organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o516-o517

(E)-5-(2-Chloro­phen­yl)-7-ethyl-2-oxo-2,3-di­hydro-1H-thieno[2,3-e][1,4]diazepin-4-ium 2,4,6-tri­nitro­phenolate

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa, bUniversity of Mysore, Department of Studies in Chemistry, Manasagangotri, Mysore 570 006, India, and cR. L. Fine Chem., Bangalore 560 064, India
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 10 January 2012; accepted 20 January 2012; online 25 January 2012)

In the title molecular salt, C15H14ClN2OS+·C6H2N3O7, protonation occurred on the double-bonded N atom. One of the nitro groups shows slight disorder over two orientations, with an occupancy ratio of 0.91:0.09. In the crystal, classical N—H⋯O hydrogen bonds, as well as C—H⋯O contacts connect the components into a three-dimensional network. The seven-membered ring adopts a boat-like conformation. The least-squares plane defined by its non-H atoms encloses an angle of 38.99 (6)° with the benzene ring bonded to it.

Related literature

For pharmaceutical background to benzodiazepines, see: Robol et al. (1996[Robol, J. A., Cimarusti, M. P., Simpkins, L. M., Brown, B., Ryono, D. E., Bird, M. M., Asad, T. R., Schaeffer, N. C. & Trippodo, N. C. (1996). J. Med. Chem. 39, 494-502.]); Evans et al. (2001[Evans, B., Pipe, A., Clarke, L. & Banks, M. (2001). Bioorg. Med. Chem. Lett. 11, 1297-1300.]). For related structures, see: Scammells et al. (2001[Scammells, P. J., Tranberg, C. E. & Tiekink, E. R. T. (2001). Acta Cryst. E57, o344-o345.]); Jasinski et al. (2010[Jasinski, J. P., Butcher, R. J., Yathirajan, H. S., Narayana, B. & Prakash Kamath, K. (2010). Acta Cryst. E66, o1187-o1188.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14ClN2OS+·C6H2N3O7

  • Mr = 533.90

  • Monoclinic, P 21 /c

  • a = 10.5704 (2) Å

  • b = 20.0667 (5) Å

  • c = 11.3741 (2) Å

  • β = 110.666 (1)°

  • V = 2257.35 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 200 K

  • 0.59 × 0.49 × 0.36 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.]). Tmin = 0.807, Tmax = 0.892

  • 21254 measured reflections

  • 5607 independent reflections

  • 5073 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.081

  • S = 1.05

  • 5607 reflections

  • 343 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H71⋯O31 0.870 (19) 1.865 (19) 2.6847 (13) 156.3 (17)
N2—H72⋯O31i 0.836 (18) 2.047 (18) 2.8331 (13) 156.4 (16)
N2—H72⋯O362i 0.836 (18) 2.400 (17) 2.9495 (16) 123.9 (14)
C2—H2A⋯O321 0.99 2.49 3.2465 (16) 133
C2—H2B⋯O342ii 0.99 2.48 3.2505 (17) 134
C23—H23⋯O321iii 0.95 2.51 3.4193 (18) 161
Symmetry codes: (i) -x+1, -y, -z; (ii) x-1, y, z-1; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Five-atom heterocyclic fused benzodiazepine ring systems occupy a prominent place among drugs for treatment of central nervous system (CNS) disorders (Robol et al., 1996; Evans et al., 2001). The crystal structures of 6,7-dimethyl-5-phenyl-1H-thieno[2,3-e][1,4]diazepin-2(3H) -one (Scammells et al., 2001) and 5,7-dimethyl-2,3-dihydro-1H-1,4- diazepin-4-ium picrate (Jasinski et al., 2010) have been reported. In view of the importance of heterocyclic fused diazepine ring systems, the paper reports the crystal structure of the title compound.

The title compound is the picrate salt of (E)-5-(2-chlorophenyl)-7- ethyl-1H-thieno[2,3-e][1,4]diazepin-2(3H)-one. Due to involvement of the free electron pair on the – formally – sp3 hybridized nitrogen atom in amide-type resonance, protonation occurred on the double-bonded nitrogen atom. According to a puckering analysis (Cremer & Pople, 1975), the seven-membered heterocycle adopts a boat-like conformation (Q2: 0.7754 (12) Å, Q3: 0.2281 (12) Å, ϕ2: 262.69 (9)°, ϕ3: 207.4 (3)°) (Fig. 1).

In the crystal structure, classical hydrogen bonds of the N–H···O type as well as C–H···O contacts whose range falls by more than 0.2 Å below the sum of van-der-Waals radii of the corresponding atoms are apparent. While the classical hydrogen bonds are supported by both nitrogen-bound H atoms and have the phenolic as well as nitrogen-bound oxygen atoms as acceptor, the C–H···O contacts exclusively apply the latter type of oxygen atoms as acceptors. The C–H···O contacts stem from both hydrogen atoms of the intracyclic methylene group as well as the hydrogen atom in ortho position to the chlorine atom. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the classical hydrogen bonds is DDD on the unitary level (due to bifurcation of one of the classical hydrogen bonds). The same descriptor is necessary to describe the C–H···O contacts on the identical level. Metrical information about the contacts is summarized in Table 1. In total, the entities of the title compound are connected to a three-dimensional network. The shortest intercentroid distance between two aromatic systems was measured at 4.8063 (7) Å and is apparent between the thiophene moieties of two neighbouring molecules. (Fig. 2).

Related literature top

For pharmaceutical background to benzodiazepines, see: Robol et al. (1996); Evans et al. (2001). For related structures, see: Scammells et al. (2001); Jasinski et al. (2010). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). For puckering analysis, see: Cremer & Pople (1975).

Experimental top

(E)-5-(2-Chlorophenyl)-7-ethyl-1H-thieno[2,3-e] [1,4]diazepin-2(3H)-one was obtained as a gift sample from R. L. Fine Chem., Bengaluru, India. (E)-5-(2-Chlorophenyl)-7-ethyl-1H-thieno [2,3-e][1,4]diazepin-2(3H)-one (3.04 g, 0.01 mol) was dissolved in 10 ml of methanol and picric acid (2.29 g, 0.01 mol) was also dissolved in 10 ml of methanol. Both solutions were mixed and stirred in a beaker at 333 K for 30 minutes. The mixture was kept aside for a day at room temperature. The salt formed was filtered and dried in a vaccum desiccator over phosphorous pentoxide. The compound was recrystallized from a mixture (v:v = 1:1) of DMSO and ethanol by slow evaporation (m.p: 518 K).

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å for aromatic carbon atoms, C—H 0.99 Å for methylene groups) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atoms of the methyl group were allowed to rotate with a fixed angle around the C—C bond (C—H 0.98 Å) to best fit the experimental electron density (HFIX 137 in the SHELX program suite (Sheldrick, 2008), with U(H) set to 1.5Ueq(C). Both nitrogen-bound H atoms were located on a difference Fourier map and refined freely.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with anisotropic displacement ellipsoids (drawn at 50% probability level). For clarity, only the major component of the disordered nitro group is depicted.
[Figure 2] Fig. 2. Intermolecular contacts, viewed approximately along [-1 -1 -1]. For clarity, only selected intermolecular contacts are depicted. Blue dashed lines show classical hydrogen bonds of the N–H···O type, green dashed lines C–H···O contacts. Symmetry operator: i -x + 1, -y, -z. Only the major component of the disordered nitro group is depicted.
(E)-5-(2-Chlorophenyl)-7-ethyl-2-oxo-2,3-dihydro-1H- thieno[2,3-e][1,4]diazepin-4-ium 2,4,6-trinitrophenolate top
Crystal data top
C15H14ClN2OS+·C6H2N3O7F(000) = 1096
Mr = 533.90Dx = 1.571 Mg m3
Monoclinic, P21/cMelting point: 518 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.5704 (2) ÅCell parameters from 9909 reflections
b = 20.0667 (5) Åθ = 2.9–28.3°
c = 11.3741 (2) ŵ = 0.32 mm1
β = 110.666 (1)°T = 200 K
V = 2257.35 (8) Å3Block, brown
Z = 40.59 × 0.49 × 0.36 mm
Data collection top
Bruker APEXII CCD
diffractometer
5607 independent reflections
Radiation source: fine-focus sealed tube5073 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ϕ and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008).
h = 1314
Tmin = 0.807, Tmax = 0.892k = 2626
21254 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0349P)2 + 1.1718P]
where P = (Fo2 + 2Fc2)/3
5607 reflections(Δ/σ)max < 0.001
343 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C15H14ClN2OS+·C6H2N3O7V = 2257.35 (8) Å3
Mr = 533.90Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.5704 (2) ŵ = 0.32 mm1
b = 20.0667 (5) ÅT = 200 K
c = 11.3741 (2) Å0.59 × 0.49 × 0.36 mm
β = 110.666 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5607 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008).
5073 reflections with I > 2σ(I)
Tmin = 0.807, Tmax = 0.892Rint = 0.013
21254 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.38 e Å3
5607 reflectionsΔρmin = 0.24 e Å3
343 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.57956 (3)0.230591 (16)0.27567 (3)0.03062 (8)
S10.08122 (3)0.038903 (15)0.15866 (3)0.02327 (8)
O10.53537 (10)0.04170 (5)0.16774 (10)0.0361 (2)
O310.75141 (9)0.09665 (4)0.21426 (8)0.02763 (19)
O3210.75835 (10)0.21026 (6)0.09075 (9)0.0377 (2)
O3220.96274 (13)0.23796 (7)0.11380 (11)0.0495 (3)
O3411.27262 (12)0.24856 (6)0.54001 (12)0.0505 (3)
O3421.25204 (13)0.17919 (7)0.67751 (12)0.0607 (4)
N360.84539 (12)0.04459 (6)0.46335 (11)0.0328 (3)
O3610.8483 (2)0.04566 (12)0.57264 (12)0.0591 (7)0.913 (5)
O3620.79227 (19)0.00036 (7)0.39045 (12)0.0432 (5)0.913 (5)
O3630.8925 (12)0.0218 (6)0.5586 (12)0.023 (3)*0.087 (5)
O3640.7289 (16)0.0258 (8)0.3784 (12)0.037 (4)*0.087 (5)
N10.49406 (10)0.12534 (5)0.07439 (9)0.01965 (19)
H710.5767 (19)0.1274 (9)0.1273 (17)0.040 (5)*
N20.34466 (10)0.03182 (5)0.12197 (9)0.0216 (2)
H720.3224 (17)0.0023 (9)0.1669 (16)0.033 (4)*
N320.87981 (11)0.21070 (6)0.15093 (10)0.0277 (2)
N341.21470 (12)0.20290 (6)0.57125 (12)0.0375 (3)
C10.45809 (12)0.06515 (6)0.12171 (11)0.0229 (2)
C20.47774 (12)0.13264 (6)0.05765 (11)0.0228 (2)
H2A0.55880.15450.06450.027*
H2B0.39850.16130.10020.027*
C30.39456 (11)0.11469 (5)0.11481 (10)0.0186 (2)
C40.11953 (12)0.08838 (7)0.07592 (13)0.0272 (3)
H4A0.13300.10150.00280.033*
H4B0.16270.04440.10170.033*
C50.18803 (14)0.13922 (8)0.17752 (15)0.0399 (3)
H5A0.15020.18350.14980.060*
H5B0.28540.13970.19330.060*
H5C0.17270.12730.25490.060*
C110.24806 (11)0.05778 (6)0.07911 (10)0.0194 (2)
C120.26416 (11)0.09611 (6)0.02726 (10)0.0198 (2)
C130.13619 (12)0.10916 (6)0.04104 (11)0.0230 (2)
H130.12770.13420.10880.028*
C140.02920 (12)0.08249 (6)0.05130 (11)0.0232 (2)
C210.42065 (11)0.11893 (6)0.25106 (11)0.0210 (2)
C220.50465 (12)0.16687 (6)0.33080 (11)0.0243 (2)
C230.52897 (15)0.16634 (8)0.45900 (13)0.0368 (3)
H230.58590.19920.51190.044*
C240.47029 (17)0.11802 (9)0.50923 (13)0.0428 (4)
H240.48780.11740.59710.051*
C250.38611 (16)0.07037 (8)0.43273 (14)0.0377 (3)
H250.34560.03730.46780.045*
C260.36134 (13)0.07120 (7)0.30489 (12)0.0283 (3)
H260.30280.03870.25260.034*
C310.85448 (11)0.12197 (6)0.29523 (11)0.0208 (2)
C320.92952 (12)0.17741 (6)0.27217 (11)0.0225 (2)
C331.04736 (12)0.20209 (6)0.35838 (12)0.0256 (2)
H331.09530.23710.33630.031*
C341.09452 (12)0.17498 (6)0.47757 (12)0.0267 (3)
C351.02603 (13)0.12448 (6)0.51186 (12)0.0280 (3)
H351.05690.10800.59550.034*
C360.91220 (12)0.09847 (6)0.42255 (11)0.0244 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.03397 (16)0.02676 (15)0.03248 (16)0.01114 (12)0.01341 (13)0.00916 (11)
S10.01661 (13)0.02786 (15)0.02118 (14)0.00278 (10)0.00153 (10)0.00509 (10)
O10.0307 (5)0.0438 (6)0.0402 (5)0.0040 (4)0.0204 (4)0.0127 (4)
O310.0212 (4)0.0225 (4)0.0289 (4)0.0008 (3)0.0038 (3)0.0028 (3)
O3210.0293 (5)0.0464 (6)0.0305 (5)0.0064 (4)0.0020 (4)0.0102 (4)
O3220.0465 (6)0.0593 (7)0.0426 (6)0.0143 (6)0.0155 (5)0.0147 (5)
O3410.0336 (6)0.0361 (6)0.0629 (8)0.0136 (5)0.0065 (5)0.0026 (5)
O3420.0493 (7)0.0693 (9)0.0367 (6)0.0165 (6)0.0183 (5)0.0039 (6)
N360.0317 (6)0.0376 (6)0.0242 (5)0.0089 (5)0.0037 (4)0.0028 (5)
O3610.0699 (12)0.0805 (14)0.0235 (6)0.0390 (11)0.0124 (6)0.0028 (7)
O3620.0621 (11)0.0307 (7)0.0354 (6)0.0185 (7)0.0154 (6)0.0032 (5)
N10.0162 (4)0.0225 (5)0.0180 (4)0.0010 (4)0.0032 (4)0.0027 (3)
N20.0201 (5)0.0224 (5)0.0212 (5)0.0016 (4)0.0061 (4)0.0056 (4)
N320.0303 (5)0.0265 (5)0.0250 (5)0.0003 (4)0.0082 (4)0.0009 (4)
N340.0264 (6)0.0322 (6)0.0397 (7)0.0035 (5)0.0060 (5)0.0066 (5)
C10.0205 (5)0.0290 (6)0.0179 (5)0.0004 (4)0.0052 (4)0.0012 (4)
C20.0228 (5)0.0253 (5)0.0201 (5)0.0040 (4)0.0074 (4)0.0002 (4)
C30.0166 (5)0.0174 (5)0.0194 (5)0.0000 (4)0.0035 (4)0.0028 (4)
C40.0158 (5)0.0295 (6)0.0344 (6)0.0011 (4)0.0065 (5)0.0028 (5)
C50.0244 (6)0.0466 (8)0.0456 (8)0.0098 (6)0.0083 (6)0.0099 (7)
C110.0168 (5)0.0203 (5)0.0185 (5)0.0011 (4)0.0030 (4)0.0006 (4)
C120.0163 (5)0.0213 (5)0.0199 (5)0.0009 (4)0.0041 (4)0.0025 (4)
C130.0186 (5)0.0248 (5)0.0247 (5)0.0001 (4)0.0066 (4)0.0043 (4)
C140.0177 (5)0.0242 (5)0.0263 (6)0.0001 (4)0.0059 (4)0.0011 (4)
C210.0184 (5)0.0240 (5)0.0195 (5)0.0013 (4)0.0052 (4)0.0040 (4)
C220.0218 (5)0.0271 (6)0.0237 (6)0.0050 (4)0.0077 (4)0.0051 (4)
C230.0376 (7)0.0466 (8)0.0237 (6)0.0133 (6)0.0077 (5)0.0128 (6)
C240.0486 (9)0.0593 (10)0.0206 (6)0.0123 (8)0.0125 (6)0.0044 (6)
C250.0406 (8)0.0459 (8)0.0302 (7)0.0110 (6)0.0168 (6)0.0014 (6)
C260.0278 (6)0.0305 (6)0.0267 (6)0.0073 (5)0.0099 (5)0.0036 (5)
C310.0171 (5)0.0210 (5)0.0218 (5)0.0022 (4)0.0037 (4)0.0029 (4)
C320.0212 (5)0.0226 (5)0.0215 (5)0.0022 (4)0.0049 (4)0.0002 (4)
C330.0204 (5)0.0226 (5)0.0317 (6)0.0009 (4)0.0065 (5)0.0029 (5)
C340.0185 (5)0.0257 (6)0.0283 (6)0.0011 (4)0.0014 (5)0.0056 (5)
C350.0260 (6)0.0291 (6)0.0223 (5)0.0002 (5)0.0005 (5)0.0009 (5)
C360.0227 (5)0.0246 (6)0.0231 (5)0.0023 (4)0.0044 (5)0.0004 (4)
Geometric parameters (Å, º) top
Cl1—C221.7337 (13)C4—C51.5199 (19)
S1—C111.7164 (11)C4—H4A0.9900
S1—C141.7415 (12)C4—H4B0.9900
O1—C11.2102 (15)C5—H5A0.9800
O31—C311.2590 (14)C5—H5B0.9800
O321—N321.2234 (15)C5—H5C0.9800
O322—N321.2277 (15)C11—C121.3925 (15)
O341—N341.2222 (18)C12—C131.4396 (15)
O342—N341.2273 (18)C13—C141.3528 (16)
N36—O3631.118 (12)C13—H130.9500
N36—O3621.2196 (16)C21—C261.3985 (17)
N36—O3611.2330 (19)C21—C221.4029 (16)
N36—O3641.323 (14)C22—C231.3885 (18)
N36—C361.4542 (16)C23—C241.379 (2)
N1—C31.3056 (15)C23—H230.9500
N1—C21.4574 (15)C24—C251.384 (2)
N1—H710.870 (19)C24—H240.9500
N2—C11.3720 (15)C25—C261.3836 (18)
N2—C111.3795 (15)C25—H250.9500
N2—H720.836 (18)C26—H260.9500
N32—C321.4534 (15)C31—C361.4380 (16)
N34—C341.4519 (15)C31—C321.4431 (16)
C1—C21.5170 (17)C32—C331.3771 (16)
C2—H2A0.9900C33—C341.3803 (18)
C2—H2B0.9900C33—H330.9500
C3—C121.4358 (15)C34—C351.3793 (18)
C3—C211.4776 (15)C35—C361.3745 (17)
C4—C141.5011 (16)C35—H350.9500
C11—S1—C1492.26 (5)C12—C11—S1111.57 (8)
O363—N36—O362107.3 (6)C11—C12—C3122.62 (10)
O362—N36—O361122.68 (13)C11—C12—C13111.32 (10)
O363—N36—O364124.9 (9)C3—C12—C13125.89 (10)
O361—N36—O364115.2 (6)C14—C13—C12113.81 (10)
O363—N36—C36120.9 (6)C14—C13—H13123.1
O362—N36—C36119.46 (11)C12—C13—H13123.1
O361—N36—C36117.83 (12)C13—C14—C4130.33 (11)
O364—N36—C36114.2 (6)C13—C14—S1111.02 (9)
C3—N1—C2124.21 (10)C4—C14—S1118.55 (9)
C3—N1—H71120.1 (12)C26—C21—C22117.76 (11)
C2—N1—H71115.7 (12)C26—C21—C3118.24 (10)
C1—N2—C11124.78 (10)C22—C21—C3123.97 (11)
C1—N2—H72117.2 (11)C23—C22—C21120.93 (12)
C11—N2—H72116.2 (11)C23—C22—Cl1116.52 (10)
O321—N32—O322123.13 (12)C21—C22—Cl1122.52 (9)
O321—N32—C32118.95 (11)C24—C23—C22119.79 (13)
O322—N32—C32117.92 (11)C24—C23—H23120.1
O341—N34—O342123.85 (12)C22—C23—H23120.1
O341—N34—C34118.31 (12)C23—C24—C25120.57 (13)
O342—N34—C34117.84 (13)C23—C24—H24119.7
O1—C1—N2122.16 (12)C25—C24—H24119.7
O1—C1—C2123.78 (11)C26—C25—C24119.56 (13)
N2—C1—C2114.05 (10)C26—C25—H25120.2
N1—C2—C1110.59 (10)C24—C25—H25120.2
N1—C2—H2A109.5C25—C26—C21121.37 (12)
C1—C2—H2A109.5C25—C26—H26119.3
N1—C2—H2B109.5C21—C26—H26119.3
C1—C2—H2B109.5O31—C31—C36123.67 (11)
H2A—C2—H2B108.1O31—C31—C32124.57 (11)
N1—C3—C12119.59 (10)C36—C31—C32111.76 (10)
N1—C3—C21118.98 (10)C33—C32—C31124.39 (11)
C12—C3—C21121.36 (10)C33—C32—N32116.33 (11)
C14—C4—C5112.41 (11)C31—C32—N32119.27 (10)
C14—C4—H4A109.1C32—C33—C34118.69 (12)
C5—C4—H4A109.1C32—C33—H33120.7
C14—C4—H4B109.1C34—C33—H33120.7
C5—C4—H4B109.1C35—C34—C33121.57 (11)
H4A—C4—H4B107.9C35—C34—N34119.12 (12)
C4—C5—H5A109.5C33—C34—N34119.21 (12)
C4—C5—H5B109.5C36—C35—C34118.68 (12)
H5A—C5—H5B109.5C36—C35—H35120.7
C4—C5—H5C109.5C34—C35—H35120.7
H5A—C5—H5C109.5C35—C36—C31124.71 (11)
H5B—C5—H5C109.5C35—C36—N36116.33 (11)
N2—C11—C12129.56 (10)C31—C36—N36118.94 (10)
N2—C11—S1118.77 (8)
C11—N2—C1—O1175.18 (12)C22—C23—C24—C250.7 (3)
C11—N2—C1—C25.61 (16)C23—C24—C25—C260.3 (3)
C3—N1—C2—C177.66 (14)C24—C25—C26—C210.6 (2)
O1—C1—C2—N1117.45 (13)C22—C21—C26—C251.1 (2)
N2—C1—C2—N161.75 (13)C3—C21—C26—C25177.14 (13)
C2—N1—C3—C1212.62 (17)O31—C31—C32—C33175.40 (12)
C2—N1—C3—C21170.29 (10)C36—C31—C32—C334.22 (17)
C1—N2—C11—C1241.65 (19)O31—C31—C32—N324.86 (18)
C1—N2—C11—S1142.17 (10)C36—C31—C32—N32175.52 (10)
C14—S1—C11—N2177.15 (10)O321—N32—C32—C33152.12 (12)
C14—S1—C11—C120.32 (9)O322—N32—C32—C3328.00 (17)
N2—C11—C12—C30.8 (2)O321—N32—C32—C3127.64 (17)
S1—C11—C12—C3175.59 (9)O322—N32—C32—C31152.24 (12)
N2—C11—C12—C13176.29 (12)C31—C32—C33—C343.70 (19)
S1—C11—C12—C130.10 (13)N32—C32—C33—C34176.05 (11)
N1—C3—C12—C1132.88 (17)C32—C33—C34—C350.45 (19)
C21—C3—C12—C11144.13 (12)C32—C33—C34—N34176.78 (12)
N1—C3—C12—C13152.30 (12)O341—N34—C34—C35178.51 (13)
C21—C3—C12—C1330.68 (18)O342—N34—C34—C351.4 (2)
C11—C12—C13—C140.65 (15)O341—N34—C34—C332.1 (2)
C3—C12—C13—C14175.96 (11)O342—N34—C34—C33177.82 (14)
C12—C13—C14—C4175.42 (12)C33—C34—C35—C363.5 (2)
C12—C13—C14—S10.88 (14)N34—C34—C35—C36179.86 (12)
C5—C4—C14—C1399.93 (17)C34—C35—C36—C312.8 (2)
C5—C4—C14—S176.14 (14)C34—C35—C36—N36178.98 (12)
C11—S1—C14—C130.69 (10)O31—C31—C36—C35178.71 (12)
C11—S1—C14—C4176.10 (10)C32—C31—C36—C350.92 (17)
N1—C3—C21—C26138.62 (12)O31—C31—C36—N363.08 (18)
C12—C3—C21—C2638.41 (16)C32—C31—C36—N36177.29 (11)
N1—C3—C21—C2239.47 (17)O363—N36—C36—C357.5 (9)
C12—C3—C21—C22143.50 (12)O362—N36—C36—C35144.83 (16)
C26—C21—C22—C230.68 (19)O361—N36—C36—C3533.3 (2)
C3—C21—C22—C23177.42 (12)O364—N36—C36—C35173.3 (8)
C26—C21—C22—Cl1177.61 (10)O363—N36—C36—C31174.1 (8)
C3—C21—C22—Cl14.29 (17)O362—N36—C36—C3136.8 (2)
C21—C22—C23—C240.2 (2)O361—N36—C36—C31145.06 (19)
Cl1—C22—C23—C24178.56 (13)O364—N36—C36—C315.1 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H71···O310.870 (19)1.865 (19)2.6847 (13)156.3 (17)
N2—H72···O31i0.836 (18)2.047 (18)2.8331 (13)156.4 (16)
N2—H72···O362i0.836 (18)2.400 (17)2.9495 (16)123.9 (14)
C2—H2A···O3210.992.493.2465 (16)133
C2—H2B···O342ii0.992.483.2505 (17)134
C23—H23···O321iii0.952.513.4193 (18)161
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z1; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H14ClN2OS+·C6H2N3O7
Mr533.90
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)10.5704 (2), 20.0667 (5), 11.3741 (2)
β (°) 110.666 (1)
V3)2257.35 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.59 × 0.49 × 0.36
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008).
Tmin, Tmax0.807, 0.892
No. of measured, independent and
observed [I > 2σ(I)] reflections
21254, 5607, 5073
Rint0.013
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.081, 1.05
No. of reflections5607
No. of parameters343
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.24

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H71···O310.870 (19)1.865 (19)2.6847 (13)156.3 (17)
N2—H72···O31i0.836 (18)2.047 (18)2.8331 (13)156.4 (16)
N2—H72···O362i0.836 (18)2.400 (17)2.9495 (16)123.9 (14)
C2—H2A···O3210.992.493.2465 (16)133.2
C2—H2B···O342ii0.992.483.2505 (17)134.3
C23—H23···O321iii0.952.513.4193 (18)161.4
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z1; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

ASD thanks the University of Mysore for research facilities. HSY thanks R. L. Fine Chem., Bengaluru, for the gift sample.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEvans, B., Pipe, A., Clarke, L. & Banks, M. (2001). Bioorg. Med. Chem. Lett. 11, 1297–1300.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Yathirajan, H. S., Narayana, B. & Prakash Kamath, K. (2010). Acta Cryst. E66, o1187–o1188.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRobol, J. A., Cimarusti, M. P., Simpkins, L. M., Brown, B., Ryono, D. E., Bird, M. M., Asad, T. R., Schaeffer, N. C. & Trippodo, N. C. (1996). J. Med. Chem. 39, 494–502.  CrossRef PubMed Web of Science Google Scholar
First citationScammells, P. J., Tranberg, C. E. & Tiekink, E. R. T. (2001). Acta Cryst. E57, o344–o345.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o516-o517
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds