metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m111-m112

Tetra­ethyl­ammonium tetra­kis­(1,1,1,5,5,5-hexa­fluoro­acetyl­acetonato)terbate(III)

aDepartment of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281–S3, B-9000 Ghent, Belgium
*Correspondence e-mail: Kristof.VanHecke@UGent.be

(Received 14 December 2011; accepted 23 December 2011; online 7 January 2012)

The title compound, (C8H20N)[Tb(C5HF6O2)4], is a tetrakis β-diketonate complex of hexa­fluoro­acetyl­acetone with terbium(III), and tetra­ethyl­ammonium as the counter-ion. This compound shows typical green terbium(III) luminescence upon excitation at about 335 nm. The coordination geometry around the TbIII atom is a slightly distorted square anti­prism. One hexa­fluoro­acetyl­acetone ligand has a disordered CF3 group [occupancies of 0.575 (4) and 0.425 (4)]. A three-dimensional network is built up by linkage of TbIII complexes via C—H⋯F inter­actions.

Related literature

For a review on rare-earth β-diketonate complexes, their crystal structures and applications, see: Binnemans (2005[Binnemans, K. (2005). Rare-Earth Beta-Diketonates, in Handbook on the Physics and Chemistry of Rare Earths, Vol. 35, ch. 225, edited by K. A. Gschneidner Jr, J.-C. G. Bünzli & V. K. Pecharsky, pp. 107-272. Amsterdam: Elsevier.]). We have widely studied rare-earth β-diketonate complexes for their luminescence properties (Mech et al., 2008[Mech, A., Karbowiak, M., Görller-Walrand, C. & Van Deun, R. (2008). J. Alloys Compd, 451, 215-219.]; Van Deun et al., 2007[Van Deun, R., Nockemann, P., Parac-Vogt, T. N., Van Hecke, K., Van Meervelt, L., Görller-Walrand, C. & Binnemans, K. (2007). Polyhedron, 26, 5441-5447.]), either as pure materials, doped in liquid crystals (Van Deun et al., 2003[Van Deun, R., Moors, D., De Fré, B. & Binnemans, K. (2003). J. Mater. Chem. 13, 1520-1522.]; Nockemann et al., 2005[Nockemann, P., Beurer, E., Driesen, K., Van Deun, R., Van Hecke, K., Van Meervelt, L. & Binnemans, K. (2005). Chem. Commun. pp. 4354-4356.]), or processed into thin films (Lenaerts et al., 2005[Lenaerts, P., Driesen, K., Van Deun, R. & Binnemans, K. (2005). Chem. Mater. 17, 2148-2154.], O'Riordan et al., 2005[O'Riordan, A., O'Connor, E., Moynihan, S., Llinares, X., Van Deun, R., Fias, P., Nockemann, P., Binnemans, K. & Redmond, G. (2005). Thin Solid Films, 491, 264-269.]). For related structures, see: Tang & Mudring (2009[Tang, S.-F. & Mudring, A.-V. (2009). Eur. J. Inorg. Chem. pp. 2769-2775.]); Danford et al. (1970[Danford, M. D., Burns, J. H., Higgins, C. E., Stokely, J. H. Jr & Baldwin, W. H. (1970). Inorg. Chem. 9, 1953-1955.]); Lunstroot et al. (2009[Lunstroot, K., Nockemann, P., Van Hecke, K., Van Meervelt, L., Görller-Walrand, C., Binnemans, K. & Driesen, K. (2009). Inorg. Chem. 48, 3018-3026.]); Mehdi et al. (2010[Mehdi, H., Binnemans, K., Van Hecke, K., Van Meervelt, L. & Nockemann, P. (2010). Chem. Commun. 46, 234-236.]). For general procedues for the synthesis of rare-earth β-diketonate complexes, see: Melby et al. (1964[Melby, L. R., Rose, N. J., Abramson, E. & Caris, J. C. (1964). J. Am. Chem. Soc. 86, 5117-5125.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • (C8H20N)[Tb(C5HF6O2)4]

  • Mr = 1117.41

  • Monoclinic, P 21 /n

  • a = 12.7113 (9) Å

  • b = 16.9355 (13) Å

  • c = 18.3540 (11) Å

  • β = 94.657 (6)°

  • V = 3938.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.96 mm−1

  • T = 100 K

  • 0.4 × 0.1 × 0.1 mm

Data collection
  • Agilent SuperNova Dual Cu at zero Atlas diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, Oxfordshire, England. ]) Tmin = 0.531, Tmax = 0.820

  • 14178 measured reflections

  • 6876 independent reflections

  • 4772 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.123

  • S = 0.98

  • 6876 reflections

  • 591 parameters

  • 90 restraints

  • H-atom parameters constrained

  • Δρmax = 1.51 e Å−3

  • Δρmin = −1.24 e Å−3

Table 1
Selected bond lengths (Å)

Tb1—O1 2.373 (3)
Tb1—O2 2.351 (4)
Tb1—O3 2.345 (3)
Tb1—O4 2.369 (4)
Tb1—O5 2.372 (3)
Tb1—O6 2.351 (3)
Tb1—O7 2.359 (4)
Tb1—O8 2.365 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯F20i 0.95 2.51 3.430 (6) 164
C21—H21A⋯F10ii 0.99 2.47 3.279 (7) 139
C26—H26C⋯F14iii 0.98 2.49 3.451 (7) 169
C27—H27B⋯F2Aiii 0.99 2.48 3.371 (9) 149
Symmetry codes: (i) -x+2, -y+1, -z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x-1, y, z.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, Oxfordshire, England. ]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2008[Brandenburg, K. (2008). Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

β-diketones (1,3-diketones) are able to coordinate, as conjugate bases, to rare-earth ions, forming the corresponding β-diketonate complexes. Because of the accessibility to different commercially available β-diketones and the fact that the derived rare-earth complexes are relatively easy to synthesize, these β-diketonates have become the most scientifically studied and the most popular rare-earth coordination compounds.

For instance, rare-earth β-diketonates have been investigated as extractants in solvent-solvent extraction processes, as NMR shift reagents, as active materials in liquid lasers and novel types of organic light-emitting diodes (OLEDs), as active compounds in electroluminescent devices (e.g. flat-panel displays), as luminescent probes in bioassays, as precursors for chemical vapor deposition and as catalysts in organic reactions. These rare-earth β-diketonate complexes can be grouped into three main types: tris complexes, Lewis base adducts of the tris complexes (or ternary rare-earth β-diketonates) and tetrakis complexes.

An overiew of the different types of rare-earth β-diketonate complexes, their crystal structures and applications, is given by Binnemans, 2005.

We have widely studied rare-earth β-diketonate complexes for their luminescence properties (Mech et al., 2008; Van Deun et al., 2007), either as pure materials, doped in liquid crystals (Van Deun et al., 2003; Nockemann et al., 2005), or processed into thin films (Lenaerts et al., 2005, O'Riordan et al., 2005) and have recently determined other tetrakis rare-earth β-diketonate complexes with hexafluoroacetylacetone ligands (Lunstroot et al., 2009; Mehdi et al., 2010).

Here, we describe the crystal structure of a tetrakis complex of hexafluoroacetylacetone (hfac) with the terbium cation, Tb(III), and tetraethylammonium (Et4N) as the counter ion, which shows typical green Tb(III) luminescence upon excitation at about 335 nm.

The title compound crystallizes in the monoclinic space group P21/n, with four formula units in the unit cell. The asymmetric unit consists of one Tb(III) cation, four hfac anions and one Et4N cation, which in total equals one formula unit. Each Tb(III) ion is eight-coordinated by oxygen atoms from four chelating hfac ligands. The coordination polyhedron around Tb(III) can be best described as a slightly distorted square antiprism (Figure 1). There are no solvent molecules coordinating to the Tb(III) ion. One of the CF3 groups of one of the hfac ligands is found disordered. The Tb–O distances range from 2.345 (3) to 2.373 (3) Å, which are comparable to those reported for other tetrakis(acetylacetonato)-Tb(III) complexes (Tang & Mudring, 2009) (Table 1). The O–Tb–O angles range from 73.81 (12)° to 75.19 (12)°. The only other tetrakis(acetylacetonato)-Tb(III) complex, found in the Cambridge Structural Database (CSD) has a Cs+ counterion (Danford et al., 1970). However, no coordinates are available for the latter structure (reference code QQQBZM, CSD (Version 5.32) (Allen, 2002)).

No classic hydrogen bonds are found. However, C–H···F potential hydrogen bonds can be observed within the [Tb(hfac)4]- anion itself (intraanion), between the [Tb(hfac)4]- anion and [Et4N]+ cations (interanion-cation), as well as between different [Tb(hfac)4]- anions (interanion-anion). The acidic hydrogen atom in each hfac ligand forms at least one intraanion hydrogen bond with a fluorine atom of one of its adjacent CF3 groups (C(–H)···F distances ranging from 2.713 (7) to 2.743 (6) Å). Several interanion-cation hydrogen bonds are observed between the [Tb(hfac)4]- anion and the [Et4N]+ cations ((C(–H)···F distances ranging from 3.279 (7) to 3.451 (7) Å). Furthermore, one acidic hfac proton forms a C–H···F intermolecular interanion-anion hydrogen bond with a symmetry-equivalent hfac fluorine atom (C(13)(–H)···F(20) [2 - x,1 - y,-z] distance of 3.430 (6) Å) (Figure 2). Through the linkage of these intra- and intermolecular C–H···F interactions, a two-dimensional layer is formed in the (010)-plane. These layers are further building up a three-dimensional network, with the hfac CF3 groups at the interfaces of the layers, as has been already noticed for other Tb(hfac)4 complexes, although with different C4mim and C4mpyr counterions (Tang & Mudring, 2009) (Figure 3).

Related literature top

For a review on rare-earth β-diketonate complexes, their crystal structures and applications, see: Binnemans (2005). We have widely studied rare-earth β-diketonate complexes for their luminescence properties (Mech et al., 2008; Van Deun et al., 2007), either as pure materials, doped in liquid crystals (Van Deun et al., 2003; Nockemann et al., 2005), or processed into thin films (Lenaerts et al., 2005, O'Riordan et al., 2005). For related structures, see: Tang & Mudring (2009); Danford et al. (1970); Lunstroot et al. (2009); Mehdi et al. (2010). For general procedues for the synthesis of rare-earth β-diketonate complexes, see: Melby et al. (1964). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

General synthetic procedues for the synthesis of rare-earth β-diketonate complexes are given in Melby et al., 1964.

The title compound was synthesized by mixing 3.6 ml of a 1 N sodium hydroxide solution with 9 ml of an ethanol (95%(v/v)) solution of hexafluoroacetylacetone (0.505 ml, 3.6 mmol) in a 50 ml Erlenmeyer flask at 60 °C. Subsequently, under stirring, 9 ml of aqueous Tb(NO3)3.5H2O solution (0.3906 g, 0.9 mmol) was added dropwise and finally 1.8 ml of aqueous tetraethylammonium chloride solution (0.0705 g, 0.426 mmol) was added dropwise. The mixture was concentrated by heating until the onset of crystallization. Finally, the solution was filtered and kept overnight to stand at room temperature, to allow the formation of single crystals.

Refinement top

All hydrogen atoms were placed at calculated positions and further refined with isotropic temperature factors fixed at 1.2 times Ueq of the parent atoms (1.5 times for methyl groups). 1,2 and 1,3 distance restraints to target values, together with restrained Uij components (for the fluorine atoms) had to be added to model the disorder of the CF3 group on one of the hfa ligands [refined occupancy factors were 0.575 (4) and 0.425 (4)].

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Coordination geometry of the title compound, showing 50% probability displacement ellipsoids. The disorder of one of the CF3 groups is not shown.
[Figure 2] Fig. 2. Intraanion, interanion-cation and interanion-anion C–H···F interactions (dashed lines), observed in the crystal structure of the title compound.
[Figure 3] Fig. 3. Packing diagram of the title compound along the b-axis, showing the two-dimensional layer formed in the (010)-plane (left) and along the c-axis, showing the three-dimensional network, with the hfac CF3 groups at the interfaces of the layers (right). The interanion-cation and interanion-anion C–H···F interactions are indicated. H-atoms were omitted to enhance clarity.
Tetraethylammonium tetrakis(1,1,1,5,5,5-hexafluoroacetylacetonato)terbate(III) top
Crystal data top
(C8H20N)[Tb(C5HF6O2)4]F(000) = 2176
Mr = 1117.41Dx = 1.885 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3060 reflections
a = 12.7113 (9) Åθ = 2.4–28.4°
b = 16.9355 (13) ŵ = 1.96 mm1
c = 18.3540 (11) ÅT = 100 K
β = 94.657 (6)°Needle, colourless
V = 3938.1 (5) Å30.4 × 0.1 × 0.1 mm
Z = 4
Data collection top
Agilent SuperNova Dual Cu at zero Atlas
diffractometer
6876 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4772 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.064
Detector resolution: 10.35 pixels mm-1θmax = 25.0°, θmin = 2.4°
ω scansh = 1015
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 2019
Tmin = 0.531, Tmax = 0.820l = 2121
14178 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0477P)2]
where P = (Fo2 + 2Fc2)/3
6876 reflections(Δ/σ)max = 0.001
591 parametersΔρmax = 1.51 e Å3
90 restraintsΔρmin = 1.24 e Å3
Crystal data top
(C8H20N)[Tb(C5HF6O2)4]V = 3938.1 (5) Å3
Mr = 1117.41Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.7113 (9) ŵ = 1.96 mm1
b = 16.9355 (13) ÅT = 100 K
c = 18.3540 (11) Å0.4 × 0.1 × 0.1 mm
β = 94.657 (6)°
Data collection top
Agilent SuperNova Dual Cu at zero Atlas
diffractometer
6876 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
4772 reflections with I > 2σ(I)
Tmin = 0.531, Tmax = 0.820Rint = 0.064
14178 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05490 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 0.98Δρmax = 1.51 e Å3
6876 reflectionsΔρmin = 1.24 e Å3
591 parameters
Special details top

Experimental. CrysAlisPro. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm (Agilent Technologies, 2010)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.8770 (4)0.0312 (3)0.0638 (2)0.0408 (18)
C20.8119 (5)0.0356 (3)0.0246 (3)0.0269 (14)
C30.7175 (5)0.0124 (3)0.0131 (3)0.0344 (16)
H30.69920.04200.01350.041*
C40.6495 (4)0.0647 (3)0.0499 (3)0.0262 (14)
C50.5548 (5)0.0315 (4)0.0952 (3)0.0397 (17)
C60.6132 (4)0.1453 (3)0.2003 (3)0.0259 (14)
C70.6239 (5)0.1927 (3)0.1298 (2)0.0251 (14)
C80.5408 (4)0.2398 (3)0.1044 (3)0.0206 (13)
H80.47700.23790.12800.025*
C90.5479 (5)0.2907 (3)0.0443 (3)0.0240 (14)
C100.4618 (5)0.3541 (3)0.0308 (3)0.0299 (15)
C110.8151 (6)0.4535 (3)0.1453 (3)0.0407 (18)
C120.8176 (5)0.4065 (3)0.0732 (3)0.0314 (15)
C130.8257 (5)0.4492 (3)0.0096 (3)0.0414 (18)
H130.83680.50460.01270.050*
C140.8179 (5)0.4129 (3)0.0592 (3)0.0292 (15)
C150.8325 (5)0.4656 (3)0.1259 (3)0.0400 (18)
C161.1411 (5)0.2831 (3)0.0144 (3)0.0295 (15)
C171.0321 (4)0.2525 (3)0.0428 (3)0.0227 (14)
C181.0187 (4)0.2291 (3)0.1155 (3)0.0240 (14)
H181.07450.23700.14620.029*
C190.9261 (4)0.1948 (3)0.1440 (3)0.0204 (13)
C200.9233 (5)0.1624 (3)0.2223 (3)0.0301 (15)
C210.0392 (5)0.1360 (3)0.3084 (3)0.0389 (17)
H21A0.02570.16310.35460.047*
H21B0.11170.11430.31450.047*
C220.0386 (6)0.0668 (4)0.2971 (3)0.053 (2)
H22A0.11110.08700.29460.080*
H22B0.02760.02980.33800.080*
H22C0.02680.03960.25130.080*
C230.0751 (5)0.2336 (4)0.2359 (3)0.0406 (17)
H23A0.07360.27410.19700.049*
H23B0.12550.19210.21790.049*
C240.1160 (6)0.2718 (4)0.3030 (4)0.058 (2)
H24A0.11660.23270.34230.086*
H24B0.18780.29140.29080.086*
H24C0.07000.31590.31910.086*
C250.1164 (5)0.2586 (3)0.2736 (3)0.0367 (17)
H25A0.18620.23280.28230.044*
H25B0.09760.28090.32070.044*
C270.0568 (5)0.1617 (4)0.1757 (3)0.0431 (18)
H27A0.05360.20410.13850.052*
H27B0.00070.12300.16090.052*
C280.1652 (5)0.1201 (4)0.1762 (3)0.049 (2)
H28A0.22110.15690.19400.074*
H28B0.17720.10310.12650.074*
H28C0.16620.07400.20850.074*
C260.1247 (5)0.3262 (3)0.2183 (3)0.050 (2)
H26A0.15090.30530.17340.076*
H26B0.17370.36640.23930.076*
H26C0.05500.34980.20710.076*
N10.0347 (3)0.1967 (2)0.2478 (2)0.0238 (11)
O10.8526 (3)0.1026 (2)0.03109 (17)0.0249 (9)
O20.6578 (3)0.1386 (2)0.05394 (18)0.0276 (10)
O30.7119 (3)0.1847 (2)0.10428 (17)0.0260 (9)
O40.6180 (3)0.2930 (2)0.00045 (17)0.0266 (10)
O50.8142 (3)0.3344 (2)0.08163 (17)0.0271 (10)
O60.7992 (3)0.34237 (19)0.07428 (17)0.0243 (9)
O70.9674 (3)0.24911 (18)0.00547 (17)0.0221 (9)
O80.8409 (3)0.18631 (19)0.11522 (17)0.0233 (9)
F1B0.8437 (7)0.0451 (6)0.1273 (3)0.069 (3)0.425 (4)
F2B0.9779 (5)0.0073 (4)0.0802 (4)0.044 (2)0.425 (4)
F3B0.8865 (8)0.0927 (4)0.0223 (4)0.060 (3)0.425 (4)
F1A0.8147 (5)0.0854 (3)0.0929 (3)0.0524 (18)0.575 (4)
F2A0.9494 (6)0.0096 (4)0.1126 (3)0.069 (2)0.575 (4)
F3A0.9235 (5)0.0736 (3)0.0135 (3)0.0427 (18)0.575 (4)
F40.5671 (3)0.0363 (2)0.16613 (18)0.0701 (13)
F50.5332 (3)0.0435 (2)0.07899 (19)0.0610 (12)
F60.4669 (3)0.0730 (2)0.0848 (2)0.0661 (13)
F70.6745 (3)0.17776 (19)0.25596 (15)0.0388 (9)
F80.6463 (3)0.07081 (17)0.19320 (15)0.0371 (9)
F90.5163 (3)0.14256 (19)0.22091 (16)0.0390 (9)
F100.4251 (3)0.3581 (2)0.03773 (16)0.0535 (11)
F110.5033 (3)0.4249 (2)0.0478 (2)0.0693 (14)
F120.3802 (3)0.3450 (2)0.07027 (17)0.0517 (11)
F130.8205 (4)0.5301 (2)0.13763 (19)0.0816 (15)
F140.8916 (3)0.4309 (2)0.19396 (16)0.0477 (11)
F150.7254 (3)0.4379 (3)0.17600 (19)0.0700 (13)
F160.9110 (3)0.5157 (2)0.11361 (19)0.0645 (12)
F170.8480 (4)0.4257 (2)0.18469 (18)0.0783 (15)
F180.7465 (4)0.5087 (2)0.1421 (2)0.0771 (14)
F191.1866 (3)0.2368 (2)0.03637 (18)0.0454 (10)
F201.1322 (3)0.3534 (2)0.0180 (2)0.0636 (13)
F211.2065 (3)0.2928 (3)0.06505 (18)0.0653 (13)
F220.8784 (3)0.09067 (18)0.22706 (16)0.0432 (10)
F231.0188 (3)0.1542 (2)0.24729 (15)0.0422 (10)
F240.8672 (3)0.20959 (19)0.26958 (14)0.0343 (9)
Tb10.78328 (2)0.228824 (14)0.002340 (13)0.02031 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.062 (5)0.020 (3)0.040 (3)0.002 (3)0.000 (3)0.007 (3)
C20.037 (4)0.024 (3)0.021 (3)0.008 (3)0.008 (2)0.003 (2)
C30.051 (4)0.020 (3)0.029 (3)0.002 (3)0.011 (3)0.009 (2)
C40.032 (3)0.015 (3)0.033 (3)0.001 (2)0.013 (3)0.003 (2)
C50.046 (4)0.037 (3)0.035 (3)0.020 (3)0.010 (3)0.009 (3)
C60.024 (3)0.026 (3)0.030 (3)0.002 (3)0.010 (2)0.003 (2)
C70.036 (4)0.025 (3)0.014 (2)0.007 (3)0.001 (2)0.007 (2)
C80.018 (3)0.022 (3)0.022 (3)0.003 (2)0.006 (2)0.005 (2)
C90.035 (3)0.017 (3)0.020 (3)0.002 (2)0.001 (2)0.004 (2)
C100.036 (4)0.029 (3)0.025 (3)0.003 (3)0.003 (3)0.002 (3)
C110.075 (5)0.023 (3)0.023 (3)0.012 (3)0.002 (3)0.003 (3)
C120.039 (4)0.028 (3)0.028 (3)0.003 (3)0.004 (3)0.004 (3)
C130.077 (5)0.021 (3)0.027 (3)0.001 (3)0.008 (3)0.005 (3)
C140.042 (4)0.012 (3)0.034 (3)0.005 (3)0.004 (3)0.009 (2)
C150.052 (4)0.026 (3)0.042 (3)0.001 (3)0.004 (3)0.007 (3)
C160.028 (3)0.029 (3)0.033 (3)0.012 (3)0.007 (3)0.002 (3)
C170.032 (3)0.012 (2)0.025 (3)0.001 (2)0.005 (2)0.001 (2)
C180.027 (3)0.024 (3)0.021 (3)0.005 (3)0.008 (2)0.009 (2)
C190.030 (3)0.010 (2)0.021 (3)0.001 (2)0.003 (2)0.002 (2)
C200.038 (4)0.031 (3)0.023 (3)0.002 (3)0.012 (3)0.001 (2)
C210.051 (4)0.027 (3)0.041 (3)0.008 (3)0.015 (3)0.011 (3)
C220.074 (5)0.030 (3)0.057 (4)0.022 (3)0.011 (4)0.005 (3)
C230.039 (4)0.038 (3)0.045 (3)0.003 (3)0.000 (3)0.006 (3)
C240.059 (5)0.049 (4)0.069 (4)0.008 (4)0.032 (4)0.022 (4)
C250.041 (4)0.036 (3)0.033 (3)0.007 (3)0.002 (3)0.005 (3)
C270.054 (4)0.041 (4)0.034 (3)0.012 (3)0.005 (3)0.007 (3)
C280.066 (5)0.036 (4)0.048 (4)0.001 (3)0.022 (3)0.013 (3)
C260.052 (4)0.025 (3)0.077 (4)0.004 (3)0.023 (4)0.014 (3)
N10.027 (3)0.026 (2)0.019 (2)0.006 (2)0.0032 (19)0.0013 (19)
O10.029 (2)0.0205 (19)0.0264 (18)0.0043 (17)0.0078 (16)0.0028 (16)
O20.026 (2)0.032 (2)0.0256 (18)0.0020 (18)0.0034 (16)0.0074 (17)
O30.029 (2)0.0207 (18)0.0304 (19)0.0034 (17)0.0129 (17)0.0044 (16)
O40.032 (2)0.0250 (19)0.0242 (18)0.0027 (17)0.0092 (17)0.0089 (16)
O50.034 (2)0.023 (2)0.0253 (19)0.0037 (18)0.0094 (17)0.0015 (16)
O60.025 (2)0.0208 (18)0.0280 (19)0.0021 (17)0.0061 (16)0.0069 (16)
O70.030 (2)0.0121 (17)0.0242 (18)0.0036 (16)0.0042 (17)0.0036 (15)
O80.028 (2)0.0177 (18)0.0242 (18)0.0004 (17)0.0051 (16)0.0004 (16)
F1B0.070 (5)0.081 (5)0.056 (4)0.013 (4)0.012 (4)0.028 (4)
F2B0.055 (5)0.038 (4)0.038 (4)0.014 (4)0.009 (4)0.004 (3)
F3B0.068 (5)0.033 (4)0.077 (5)0.005 (4)0.010 (4)0.003 (4)
F1A0.053 (4)0.044 (3)0.062 (3)0.010 (3)0.019 (3)0.037 (3)
F2A0.094 (5)0.045 (4)0.060 (4)0.008 (4)0.046 (4)0.003 (3)
F3A0.047 (4)0.033 (3)0.051 (3)0.014 (3)0.022 (3)0.008 (3)
F40.097 (3)0.080 (3)0.0300 (19)0.047 (2)0.013 (2)0.0041 (19)
F50.084 (3)0.0315 (19)0.062 (2)0.023 (2)0.031 (2)0.0131 (18)
F60.045 (3)0.066 (3)0.083 (3)0.020 (2)0.019 (2)0.014 (2)
F70.046 (2)0.049 (2)0.0212 (15)0.0158 (18)0.0030 (15)0.0005 (15)
F80.056 (2)0.0237 (16)0.0318 (16)0.0019 (16)0.0073 (16)0.0088 (14)
F90.034 (2)0.047 (2)0.0382 (17)0.0094 (17)0.0149 (15)0.0119 (15)
F100.047 (2)0.086 (3)0.0270 (17)0.032 (2)0.0002 (16)0.0033 (18)
F110.054 (3)0.0249 (19)0.126 (3)0.0111 (19)0.011 (2)0.012 (2)
F120.046 (2)0.069 (3)0.0436 (18)0.0258 (19)0.0239 (17)0.0135 (18)
F130.172 (4)0.030 (2)0.040 (2)0.017 (2)0.006 (2)0.0085 (17)
F140.064 (3)0.045 (2)0.0326 (18)0.0107 (19)0.0061 (18)0.0105 (16)
F150.056 (3)0.105 (3)0.050 (2)0.018 (2)0.0146 (19)0.040 (2)
F160.081 (3)0.058 (2)0.053 (2)0.036 (2)0.004 (2)0.021 (2)
F170.171 (4)0.035 (2)0.0339 (19)0.021 (3)0.036 (2)0.0034 (17)
F180.085 (3)0.070 (3)0.077 (3)0.018 (3)0.013 (2)0.051 (2)
F190.041 (2)0.047 (2)0.0453 (19)0.0115 (18)0.0128 (17)0.0125 (17)
F200.053 (3)0.033 (2)0.102 (3)0.0132 (19)0.005 (2)0.020 (2)
F210.036 (2)0.124 (4)0.0367 (19)0.038 (2)0.0125 (17)0.001 (2)
F220.067 (3)0.0304 (18)0.0317 (17)0.0021 (18)0.0037 (17)0.0135 (15)
F230.041 (2)0.059 (2)0.0284 (17)0.0141 (18)0.0105 (15)0.0070 (16)
F240.036 (2)0.049 (2)0.0180 (15)0.0086 (16)0.0026 (14)0.0032 (15)
Tb10.02640 (15)0.01570 (12)0.01963 (12)0.00014 (12)0.00668 (10)0.00082 (11)
Geometric parameters (Å, º) top
C1—F2A1.284 (6)C17—O71.258 (6)
C1—F1B1.293 (7)C17—C181.390 (7)
C1—F3B1.300 (7)C18—C191.376 (7)
C1—F3A1.344 (6)C18—H180.9500
C1—F1A1.350 (6)C19—O81.251 (6)
C1—F2B1.356 (7)C19—C201.538 (7)
C1—C21.545 (7)C20—F231.339 (6)
C2—O11.249 (6)C20—F221.341 (6)
C2—C31.393 (8)C20—F241.341 (6)
C3—C41.375 (8)C21—N11.513 (7)
C3—H30.9500C21—C221.536 (8)
C4—O21.259 (6)C21—H21A0.9900
C4—C51.514 (8)C21—H21B0.9900
C5—F41.326 (6)C22—H22A0.9800
C5—F51.338 (6)C22—H22B0.9800
C5—F61.348 (7)C22—H22C0.9800
C6—F91.318 (6)C23—C241.520 (8)
C6—F81.340 (6)C23—N11.528 (7)
C6—F71.350 (6)C23—H23A0.9900
C6—C71.537 (7)C23—H23B0.9900
C7—O31.255 (6)C24—H24A0.9800
C7—C81.375 (7)C24—H24B0.9800
C8—C91.410 (7)C24—H24C0.9800
C8—H80.9500C25—N11.524 (7)
C9—O41.249 (6)C25—C261.539 (8)
C9—C101.539 (8)C25—H25A0.9900
C10—F101.307 (6)C25—H25B0.9900
C10—F121.322 (6)C27—N11.498 (7)
C10—F111.336 (6)C27—C281.547 (9)
C11—F131.307 (6)C27—H27A0.9900
C11—F141.322 (7)C27—H27B0.9900
C11—F151.337 (8)C28—H28A0.9800
C11—C121.547 (7)C28—H28B0.9800
C12—O51.233 (6)C28—H28C0.9800
C12—C131.384 (7)C26—H26A0.9800
C13—C141.401 (7)C26—H26B0.9800
C13—H130.9500C26—H26C0.9800
C14—O61.244 (6)Tb1—O12.373 (3)
C14—C151.538 (8)Tb1—O22.351 (4)
C15—F171.302 (7)Tb1—O32.345 (3)
C15—F161.315 (7)Tb1—O42.369 (4)
C15—F181.328 (7)Tb1—O52.372 (3)
C16—F211.307 (6)Tb1—O62.351 (3)
C16—F191.315 (6)Tb1—O72.359 (4)
C16—F201.340 (6)Tb1—O82.365 (3)
C16—C171.531 (8)
F2A—C1—F1B72.1 (5)F23—C20—C19113.8 (5)
F2A—C1—F3B122.7 (6)F22—C20—C19111.2 (4)
F1B—C1—F3B115.8 (6)F24—C20—C19111.3 (4)
F2A—C1—F3A107.5 (5)N1—C21—C22115.7 (5)
F1B—C1—F3A135.8 (6)N1—C21—H21A108.4
F2A—C1—F1A109.2 (5)C22—C21—H21A108.4
F3B—C1—F1A76.9 (5)N1—C21—H21B108.4
F3A—C1—F1A102.4 (5)C22—C21—H21B108.4
F1B—C1—F2B103.2 (6)H21A—C21—H21B107.4
F3B—C1—F2B103.7 (6)C21—C22—H22A109.5
F3A—C1—F2B81.4 (5)C21—C22—H22B109.5
F1A—C1—F2B133.7 (5)H22A—C22—H22B109.5
F2A—C1—C2116.2 (5)C21—C22—H22C109.5
F1B—C1—C2110.5 (5)H22A—C22—H22C109.5
F3B—C1—C2112.7 (5)H22B—C22—H22C109.5
F3A—C1—C2108.6 (4)C24—C23—N1115.2 (5)
F1A—C1—C2111.9 (4)C24—C23—H23A108.5
F2B—C1—C2110.2 (5)N1—C23—H23A108.5
O1—C2—C3129.5 (5)C24—C23—H23B108.5
O1—C2—C1114.9 (5)N1—C23—H23B108.5
C3—C2—C1115.6 (5)H23A—C23—H23B107.5
C4—C3—C2123.0 (5)C23—C24—H24A109.5
C4—C3—H3118.5C23—C24—H24B109.5
C2—C3—H3118.5H24A—C24—H24B109.5
O2—C4—C3128.0 (5)C23—C24—H24C109.5
O2—C4—C5113.8 (5)H24A—C24—H24C109.5
C3—C4—C5118.1 (5)H24B—C24—H24C109.5
F4—C5—F5108.6 (5)N1—C25—C26112.8 (5)
F4—C5—F6105.9 (5)N1—C25—H25A109.0
F5—C5—F6106.0 (5)C26—C25—H25A109.0
F4—C5—C4111.4 (5)N1—C25—H25B109.0
F5—C5—C4113.5 (5)C26—C25—H25B109.0
F6—C5—C4111.1 (5)H25A—C25—H25B107.8
F9—C6—F8107.6 (4)N1—C27—C28113.9 (5)
F9—C6—F7107.0 (4)N1—C27—H27A108.8
F8—C6—F7106.8 (4)C28—C27—H27A108.8
F9—C6—C7114.1 (4)N1—C27—H27B108.8
F8—C6—C7111.1 (4)C28—C27—H27B108.8
F7—C6—C7109.8 (4)H27A—C27—H27B107.7
O3—C7—C8128.3 (5)C27—C28—H28A109.5
O3—C7—C6113.7 (5)C27—C28—H28B109.5
C8—C7—C6118.0 (5)H28A—C28—H28B109.5
C7—C8—C9121.7 (5)C27—C28—H28C109.5
C7—C8—H8119.2H28A—C28—H28C109.5
C9—C8—H8119.2H28B—C28—H28C109.5
O4—C9—C8128.1 (5)C25—C26—H26A109.5
O4—C9—C10114.2 (4)C25—C26—H26B109.5
C8—C9—C10117.6 (5)H26A—C26—H26B109.5
F10—C10—F12107.4 (5)C25—C26—H26C109.5
F10—C10—F11106.4 (5)H26A—C26—H26C109.5
F12—C10—F11106.8 (4)H26B—C26—H26C109.5
F10—C10—C9112.6 (4)C27—N1—C21112.4 (4)
F12—C10—C9114.2 (4)C27—N1—C25112.0 (4)
F11—C10—C9109.1 (5)C21—N1—C25104.8 (4)
F13—C11—F14108.5 (5)C27—N1—C23105.6 (4)
F13—C11—F15107.2 (5)C21—N1—C23111.3 (4)
F14—C11—F15105.3 (4)C25—N1—C23110.8 (4)
F13—C11—C12114.4 (5)C2—O1—Tb1130.7 (3)
F14—C11—C12111.3 (5)C4—O2—Tb1132.8 (3)
F15—C11—C12109.7 (5)C7—O3—Tb1134.0 (3)
O5—C12—C13129.0 (5)C9—O4—Tb1132.9 (3)
O5—C12—C11113.5 (4)C12—O5—Tb1132.2 (3)
C13—C12—C11117.5 (5)C14—O6—Tb1133.1 (3)
C12—C13—C14121.8 (5)C17—O7—Tb1131.8 (3)
C12—C13—H13119.1C19—O8—Tb1132.4 (3)
C14—C13—H13119.1O3—Tb1—O6141.84 (12)
O6—C14—C13128.3 (5)O3—Tb1—O280.42 (12)
O6—C14—C15114.4 (5)O6—Tb1—O2113.06 (12)
C13—C14—C15117.2 (5)O3—Tb1—O7116.42 (12)
F17—C15—F16108.3 (5)O6—Tb1—O777.57 (11)
F17—C15—F18106.0 (5)O2—Tb1—O7139.15 (12)
F16—C15—F18106.4 (5)O3—Tb1—O8143.35 (12)
F17—C15—C14113.2 (5)O6—Tb1—O873.15 (11)
F16—C15—C14112.2 (5)O2—Tb1—O872.40 (12)
F18—C15—C14110.3 (5)O7—Tb1—O873.80 (12)
F21—C16—F19108.1 (5)O3—Tb1—O474.01 (12)
F21—C16—F20106.6 (5)O6—Tb1—O475.75 (12)
F19—C16—F20105.3 (4)O2—Tb1—O474.53 (12)
F21—C16—C17114.3 (4)O7—Tb1—O4144.01 (11)
F19—C16—C17111.9 (4)O8—Tb1—O4119.80 (12)
F20—C16—C17110.1 (5)O3—Tb1—O575.68 (12)
O7—C17—C18128.9 (5)O6—Tb1—O574.41 (11)
O7—C17—C16113.6 (4)O2—Tb1—O5145.33 (12)
C18—C17—C16117.4 (5)O7—Tb1—O574.91 (12)
C19—C18—C17121.3 (5)O8—Tb1—O5138.75 (12)
C19—C18—H18119.4O4—Tb1—O574.97 (12)
C17—C18—H18119.4O3—Tb1—O169.99 (11)
O8—C19—C18129.2 (5)O6—Tb1—O1146.60 (12)
O8—C19—C20113.5 (4)O2—Tb1—O175.19 (12)
C18—C19—C20117.4 (5)O7—Tb1—O176.69 (12)
F23—C20—F22106.1 (4)O8—Tb1—O179.48 (11)
F23—C20—F24106.8 (4)O4—Tb1—O1135.94 (12)
F22—C20—F24107.3 (4)O5—Tb1—O1118.18 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···F50.952.342.718 (7)103
C8—H8···F90.952.372.737 (6)102
C8—H8···F120.952.392.743 (6)102
C13—H13···F130.952.362.726 (6)102
C13—H13···F20i0.952.513.430 (6)164
C18—H18···F210.952.352.713 (7)102
C18—H18···F230.952.392.731 (6)101
C21—H21A···F10ii0.992.473.279 (7)139
C26—H26C···F14iii0.982.493.451 (7)169
C27—H27B···F2Aiii0.992.483.371 (9)149
Symmetry codes: (i) x+2, y+1, z; (ii) x1/2, y+1/2, z+1/2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formula(C8H20N)[Tb(C5HF6O2)4]
Mr1117.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)12.7113 (9), 16.9355 (13), 18.3540 (11)
β (°) 94.657 (6)
V3)3938.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.96
Crystal size (mm)0.4 × 0.1 × 0.1
Data collection
DiffractometerAgilent SuperNova Dual Cu at zero Atlas
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.531, 0.820
No. of measured, independent and
observed [I > 2σ(I)] reflections
14178, 6876, 4772
Rint0.064
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.123, 0.98
No. of reflections6876
No. of parameters591
No. of restraints90
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.51, 1.24

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2008), PLATON (Spek, 2009).

Selected bond lengths (Å) top
Tb1—O12.373 (3)Tb1—O52.372 (3)
Tb1—O22.351 (4)Tb1—O62.351 (3)
Tb1—O32.345 (3)Tb1—O72.359 (4)
Tb1—O42.369 (4)Tb1—O82.365 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···F50.952.342.718 (7)103
C8—H8···F90.952.372.737 (6)102
C8—H8···F120.952.392.743 (6)102
C13—H13···F130.952.362.726 (6)102
C13—H13···F20i0.952.513.430 (6)164
C18—H18···F210.952.352.713 (7)102
C18—H18···F230.952.392.731 (6)101
C21—H21A···F10ii0.992.473.279 (7)139
C26—H26C···F14iii0.982.493.451 (7)169
C27—H27B···F2Aiii0.992.483.371 (9)149
Symmetry codes: (i) x+2, y+1, z; (ii) x1/2, y+1/2, z+1/2; (iii) x1, y, z.
 

Acknowledgements

This research was co-funded by Ghent University, GOA grant No. 01 G00710.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBinnemans, K. (2005). Rare-Earth Beta-Diketonates, in Handbook on the Physics and Chemistry of Rare Earths, Vol. 35, ch. 225, edited by K. A. Gschneidner Jr, J.-C. G. Bünzli & V. K. Pecharsky, pp. 107–272. Amsterdam: Elsevier.  Google Scholar
First citationBrandenburg, K. (2008). Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDanford, M. D., Burns, J. H., Higgins, C. E., Stokely, J. H. Jr & Baldwin, W. H. (1970). Inorg. Chem. 9, 1953–1955.  CSD CrossRef CAS Web of Science Google Scholar
First citationLenaerts, P., Driesen, K., Van Deun, R. & Binnemans, K. (2005). Chem. Mater. 17, 2148–2154.  Web of Science CrossRef CAS Google Scholar
First citationLunstroot, K., Nockemann, P., Van Hecke, K., Van Meervelt, L., Görller-Walrand, C., Binnemans, K. & Driesen, K. (2009). Inorg. Chem. 48, 3018–3026.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMech, A., Karbowiak, M., Görller-Walrand, C. & Van Deun, R. (2008). J. Alloys Compd, 451, 215–219.  Web of Science CrossRef CAS Google Scholar
First citationMehdi, H., Binnemans, K., Van Hecke, K., Van Meervelt, L. & Nockemann, P. (2010). Chem. Commun. 46, 234–236.  Web of Science CSD CrossRef CAS Google Scholar
First citationMelby, L. R., Rose, N. J., Abramson, E. & Caris, J. C. (1964). J. Am. Chem. Soc. 86, 5117–5125.  CrossRef CAS Web of Science Google Scholar
First citationNockemann, P., Beurer, E., Driesen, K., Van Deun, R., Van Hecke, K., Van Meervelt, L. & Binnemans, K. (2005). Chem. Commun. pp. 4354–4356.  Web of Science CSD CrossRef Google Scholar
First citationO'Riordan, A., O'Connor, E., Moynihan, S., Llinares, X., Van Deun, R., Fias, P., Nockemann, P., Binnemans, K. & Redmond, G. (2005). Thin Solid Films, 491, 264–269.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, S.-F. & Mudring, A.-V. (2009). Eur. J. Inorg. Chem. pp. 2769–2775.  Web of Science CSD CrossRef Google Scholar
First citationVan Deun, R., Moors, D., De Fré, B. & Binnemans, K. (2003). J. Mater. Chem. 13, 1520–1522.  Web of Science CrossRef CAS Google Scholar
First citationVan Deun, R., Nockemann, P., Parac-Vogt, T. N., Van Hecke, K., Van Meervelt, L., Görller-Walrand, C. & Binnemans, K. (2007). Polyhedron, 26, 5441–5447.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m111-m112
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds