organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,4-Di­methyl-2-(2-oxo-2-phenyl­eth­yl)-2H,4H-pyrazolo­[4,3-c][1,2]benzo­thia­zine-5,5-dione

aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, bChemistry Department, Govt. College University, Faisalabad, Pakistan, and cDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: drhamidlatif@yahoo.com

(Received 7 January 2012; accepted 18 January 2012; online 21 January 2012)

In the title mol­ecule, C19H17N3O3S, the heterocyclic thia­zine ring adopts a half-chair conformation with the S and N atoms displaced by 0.530 (5) and 0.229 (6) Å, respectively, on opposite sides of the mean plane formed by the remaining ring atoms. The ethanone group lies at an angle of 3.8 (3)° with respect to the benzene ring, which lies almost perendicular to the pyrazole ring, with a dihedral between the two planes of 89.22 (11)°. Weak inter­molecular C—H⋯O hydrogen-bonding inter­actions are present.

Related literature

For the biological activity of pyrazoles, see: Farag et al. (2008[Farag, A. M., Mayhoub, A. S., Barakatb, S. E. & Bayomi, A. H. (2008). Bioorg. Med. Chem. Lett. 16, 881-889.]); Ciciani et al. (2008[Ciciani, G., Coronnello, M., Guerrini, G., Selleri, S., Cantore, M., Failli, P., Mini, E. & Costanzo, A. (2008). Bioorg. Med. Chem. 16, 9409-9419.]); Cunico et al. (2006[Cunico, W., Cechinel, C. A., Bonacorso, H. G., Martins, M. A. P., Zanatta, N., Souza, M. V. N., Freitas, I. O., Soaresa, R. P. & Krettli, A. U. (2006). Bioorg. Med. Chem. 16, 649-653.]); Ahmad et al. (2010[Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698-704.]). For related structures, see: Siddiqui et al. (2008[Siddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4-o6.]).

[Scheme 1]

Experimental

Crystal data
  • C19H17N3O3S

  • Mr = 367.42

  • Monoclinic, C 2/c

  • a = 24.380 (6) Å

  • b = 11.141 (4) Å

  • c = 14.996 (5) Å

  • β = 120.76 (2)°

  • V = 3500.1 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 200 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.975, Tmax = 0.983

  • 12615 measured reflections

  • 3970 independent reflections

  • 2847 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.146

  • S = 1.15

  • 3970 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2i 0.95 2.43 3.246 (5) 144
C9—H9B⋯O1ii 0.98 2.46 3.413 (4) 163
C11—H11C⋯O1iii 0.98 2.44 3.406 (4) 168
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y, -z+{\script{1\over 2}}]; (iii) [x, -y+1, z+{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Both benzothiazines and pyrazoles are known as versatile biologically active heterocyclic nuclei. Pyrazoles are found to be cytotoxic agents (Ciciani et al., 2008), anti-tumor (Farag et al., 2008), anti-malarial (Cunico et al., 2006), etc. In continuation of our research interests in biologically active molecules (Ahmad et al., 2010), we have fused both of these heterocycles and herein report the synthesis and crystal structure of the title compound.

The bond distances and angles in the title molecule (Fig. 1) agree very well with the corresponding bond distances and angles reported in closely related compounds (Siddiqui et al., 2008). The heterocyclic thiazine ring adopts a half chair conformation with atoms S1 and N1 displaced by 0.530 (5) and 0.229 (6) Å, respectively, on opposite sides from the mean plane formed by the remaining ring atoms. The ethanone group O3/C12/C13/C14 is oriented at 3.8 (3) °, with the benzene ring (C14–C19) which lies almost perpendicular to the pyrazolyl ring (N2/N3/C7/C8/C10) with a dihedral between the two planes of 89.22 (11)°. The structure is devoid of classical hydrogen bonds. However, intermolecular hydrogen bonding interactions of C—H···O type are present (Table 1).

Related literature top

For the biological activity of pyrazoles, see: Farag et al. (2008); Ciciani et al. (2008); Cunico et al. (2006); Ahmad et al. (2010). For related structures, see: Siddiqui et al. (2008).

Experimental top

Equimolar quantities of 3,4-dimethyl-2,4-dihydropyrazolo[4,3-c][1,2] benzothiazine 5,5-dioxide (1.0 g, 4.01 mmol) and corresponding phenacyl bromide (0.80 g, 4.01 mmol) were dissolved in acetonitrile (20 ml) followed by the addition of equimolar K2CO3 (0.55 g, 4.01 mmol). The mixture was subjected to reflux for 7 h. The completion of reaction was monitored with the help of TLC. The precipitates of the title compound were collected and washed with methanol. The crystals suitable for X-ray crystallographic analysis were grown from a solution of CHCl3:MeOH in 1:1 ratio.

Refinement top

Though all the H atoms could be distinguished in the difference Fourier map, the H-atoms were included at geometrically idealized positions and refined in riding-model approximation with the following constraints: C—H = 0.95, 0.98 and 0.99 Å, for aryl, methyl and methylene H-atoms, respectively. The Uiso(H) were included at 1.5Ueq(C methyl) or 1.2Ueq(C non-methyl). The final difference map was essentially featureless.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with displacement ellipsoids plotted at the 30% probability level.
[Figure 2] Fig. 2. A part of the unit cell showing intermolecular hydrogen bonding interactions as dashed lines. H-atoms not involved in hydrogen bonding have been excluded for clarity.
3,4-Dimethyl-2-(2-oxo-2-phenylethyl)-2H,4H- pyrazolo[4,3-c][1,2]benzothiazine-5,5-dione top
Crystal data top
C19H17N3O3SF(000) = 1536
Mr = 367.42Dx = 1.394 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6235 reflections
a = 24.380 (6) Åθ = 1.0–27.5°
b = 11.141 (4) ŵ = 0.21 mm1
c = 14.996 (5) ÅT = 200 K
β = 120.76 (2)°Block, colorless
V = 3500.1 (19) Å30.12 × 0.10 × 0.08 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
3970 independent reflections
Radiation source: fine-focus sealed tube2847 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
ω and ϕ scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 3130
Tmin = 0.975, Tmax = 0.983k = 1414
12615 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.025P)2 + 10.0879P]
where P = (Fo2 + 2Fc2)/3
3970 reflections(Δ/σ)max < 0.001
237 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C19H17N3O3SV = 3500.1 (19) Å3
Mr = 367.42Z = 8
Monoclinic, C2/cMo Kα radiation
a = 24.380 (6) ŵ = 0.21 mm1
b = 11.141 (4) ÅT = 200 K
c = 14.996 (5) Å0.12 × 0.10 × 0.08 mm
β = 120.76 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3970 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
2847 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.983Rint = 0.073
12615 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.025P)2 + 10.0879P]
where P = (Fo2 + 2Fc2)/3
3970 reflectionsΔρmax = 0.27 e Å3
237 parametersΔρmin = 0.44 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.37478 (4)0.35736 (7)0.23368 (6)0.0377 (2)
O10.41198 (11)0.3575 (2)0.18465 (19)0.0511 (6)
O20.33464 (11)0.4586 (2)0.21844 (19)0.0470 (6)
O30.42366 (12)0.1146 (2)0.65556 (19)0.0555 (7)
N10.42423 (11)0.3433 (2)0.3603 (2)0.0348 (6)
N20.31406 (11)0.2240 (2)0.43305 (19)0.0333 (6)
N30.35687 (12)0.2864 (2)0.51876 (19)0.0337 (6)
C10.26868 (14)0.0818 (3)0.2346 (2)0.0356 (7)
H10.25510.04980.27880.043*
C20.24943 (16)0.0283 (3)0.1398 (3)0.0445 (8)
H20.22190.03940.11900.053*
C30.26953 (17)0.0715 (3)0.0750 (3)0.0496 (9)
H30.25630.03290.01060.059*
C40.30886 (17)0.1711 (3)0.1036 (3)0.0447 (8)
H40.32300.20100.05950.054*
C50.32727 (14)0.2264 (3)0.1974 (2)0.0347 (7)
C60.30809 (13)0.1828 (3)0.2652 (2)0.0311 (6)
C70.33508 (13)0.2388 (3)0.3667 (2)0.0304 (6)
C80.39001 (14)0.3110 (3)0.4110 (2)0.0320 (6)
C90.48457 (15)0.2765 (3)0.3945 (3)0.0445 (8)
H9A0.51200.28250.47010.067*
H9B0.50670.31090.36140.067*
H9C0.47480.19190.37470.067*
C100.40399 (14)0.3389 (3)0.5091 (2)0.0354 (7)
C110.45835 (17)0.4063 (3)0.5944 (3)0.0501 (9)
H11A0.48200.44790.56680.075*
H11B0.48690.35010.64870.075*
H11C0.44200.46510.62360.075*
C120.35231 (15)0.2791 (3)0.6109 (2)0.0365 (7)
H12A0.30710.26750.59070.044*
H12B0.36730.35550.64990.044*
C130.39244 (14)0.1753 (3)0.6804 (2)0.0351 (7)
C140.39025 (14)0.1515 (3)0.7764 (2)0.0345 (7)
C150.35436 (16)0.2220 (3)0.8039 (2)0.0432 (8)
H150.33200.28990.76320.052*
C160.35119 (18)0.1929 (4)0.8912 (3)0.0551 (10)
H160.32680.24140.91020.066*
C170.38329 (16)0.0941 (3)0.9503 (3)0.0442 (8)
H170.38020.07351.00910.053*
C180.41977 (15)0.0256 (3)0.9241 (2)0.0389 (7)
H180.44250.04170.96560.047*
C190.42368 (15)0.0537 (3)0.8375 (2)0.0378 (7)
H190.44920.00630.82000.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0417 (4)0.0377 (4)0.0452 (5)0.0021 (4)0.0305 (4)0.0067 (4)
O10.0548 (15)0.0607 (16)0.0576 (15)0.0012 (13)0.0430 (13)0.0104 (13)
O20.0550 (15)0.0386 (13)0.0570 (15)0.0097 (11)0.0356 (13)0.0128 (12)
O30.0629 (16)0.0654 (18)0.0503 (15)0.0271 (14)0.0377 (13)0.0125 (13)
N10.0318 (13)0.0371 (15)0.0427 (15)0.0028 (11)0.0243 (12)0.0012 (12)
N20.0305 (13)0.0380 (14)0.0324 (13)0.0011 (11)0.0169 (11)0.0020 (11)
N30.0353 (13)0.0373 (14)0.0313 (13)0.0017 (12)0.0190 (11)0.0019 (11)
C10.0288 (15)0.0397 (18)0.0354 (17)0.0004 (14)0.0144 (14)0.0027 (14)
C20.0388 (18)0.0427 (19)0.0447 (19)0.0034 (15)0.0160 (16)0.0040 (16)
C30.054 (2)0.053 (2)0.0355 (18)0.0026 (18)0.0183 (17)0.0076 (17)
C40.053 (2)0.050 (2)0.0370 (18)0.0111 (17)0.0275 (17)0.0050 (16)
C50.0332 (16)0.0378 (17)0.0358 (16)0.0070 (14)0.0196 (14)0.0080 (14)
C60.0265 (14)0.0351 (16)0.0311 (16)0.0044 (12)0.0143 (12)0.0051 (13)
C70.0276 (14)0.0348 (16)0.0315 (15)0.0022 (13)0.0171 (13)0.0034 (13)
C80.0322 (15)0.0333 (16)0.0350 (16)0.0010 (13)0.0204 (13)0.0001 (13)
C90.0341 (17)0.047 (2)0.059 (2)0.0022 (16)0.0292 (17)0.0043 (18)
C100.0341 (16)0.0352 (17)0.0391 (17)0.0011 (14)0.0203 (14)0.0011 (14)
C110.046 (2)0.054 (2)0.050 (2)0.0121 (18)0.0240 (18)0.0155 (18)
C120.0428 (17)0.0383 (17)0.0343 (16)0.0014 (15)0.0241 (15)0.0009 (14)
C130.0324 (15)0.0393 (17)0.0348 (16)0.0031 (14)0.0179 (14)0.0005 (14)
C140.0312 (15)0.0403 (17)0.0320 (16)0.0004 (14)0.0162 (13)0.0009 (14)
C150.0458 (19)0.050 (2)0.0403 (18)0.0174 (17)0.0265 (16)0.0124 (16)
C160.058 (2)0.070 (3)0.049 (2)0.025 (2)0.036 (2)0.015 (2)
C170.0404 (18)0.057 (2)0.0380 (18)0.0040 (17)0.0223 (16)0.0093 (17)
C180.0358 (16)0.0367 (17)0.0371 (17)0.0002 (14)0.0136 (14)0.0045 (14)
C190.0362 (17)0.0367 (18)0.0411 (18)0.0059 (14)0.0202 (15)0.0002 (14)
Geometric parameters (Å, º) top
S1—O11.430 (2)C8—C101.365 (4)
S1—O21.433 (2)C9—H9A0.9800
S1—N11.656 (3)C9—H9B0.9800
S1—C51.766 (3)C9—H9C0.9800
O3—C131.211 (4)C10—C111.490 (4)
N1—C81.432 (3)C11—H11A0.9800
N1—C91.486 (4)C11—H11B0.9800
N2—C71.342 (3)C11—H11C0.9800
N2—N31.361 (3)C12—C131.530 (4)
N3—C101.362 (4)C12—H12A0.9900
N3—C121.444 (4)C12—H12B0.9900
C1—C21.383 (4)C13—C141.491 (4)
C1—C61.396 (4)C14—C151.386 (4)
C1—H10.9500C14—C191.387 (4)
C2—C31.381 (5)C15—C161.388 (4)
C2—H20.9500C15—H150.9500
C3—C41.383 (5)C16—C171.378 (5)
C3—H30.9500C16—H160.9500
C4—C51.383 (4)C17—C181.374 (4)
C4—H40.9500C17—H170.9500
C5—C61.406 (4)C18—C191.386 (4)
C6—C71.454 (4)C18—H180.9500
C7—C81.404 (4)C19—H190.9500
O1—S1—O2118.56 (15)N1—C9—H9C109.5
O1—S1—N1107.98 (14)H9A—C9—H9C109.5
O2—S1—N1107.12 (14)H9B—C9—H9C109.5
O1—S1—C5109.31 (15)N3—C10—C8104.9 (3)
O2—S1—C5108.32 (14)N3—C10—C11123.6 (3)
N1—S1—C5104.67 (14)C8—C10—C11131.4 (3)
C8—N1—C9115.7 (3)C10—C11—H11A109.5
C8—N1—S1110.62 (19)C10—C11—H11B109.5
C9—N1—S1117.0 (2)H11A—C11—H11B109.5
C7—N2—N3103.8 (2)C10—C11—H11C109.5
N2—N3—C10113.6 (2)H11A—C11—H11C109.5
N2—N3—C12118.5 (2)H11B—C11—H11C109.5
C10—N3—C12127.5 (3)N3—C12—C13111.0 (2)
C2—C1—C6120.0 (3)N3—C12—H12A109.4
C2—C1—H1120.0C13—C12—H12A109.4
C6—C1—H1120.0N3—C12—H12B109.4
C3—C2—C1121.1 (3)C13—C12—H12B109.4
C3—C2—H2119.4H12A—C12—H12B108.0
C1—C2—H2119.4O3—C13—C14122.5 (3)
C2—C3—C4120.0 (3)O3—C13—C12119.7 (3)
C2—C3—H3120.0C14—C13—C12117.8 (3)
C4—C3—H3120.0C15—C14—C19119.7 (3)
C3—C4—C5119.1 (3)C15—C14—C13121.7 (3)
C3—C4—H4120.4C19—C14—C13118.6 (3)
C5—C4—H4120.4C14—C15—C16119.8 (3)
C4—C5—C6121.7 (3)C14—C15—H15120.1
C4—C5—S1120.1 (2)C16—C15—H15120.1
C6—C5—S1118.1 (2)C17—C16—C15120.4 (3)
C1—C6—C5117.9 (3)C17—C16—H16119.8
C1—C6—C7123.9 (3)C15—C16—H16119.8
C5—C6—C7118.0 (3)C18—C17—C16119.8 (3)
N2—C7—C8110.7 (3)C18—C17—H17120.1
N2—C7—C6125.7 (3)C16—C17—H17120.1
C8—C7—C6123.5 (3)C17—C18—C19120.5 (3)
C10—C8—C7107.0 (3)C17—C18—H18119.8
C10—C8—N1128.5 (3)C19—C18—H18119.8
C7—C8—N1124.5 (3)C18—C19—C14119.8 (3)
N1—C9—H9A109.5C18—C19—H19120.1
N1—C9—H9B109.5C14—C19—H19120.1
H9A—C9—H9B109.5
O1—S1—N1—C8164.8 (2)C6—C7—C8—C10174.9 (3)
O2—S1—N1—C866.5 (2)N2—C7—C8—N1179.7 (3)
C5—S1—N1—C848.4 (2)C6—C7—C8—N13.3 (5)
O1—S1—N1—C929.4 (3)C9—N1—C8—C1074.8 (4)
O2—S1—N1—C9158.1 (2)S1—N1—C8—C10149.2 (3)
C5—S1—N1—C987.0 (2)C9—N1—C8—C7103.0 (4)
C7—N2—N3—C100.4 (3)S1—N1—C8—C733.0 (4)
C7—N2—N3—C12173.6 (3)N2—N3—C10—C81.3 (3)
C6—C1—C2—C31.3 (5)C12—N3—C10—C8173.8 (3)
C1—C2—C3—C40.9 (5)N2—N3—C10—C11176.5 (3)
C2—C3—C4—C50.3 (5)C12—N3—C10—C114.0 (5)
C3—C4—C5—C61.3 (5)C7—C8—C10—N31.6 (3)
C3—C4—C5—S1177.4 (3)N1—C8—C10—N3179.7 (3)
O1—S1—C5—C427.1 (3)C7—C8—C10—C11176.0 (3)
O2—S1—C5—C4103.5 (3)N1—C8—C10—C112.2 (6)
N1—S1—C5—C4142.5 (3)N2—N3—C12—C1390.0 (3)
O1—S1—C5—C6154.2 (2)C10—N3—C12—C1382.2 (4)
O2—S1—C5—C675.3 (3)N3—C12—C13—O31.9 (4)
N1—S1—C5—C638.8 (3)N3—C12—C13—C14176.9 (3)
C2—C1—C6—C50.3 (4)O3—C13—C14—C15179.8 (3)
C2—C1—C6—C7174.6 (3)C12—C13—C14—C151.4 (5)
C4—C5—C6—C10.9 (4)O3—C13—C14—C192.1 (5)
S1—C5—C6—C1177.8 (2)C12—C13—C14—C19176.6 (3)
C4—C5—C6—C7173.6 (3)C19—C14—C15—C161.2 (5)
S1—C5—C6—C77.7 (4)C13—C14—C15—C16176.8 (3)
N3—N2—C7—C80.7 (3)C14—C15—C16—C170.3 (6)
N3—N2—C7—C6175.7 (3)C15—C16—C17—C181.4 (6)
C1—C6—C7—N218.5 (5)C16—C17—C18—C191.1 (5)
C5—C6—C7—N2167.3 (3)C17—C18—C19—C140.4 (5)
C1—C6—C7—C8157.4 (3)C15—C14—C19—C181.5 (5)
C5—C6—C7—C816.8 (4)C13—C14—C19—C18176.6 (3)
N2—C7—C8—C101.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.952.433.246 (5)144
C9—H9B···O1ii0.982.463.413 (4)163
C11—H11C···O1iii0.982.443.406 (4)168
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y, z+1/2; (iii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H17N3O3S
Mr367.42
Crystal system, space groupMonoclinic, C2/c
Temperature (K)200
a, b, c (Å)24.380 (6), 11.141 (4), 14.996 (5)
β (°) 120.76 (2)
V3)3500.1 (19)
Z8
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.975, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
12615, 3970, 2847
Rint0.073
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.146, 1.15
No. of reflections3970
No. of parameters237
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.025P)2 + 10.0879P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.27, 0.44

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.952.433.246 (5)144
C9—H9B···O1ii0.982.463.413 (4)162.8
C11—H11C···O1iii0.982.443.406 (4)167.9
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1, y, z+1/2; (iii) x, y+1, z+1/2.
 

Acknowledgements

The authors are grateful to the Higher Education Commission, Pakistan, and the Institute of Chemistry, University of the Punjab, Lahore, Pakistan, for financial support.

References

First citationAhmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698–704.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCiciani, G., Coronnello, M., Guerrini, G., Selleri, S., Cantore, M., Failli, P., Mini, E. & Costanzo, A. (2008). Bioorg. Med. Chem. 16, 9409–9419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCunico, W., Cechinel, C. A., Bonacorso, H. G., Martins, M. A. P., Zanatta, N., Souza, M. V. N., Freitas, I. O., Soaresa, R. P. & Krettli, A. U. (2006). Bioorg. Med. Chem. 16, 649–653.  CrossRef CAS Google Scholar
First citationFarag, A. M., Mayhoub, A. S., Barakatb, S. E. & Bayomi, A. H. (2008). Bioorg. Med. Chem. Lett. 16, 881–889.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4–o6.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds