | 117.4 (5) | O7—Tb1—O1 | 76.69 (12) |
F23—C20—F22 | 106.1 (4) | O8—Tb1—O1 | 79.48 (11) |
F23—C20—F24 | 106.8 (4) | O4—Tb1—O1 | 135.94 (12) |
F22—C20—F24 | 107.3 (4) | O5—Tb1—O1 | 118.18 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···F5 | 0.95 | 2.34 | 2.718 (7) | 103 |
C8—H8···F9 | 0.95 | 2.37 | 2.737 (6) | 102 |
C8—H8···F12 | 0.95 | 2.39 | 2.743 (6) | 102 |
C13—H13···F13 | 0.95 | 2.36 | 2.726 (6) | 102 |
C13—H13···F20i | 0.95 | 2.51 | 3.430 (6) | 164 |
C18—H18···F21 | 0.95 | 2.35 | 2.713 (7) | 102 |
C18—H18···F23 | 0.95 | 2.39 | 2.731 (6) | 101 |
C21—H21A···F10ii | 0.99 | 2.47 | 3.279 (7) | 139 |
C26—H26C···F14iii | 0.98 | 2.49 | 3.451 (7) | 169 |
C27—H27B···F2Aiii | 0.99 | 2.48 | 3.371 (9) | 149 |
Symmetry codes: (i) −x+2, −y+1, −z; (ii) x−1/2, −y+1/2, z+1/2; (iii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | (C8H20N)[Tb(C5HF6O2)4] |
Mr | 1117.41 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 12.7113 (9), 16.9355 (13), 18.3540 (11) |
β (°) | 94.657 (6) |
V (Å3) | 3938.1 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.96 |
Crystal size (mm) | 0.4 × 0.1 × 0.1 |
Data collection | |
Diffractometer | Agilent SuperNova Dual Cu at zero Atlas diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2010) |
Tmin, Tmax | 0.531, 0.820 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14178, 6876, 4772 |
Rint | 0.064 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.054, 0.123, 0.98 |
No. of reflections | 6876 |
No. of parameters | 591 |
No. of restraints | 90 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.51, −1.24 |
Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2008), PLATON (Spek, 2009).
Tb1—O1 | 2.373 (3) | Tb1—O5 | 2.372 (3) |
Tb1—O2 | 2.351 (4) | Tb1—O6 | 2.351 (3) |
Tb1—O3 | 2.345 (3) | Tb1—O7 | 2.359 (4) |
Tb1—O4 | 2.369 (4) | Tb1—O8 | 2.365 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···F5 | 0.95 | 2.34 | 2.718 (7) | 103 |
C8—H8···F9 | 0.95 | 2.37 | 2.737 (6) | 102 |
C8—H8···F12 | 0.95 | 2.39 | 2.743 (6) | 102 |
C13—H13···F13 | 0.95 | 2.36 | 2.726 (6) | 102 |
C13—H13···F20i | 0.95 | 2.51 | 3.430 (6) | 164 |
C18—H18···F21 | 0.95 | 2.35 | 2.713 (7) | 102 |
C18—H18···F23 | 0.95 | 2.39 | 2.731 (6) | 101 |
C21—H21A···F10ii | 0.99 | 2.47 | 3.279 (7) | 139 |
C26—H26C···F14iii | 0.98 | 2.49 | 3.451 (7) | 169 |
C27—H27B···F2Aiii | 0.99 | 2.48 | 3.371 (9) | 149 |
Symmetry codes: (i) −x+2, −y+1, −z; (ii) x−1/2, −y+1/2, z+1/2; (iii) x−1, y, z. |
Acknowledgements
This research was co-funded by Ghent University, GOA grant No. 01 G00710.
References
Agilent (2010). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, Oxfordshire, England. Google Scholar
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Binnemans, K. (2005). Rare-Earth Beta-Diketonates, in Handbook on the Physics and Chemistry of Rare Earths, Vol. 35, ch. 225, edited by K. A. Gschneidner Jr, J.-C. G. Bünzli & V. K. Pecharsky, pp. 107–272. Amsterdam: Elsevier. Google Scholar
Brandenburg, K. (2008). Crystal Impact GbR, Bonn, Germany. Google Scholar
Danford, M. D., Burns, J. H., Higgins, C. E., Stokely, J. H. Jr & Baldwin, W. H. (1970). Inorg. Chem. 9, 1953–1955. CSD CrossRef CAS Web of Science Google Scholar
Lenaerts, P., Driesen, K., Van Deun, R. & Binnemans, K. (2005). Chem. Mater. 17, 2148–2154. Web of Science CrossRef CAS Google Scholar
Lunstroot, K., Nockemann, P., Van Hecke, K., Van Meervelt, L., Görller-Walrand, C., Binnemans, K. & Driesen, K. (2009). Inorg. Chem. 48, 3018–3026. Web of Science CSD CrossRef PubMed CAS Google Scholar
Mech, A., Karbowiak, M., Görller-Walrand, C. & Van Deun, R. (2008). J. Alloys Compd, 451, 215–219. Web of Science CrossRef CAS Google Scholar
Mehdi, H., Binnemans, K., Van Hecke, K., Van Meervelt, L. & Nockemann, P. (2010). Chem. Commun. 46, 234–236. Web of Science CSD CrossRef CAS Google Scholar
Melby, L. R., Rose, N. J., Abramson, E. & Caris, J. C. (1964). J. Am. Chem. Soc. 86, 5117–5125. CrossRef CAS Web of Science Google Scholar
Nockemann, P., Beurer, E., Driesen, K., Van Deun, R., Van Hecke, K., Van Meervelt, L. & Binnemans, K. (2005). Chem. Commun. pp. 4354–4356. Web of Science CSD CrossRef Google Scholar
O'Riordan, A., O'Connor, E., Moynihan, S., Llinares, X., Van Deun, R., Fias, P., Nockemann, P., Binnemans, K. & Redmond, G. (2005). Thin Solid Films, 491, 264–269. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tang, S.-F. & Mudring, A.-V. (2009). Eur. J. Inorg. Chem. pp. 2769–2775. Web of Science CSD CrossRef Google Scholar
Van Deun, R., Moors, D., De Fré, B. & Binnemans, K. (2003). J. Mater. Chem. 13, 1520–1522. Web of Science CrossRef CAS Google Scholar
Van Deun, R., Nockemann, P., Parac-Vogt, T. N., Van Hecke, K., Van Meervelt, L., Görller-Walrand, C. & Binnemans, K. (2007). Polyhedron, 26, 5441–5447. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
β-diketones (1,3-diketones) are able to coordinate, as conjugate bases, to rare-earth ions, forming the corresponding β-diketonate complexes. Because of the accessibility to different commercially available β-diketones and the fact that the derived rare-earth complexes are relatively easy to synthesize, these β-diketonates have become the most scientifically studied and the most popular rare-earth coordination compounds.
For instance, rare-earth β-diketonates have been investigated as extractants in solvent-solvent extraction processes, as NMR shift reagents, as active materials in liquid lasers and novel types of organic light-emitting diodes (OLEDs), as active compounds in electroluminescent devices (e.g. flat-panel displays), as luminescent probes in bioassays, as precursors for chemical vapor deposition and as catalysts in organic reactions. These rare-earth β-diketonate complexes can be grouped into three main types: tris complexes, Lewis base adducts of the tris complexes (or ternary rare-earth β-diketonates) and tetrakis complexes.
An overiew of the different types of rare-earth β-diketonate complexes, their crystal structures and applications, is given by Binnemans, 2005.
We have widely studied rare-earth β-diketonate complexes for their luminescence properties (Mech et al., 2008; Van Deun et al., 2007), either as pure materials, doped in liquid crystals (Van Deun et al., 2003; Nockemann et al., 2005), or processed into thin films (Lenaerts et al., 2005, O'Riordan et al., 2005) and have recently determined other tetrakis rare-earth β-diketonate complexes with hexafluoroacetylacetone ligands (Lunstroot et al., 2009; Mehdi et al., 2010).
Here, we describe the crystal structure of a tetrakis complex of hexafluoroacetylacetone (hfac) with the terbium cation, Tb(III), and tetraethylammonium (Et4N) as the counter ion, which shows typical green Tb(III) luminescence upon excitation at about 335 nm.
The title compound crystallizes in the monoclinic space group P21/n, with four formula units in the unit cell. The asymmetric unit consists of one Tb(III) cation, four hfac anions and one Et4N cation, which in total equals one formula unit. Each Tb(III) ion is eight-coordinated by oxygen atoms from four chelating hfac ligands. The coordination polyhedron around Tb(III) can be best described as a slightly distorted square antiprism (Figure 1). There are no solvent molecules coordinating to the Tb(III) ion. One of the CF3 groups of one of the hfac ligands is found disordered. The Tb–O distances range from 2.345 (3) to 2.373 (3) Å, which are comparable to those reported for other tetrakis(acetylacetonato)-Tb(III) complexes (Tang & Mudring, 2009) (Table 1). The O–Tb–O angles range from 73.81 (12)° to 75.19 (12)°. The only other tetrakis(acetylacetonato)-Tb(III) complex, found in the Cambridge Structural Database (CSD) has a Cs+ counterion (Danford et al., 1970). However, no coordinates are available for the latter structure (reference code QQQBZM, CSD (Version 5.32) (Allen, 2002)).
No classic hydrogen bonds are found. However, C–H···F potential hydrogen bonds can be observed within the [Tb(hfac)4]- anion itself (intraanion), between the [Tb(hfac)4]- anion and [Et4N]+ cations (interanion-cation), as well as between different [Tb(hfac)4]- anions (interanion-anion). The acidic hydrogen atom in each hfac ligand forms at least one intraanion hydrogen bond with a fluorine atom of one of its adjacent CF3 groups (C(–H)···F distances ranging from 2.713 (7) to 2.743 (6) Å). Several interanion-cation hydrogen bonds are observed between the [Tb(hfac)4]- anion and the [Et4N]+ cations ((C(–H)···F distances ranging from 3.279 (7) to 3.451 (7) Å). Furthermore, one acidic hfac proton forms a C–H···F intermolecular interanion-anion hydrogen bond with a symmetry-equivalent hfac fluorine atom (C(13)(–H)···F(20) [2 - x,1 - y,-z] distance of 3.430 (6) Å) (Figure 2). Through the linkage of these intra- and intermolecular C–H···F interactions, a two-dimensional layer is formed in the (010)-plane. These layers are further building up a three-dimensional network, with the hfac CF3 groups at the interfaces of the layers, as has been already noticed for other Tb(hfac)4 complexes, although with different C4mim and C4mpyr counterions (Tang & Mudring, 2009) (Figure 3).