organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o382-o383

Ethyl (1R,1′S,2′S,7a'R)-2-oxo-1′-[(3aR,5R,5aS,8aS,8bR)-2,2,7,7-tetra­methyl­tetra­hydro-3aH-bis­­[1,3]dioxolo[4,5-b:4′,5′-d]pyran-5-yl]-1′,2′,5′,6′,7′,7a'-hexa­hydro-2H-spiro­[ace­naphthyl­ene-1,3′-pyrrolizine]-2′-carboxyl­ate

aDepartment of Physics, Dr MGR Educational and Research Institute, Dr MGR University, Chennai 600 095, India, bDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and cDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 28 November 2011; accepted 26 December 2011; online 14 January 2012)

In the title compound, C32H37NO8, the central pyran ring adopts a twist-boat conformation and the 1,3-dioxoane rings adopt envelope conformations. The acenaphthyl­enone unit and two C atoms of a pyrrolidine ring are disordered over two sets of sites [occupancy ratio 0.669 (7):0.331 (7)]. The major fraction of the disordered pyrrolidine ring exhibits an envelope conformation while the minor component is essentially planar [maximum deviation = 0.037 (12) Å]. The other pyrrolidine ring also adopts an envelope conformation. The dihedral angle between the mean planes of the two wings of the pyrrolidine ring is 30.6 (2)°. Both the major and minor components of the acenaphthyl­enone unit are essentially planar, the maximum deviations being 0.025 (10) and 0.047 (19) Å, respectively; the dihedral angle between the mean planes of the two components is 1.72 (3)°. The crystal packing features C—H⋯O inter­actions.

Related literature

For applications of spiro­heterocycles, see: Ferguson et al. (2005[Ferguson, N. M., Cummings, D. A. T., Cauchemez, S., Fraser, C., Riley, S., Meeyai, A., Iamsirithaworn, S. & Burke, D. S. (2005). Nature (London), 437, 209-214.]). For a related structure, see: Athimoolam et al. (2008[Athimoolam, S., Radha, V. A., Bahadur, S. A., Kumar, R. R. & Perumal, S. (2008). Acta Cryst. E64, o95-o96.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.])

[Scheme 1]

Experimental

Crystal data
  • C32H37NO8

  • Mr = 563.63

  • Monoclinic, P 21

  • a = 11.4723 (4) Å

  • b = 8.9548 (2) Å

  • c = 15.0543 (5) Å

  • β = 96.990 (2)°

  • V = 1535.07 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.40 × 0.35 × 0.30 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.966, Tmax = 0.974

  • 20295 measured reflections

  • 5063 independent reflections

  • 3469 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.124

  • S = 1.05

  • 5039 reflections

  • 413 parameters

  • 50 restraints

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O8i 0.93 2.37 3.252 (9) 157
C26—H26⋯O1ii 0.98 2.38 3.211 (7) 143
Symmetry codes: (i) x-1, y-1, z; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The design and novel synthesis of glycospiroheterocycles are interesting because of the synthetic challenges they present and their biological profile against viruses, bacteria, and cancer cells (Ferguson et al., 2005). We have synthesized a novel glycospiroheterocyclic compound and determined its crystal structure which is presented in this article.

The tittle compound (Fig. 1) exhibits structural similarities with an already reported crystal structure of a closely related compound (Athimoolam et al., 2008). The central pyran ring (C22–C26/O4) in the title compound adopts a twist-boat conformation with puckering parameters (Cremer & Pople, 1975): Q = 0.617 (2) Å, θ = 103.87 (19)° and ϕ = 220.2 (2)°. The 1,3–dioxoane rings, (C23/C24/O5/O6/C27) and (C25/C26/O7/O8/C30), adopt envelope conformations with O6 and C30 atoms 0.195 (2) and -0.200 (3) Å, respectively, out of the planes formed by the remaining atoms of the rings.

The acenaphthylenone moiety (C1–C12/O1) and C13 and C14 atoms of a pyrrolidine ring were disordered over two positions with site occupancy factors 0.670 (7):0.330 (7), representing major and minor components, respectively. The major fraction of the pyrrolidine ring N1/C13–C16 exhibits a C14-envelope conformation with C14 0.289 (9) Å out of the mean plane of the rest of the ring atoms while the minor component is essentially planar with maximum deviation of any atom from the mean plane formed by the rings atoms being 0.037 (12) Å for C13-atom. The pyrrolidine ring (N1/C11/C16—C18) adopts a C18-envelope conformation with C18 deviating from the mean plane of the remaining ring atoms by 0.225 (2) Å. The "butter-fly angle" between the mean planes N1/C11/C17/C18 and N1/C13/C15/C16 is 30.6 (2) °, in the pyrrolidine ring.

The major and minor components of the acenaphthylenone moiety (C1–C12/O1) are essentially planar with maximum deviations of atoms C2 and C1', 0.025 (10) Å and 0.047 (19) Å, respectively, and the dihedral angle between the mean planes of the two components is 1.72 (3)°. The crystal packing is stabilized by C—H···O hydrogen bonds via C4—H4···O8 and C26—H26···O1 intermolecular interactions (Tab. 1 and Fig. 2).

Related literature top

For applications of spiroheterocycles, see: Ferguson et al. (2005). For a related structure, see: Athimoolam et al. (2008). For puckering parameters, see: Cremer & Pople (1975)

Experimental top

A mixture of 6,7-dideoxy-1,2:3,4-diisopropylidene-D-galacto-Oct- 6-enoethylpyranuronate (1 eq.), acenaphthenequinone (1 eq.) and L-proline (1.2 eq.) was refluxed at 413 K in toluene for about 6 hrs under Dean stark reaction condition to give 1,2:3,4-diisopropylidene-5-C[[2'.3''] spirooxindolo-3'-ethoxycarbonylpyrrolizidine]-D-galactopyranose. After the completion of reaction as indicated by TLC, solvent was evaporated under reduced pressure. The crude product was purified by column chromatography using hexane: EtOAc (4:1) as eluent. Block-shaped single crystals of the title compound suitable for X-ray diffraction analysis were obtained from a solution of hexane/ethyl acetate (4:1) by slow evaporation at room temperature.

Refinement top

The acenaphthylenone moiety (C1–C12/O1) and C13 and C14 atoms of the pyrrolidine ring were disordered over two positions with site occupancy factors 0.670 (7):0.330 (7). The bond lengths of both the major and minor components were restrainted to standard values using EADP and s.u. of 0.01 Å. The anisotropic displacement parameters of pairs of atoms in both components were restrained using ISOR with s.u. 0.01 using SHELXL97 (Sheldrick, 2008). The hydrogen atoms were placed in calculated positions with C–H = 0.93 – 0.98 Å and refined in the riding mode with fixed isotropic displacement parameters: Uiso(H) = 1.5 Ueq(C) for methyl group and Uiso(H) = 1.2 Ueq(C) for other groups. In the absence of significant anomalous dispersion effects, an absolute structure was not determined, and 4797 Friedel pairs were merged.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme, displacement ellipsoids are drawn at 30% probability level. H atoms are present as small spheres of arbitary radius. The minor fractions of the disordered acenapthenequinone and pyrrolidine groups have been represented by broken bonds.
[Figure 2] Fig. 2. The packing arrangement of the tittle compound in the unit cell; The Dashed lines indicate the C–H···O interactions. H-atoms not involved in hydrogen bonds have been excluded for clarity.
Ethyl (1R,1'S,2'S,7a'R)-2-oxo- 1'-[(3aR,5R,5aS,8aS,8bR)-2,2,7,7- tetramethyltetrahydro-3aH- bis[1,3]dioxolo[4,5-b:4',5'-d]pyran-5-yl]-1',2',5',6',7',7a'- hexahydro-2H-spiro[acenaphthylene-1,3'-pyrrolizine]-2'-carboxylate top
Crystal data top
C32H37NO8F(000) = 600
Mr = 563.63Dx = 1.219 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 5063 reflections
a = 11.4723 (4) Åθ = 1.4–30.7°
b = 8.9548 (2) ŵ = 0.09 mm1
c = 15.0543 (5) ÅT = 293 K
β = 96.990 (2)°Block, colourless
V = 1535.07 (8) Å30.40 × 0.35 × 0.30 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5063 independent reflections
Radiation source: fine-focus sealed tube3469 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 30.7°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1516
Tmin = 0.966, Tmax = 0.974k = 1211
20295 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0616P)2 + 0.0862P]
where P = (Fo2 + 2Fc2)/3
5039 reflections(Δ/σ)max = 0.001
413 parametersΔρmax = 0.24 e Å3
50 restraintsΔρmin = 0.15 e Å3
Crystal data top
C32H37NO8V = 1535.07 (8) Å3
Mr = 563.63Z = 2
Monoclinic, P21Mo Kα radiation
a = 11.4723 (4) ŵ = 0.09 mm1
b = 8.9548 (2) ÅT = 293 K
c = 15.0543 (5) Å0.40 × 0.35 × 0.30 mm
β = 96.990 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5063 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3469 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.974Rint = 0.026
20295 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04650 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.05Δρmax = 0.24 e Å3
5039 reflectionsΔρmin = 0.15 e Å3
413 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C110.59193 (19)0.1469 (3)0.22033 (14)0.0479 (5)
C10.4922 (6)0.0874 (7)0.2582 (4)0.0537 (15)0.669 (7)
C20.4548 (9)0.2257 (11)0.2815 (5)0.083 (2)0.669 (7)
H20.50740.30020.30270.100*0.669 (7)
C30.3315 (7)0.2493 (9)0.2716 (5)0.094 (2)0.669 (7)
H30.30360.34390.28320.113*0.669 (7)
C40.2530 (7)0.1406 (11)0.2462 (6)0.098 (3)0.669 (7)
H40.17310.16200.24190.118*0.669 (7)
C70.2673 (9)0.2617 (13)0.1818 (8)0.092 (3)0.669 (7)
H70.21900.34310.16560.111*0.669 (7)
C50.2891 (6)0.0050 (9)0.2258 (4)0.0734 (18)0.669 (7)
C60.2182 (7)0.1330 (12)0.1992 (5)0.085 (2)0.669 (7)
H60.13680.12540.19430.102*0.669 (7)
C80.3907 (15)0.2805 (14)0.1867 (10)0.070 (2)0.669 (7)
H80.42210.37280.17420.084*0.669 (7)
C90.4635 (11)0.1611 (11)0.2100 (9)0.0506 (18)0.669 (7)
C100.4099 (7)0.0250 (9)0.2313 (5)0.0528 (17)0.669 (7)
C120.6119 (8)0.0220 (12)0.2612 (8)0.0480 (16)0.669 (7)
O10.7037 (5)0.0726 (7)0.2904 (4)0.0670 (11)0.669 (7)
C11'0.59193 (19)0.1469 (3)0.22033 (14)0.0479 (5)0.00
C1'0.4559 (16)0.0469 (19)0.2460 (11)0.0537 (15)0.331 (7)
C2'0.414 (2)0.193 (2)0.2611 (12)0.083 (2)0.331 (7)
H2'0.46200.27460.27820.100*0.331 (7)
C3'0.285 (2)0.198 (3)0.2462 (15)0.094 (2)0.331 (7)
H3'0.24800.29060.24710.113*0.331 (7)
C4'0.2176 (17)0.072 (2)0.2311 (13)0.098 (3)0.331 (7)
H4'0.13760.07940.23510.118*0.331 (7)
C5'0.2616 (17)0.063 (2)0.2105 (11)0.0734 (18)0.331 (7)
C7'0.268 (2)0.324 (3)0.1690 (19)0.092 (3)0.331 (7)
H7'0.22810.41180.15220.111*0.331 (7)
C6'0.2076 (15)0.207 (2)0.1856 (11)0.085 (2)0.331 (7)
H6'0.12630.21470.18140.102*0.331 (7)
C8'0.392 (3)0.323 (4)0.176 (2)0.070 (2)0.331 (7)
H8'0.43310.40740.16120.084*0.331 (7)
C9'0.449 (3)0.198 (3)0.203 (2)0.0506 (18)0.331 (7)
C10'0.3912 (17)0.070 (2)0.2172 (12)0.0528 (17)0.331 (7)
C12'0.583 (2)0.000 (3)0.2520 (18)0.0480 (16)0.331 (7)
O1'0.6700 (14)0.0789 (19)0.2720 (11)0.0670 (11)0.331 (7)
C130.5891 (3)0.1171 (5)0.05317 (18)0.0780 (9)
H13A0.50540.13350.05260.094*0.669 (7)
H13B0.60220.01350.03830.094*0.669 (7)
C140.6416 (7)0.2255 (11)0.0147 (4)0.0864 (19)0.669 (7)
H14A0.71670.19050.02990.104*0.669 (7)
H14B0.58790.23980.06900.104*0.669 (7)
C150.6546 (16)0.368 (3)0.0428 (13)0.083 (3)0.669 (7)
H15A0.57910.41310.04900.100*0.669 (7)
H15B0.70490.44120.01890.100*0.669 (7)
C13'0.5891 (3)0.1171 (5)0.05317 (18)0.0780 (9)0.00
H13C0.62340.03000.02830.094*0.331 (7)
H13D0.50710.09680.05830.094*0.331 (7)
C14'0.5997 (15)0.238 (3)0.0017 (10)0.0864 (19)0.331 (7)
H14C0.52270.28090.01530.104*0.331 (7)
H14D0.63080.20720.05260.104*0.331 (7)
C15'0.682 (4)0.358 (7)0.050 (3)0.083 (3)0.331 (7)
H15C0.74970.37420.01900.100*0.331 (7)
H15D0.64020.45180.05360.100*0.331 (7)
C160.7142 (2)0.2993 (3)0.13480 (14)0.0503 (5)
H160.79810.28200.13200.060*
C170.69672 (17)0.3832 (3)0.22092 (13)0.0416 (4)
H170.62960.45080.20800.050*
C180.66266 (18)0.2589 (2)0.28307 (14)0.0406 (4)
H180.73480.20940.30950.049*
C190.5980 (2)0.3121 (3)0.35780 (15)0.0491 (5)
C200.5076 (4)0.2307 (5)0.4838 (2)0.0924 (11)
H20A0.53460.32490.51060.111*
H20B0.52290.15330.52880.111*
C210.3815 (4)0.2393 (9)0.4553 (4)0.146 (2)
H21A0.34110.26000.50610.220*
H21B0.35450.14580.42910.220*
H21C0.36600.31760.41190.220*
C220.80032 (17)0.4724 (2)0.26659 (14)0.0411 (4)
H220.78750.48790.32910.049*
C230.99820 (19)0.4371 (3)0.32680 (16)0.0505 (5)
H231.07230.40100.30850.061*
C241.0038 (2)0.6074 (3)0.33687 (15)0.0532 (6)
H241.08590.64020.34230.064*
C250.9321 (2)0.6970 (3)0.26499 (14)0.0538 (6)
H250.91730.79720.28720.065*
C260.8158 (2)0.6236 (3)0.22544 (14)0.0489 (5)
H260.74930.68860.23380.059*
C270.9899 (2)0.5074 (3)0.47405 (14)0.0560 (6)
C280.8969 (3)0.4856 (4)0.5344 (2)0.0803 (9)
H28A0.91670.40130.57270.120*
H28B0.82280.46820.49900.120*
H28C0.89170.57340.57030.120*
C291.1111 (3)0.5247 (5)0.5240 (2)0.0831 (9)
H29A1.13000.43810.56060.125*
H29B1.11340.61190.56130.125*
H29C1.16720.53500.48200.125*
C300.9167 (3)0.7058 (4)0.11239 (17)0.0687 (7)
C310.9768 (4)0.6396 (7)0.0394 (2)0.1171 (16)
H31A1.03700.70630.02470.176*
H31B0.92060.62390.01250.176*
H31C1.01140.54570.05900.176*
C320.8670 (4)0.8595 (4)0.0899 (3)0.1013 (12)
H32A0.92860.92430.07550.152*
H32B0.83350.89890.14040.152*
H32C0.80740.85270.03940.152*
O20.5742 (2)0.4391 (2)0.37177 (15)0.0771 (6)
O30.57205 (18)0.1979 (2)0.40881 (11)0.0679 (5)
O40.90450 (12)0.38520 (18)0.26594 (10)0.0474 (3)
O50.98714 (16)0.3842 (2)0.41297 (11)0.0607 (4)
O60.95792 (15)0.63306 (19)0.41854 (10)0.0552 (4)
O70.82740 (17)0.6087 (2)0.13311 (10)0.0651 (5)
O80.99739 (17)0.7064 (3)0.19099 (12)0.0802 (6)
N10.65251 (17)0.1553 (2)0.14046 (12)0.0539 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0449 (11)0.0493 (13)0.0481 (11)0.0126 (9)0.0001 (9)0.0063 (9)
C10.070 (4)0.046 (4)0.045 (2)0.020 (2)0.006 (2)0.005 (2)
C20.125 (8)0.074 (5)0.050 (4)0.044 (4)0.009 (3)0.002 (3)
C30.115 (5)0.090 (4)0.079 (4)0.065 (4)0.020 (3)0.003 (3)
C40.088 (6)0.117 (7)0.092 (4)0.061 (5)0.022 (4)0.005 (5)
C70.0487 (18)0.144 (9)0.081 (4)0.012 (5)0.006 (2)0.017 (5)
C50.057 (3)0.108 (5)0.054 (3)0.028 (3)0.000 (2)0.003 (3)
C60.047 (2)0.131 (6)0.073 (3)0.012 (4)0.005 (2)0.008 (4)
C80.0505 (15)0.089 (8)0.067 (4)0.001 (6)0.007 (3)0.015 (4)
C90.035 (4)0.064 (6)0.050 (2)0.002 (3)0.006 (2)0.002 (4)
C100.051 (3)0.067 (6)0.038 (3)0.021 (4)0.005 (2)0.007 (3)
C120.054 (6)0.038 (4)0.049 (3)0.000 (3)0.003 (3)0.005 (2)
O10.069 (4)0.0460 (13)0.078 (3)0.000 (2)0.021 (2)0.0076 (18)
C11'0.0449 (11)0.0493 (13)0.0481 (11)0.0126 (9)0.0001 (9)0.0063 (9)
C1'0.070 (4)0.046 (4)0.045 (2)0.020 (2)0.006 (2)0.005 (2)
C2'0.125 (8)0.074 (5)0.050 (4)0.044 (4)0.009 (3)0.002 (3)
C3'0.115 (5)0.090 (4)0.079 (4)0.065 (4)0.020 (3)0.003 (3)
C4'0.088 (6)0.117 (7)0.092 (4)0.061 (5)0.022 (4)0.005 (5)
C5'0.057 (3)0.108 (5)0.054 (3)0.028 (3)0.000 (2)0.003 (3)
C7'0.0487 (18)0.144 (9)0.081 (4)0.012 (5)0.006 (2)0.017 (5)
C6'0.047 (2)0.131 (6)0.073 (3)0.012 (4)0.005 (2)0.008 (4)
C8'0.0505 (15)0.089 (8)0.067 (4)0.001 (6)0.007 (3)0.015 (4)
C9'0.035 (4)0.064 (6)0.050 (2)0.002 (3)0.006 (2)0.002 (4)
C10'0.051 (3)0.067 (6)0.038 (3)0.021 (4)0.005 (2)0.007 (3)
C12'0.054 (6)0.038 (4)0.049 (3)0.000 (3)0.003 (3)0.005 (2)
O1'0.069 (4)0.0460 (13)0.078 (3)0.000 (2)0.021 (2)0.0076 (18)
C130.085 (2)0.095 (2)0.0534 (14)0.0276 (18)0.0040 (13)0.0244 (15)
C140.092 (5)0.131 (4)0.036 (3)0.038 (5)0.007 (2)0.009 (3)
C150.110 (8)0.087 (5)0.044 (4)0.026 (7)0.027 (5)0.012 (3)
C13'0.085 (2)0.095 (2)0.0534 (14)0.0276 (18)0.0040 (13)0.0244 (15)
C14'0.092 (5)0.131 (4)0.036 (3)0.038 (5)0.007 (2)0.009 (3)
C15'0.110 (8)0.087 (5)0.044 (4)0.026 (7)0.027 (5)0.012 (3)
C160.0503 (12)0.0582 (14)0.0416 (11)0.0148 (11)0.0014 (9)0.0044 (10)
C170.0389 (10)0.0408 (10)0.0438 (10)0.0055 (8)0.0006 (8)0.0021 (8)
C180.0383 (10)0.0382 (10)0.0444 (10)0.0076 (8)0.0018 (8)0.0025 (8)
C190.0505 (12)0.0476 (13)0.0490 (11)0.0121 (10)0.0060 (9)0.0022 (9)
C200.128 (3)0.092 (3)0.0654 (18)0.023 (2)0.0465 (18)0.0008 (17)
C210.112 (3)0.202 (7)0.141 (4)0.018 (4)0.075 (3)0.006 (4)
C220.0405 (10)0.0402 (11)0.0427 (10)0.0050 (8)0.0053 (8)0.0008 (8)
C230.0423 (11)0.0542 (13)0.0544 (12)0.0048 (10)0.0034 (9)0.0086 (10)
C240.0506 (12)0.0584 (14)0.0499 (12)0.0208 (11)0.0028 (9)0.0062 (10)
C250.0671 (14)0.0473 (12)0.0481 (11)0.0229 (11)0.0110 (10)0.0011 (10)
C260.0513 (12)0.0451 (12)0.0509 (11)0.0065 (10)0.0082 (9)0.0022 (9)
C270.0690 (15)0.0509 (13)0.0453 (11)0.0007 (11)0.0041 (10)0.0015 (10)
C280.100 (2)0.081 (2)0.0606 (15)0.0148 (18)0.0147 (15)0.0169 (15)
C290.082 (2)0.086 (2)0.0726 (18)0.0016 (17)0.0245 (15)0.0066 (16)
C300.0733 (17)0.0831 (19)0.0518 (13)0.0191 (15)0.0159 (12)0.0057 (13)
C310.124 (3)0.166 (5)0.0657 (18)0.017 (3)0.0325 (19)0.001 (3)
C320.144 (3)0.080 (2)0.085 (2)0.020 (2)0.031 (2)0.0277 (19)
O20.0996 (15)0.0524 (11)0.0876 (14)0.0034 (10)0.0457 (12)0.0075 (10)
O30.0907 (13)0.0615 (11)0.0554 (9)0.0129 (10)0.0244 (9)0.0028 (8)
O40.0422 (8)0.0447 (8)0.0537 (8)0.0021 (6)0.0013 (6)0.0106 (7)
O50.0763 (11)0.0476 (9)0.0547 (10)0.0008 (9)0.0065 (8)0.0003 (7)
O60.0745 (11)0.0457 (9)0.0439 (8)0.0050 (8)0.0012 (7)0.0021 (7)
O70.0823 (12)0.0679 (11)0.0429 (8)0.0218 (10)0.0013 (8)0.0071 (8)
O80.0672 (11)0.1192 (18)0.0555 (10)0.0378 (12)0.0127 (8)0.0105 (11)
N10.0560 (11)0.0599 (12)0.0452 (9)0.0163 (9)0.0041 (8)0.0123 (8)
Geometric parameters (Å, º) top
C11—N11.462 (3)C15'—C161.39 (4)
C11—C91.468 (12)C15'—H15C0.9700
C11—C181.540 (3)C15'—H15D0.9700
C11—C121.638 (10)C16—N11.479 (3)
C1—C21.370 (11)C16—C171.533 (3)
C1—C101.406 (7)C16—H160.9800
C1—C121.490 (14)C17—C221.525 (3)
C2—C31.419 (13)C17—C181.535 (3)
C2—H20.9300C17—H170.9800
C3—C41.350 (11)C18—C191.498 (3)
C3—H30.9300C18—H180.9800
C4—C51.413 (11)C19—O21.194 (3)
C4—H40.9300C19—O31.334 (3)
C7—C61.324 (13)C20—O31.453 (3)
C7—C81.42 (2)C20—C211.460 (7)
C7—H70.9300C20—H20A0.9700
C5—C101.389 (10)C20—H20B0.9700
C5—C61.434 (11)C21—H21A0.9600
C6—H60.9300C21—H21B0.9600
C8—C91.376 (13)C21—H21C0.9600
C8—H80.9300C22—O41.429 (3)
C9—C101.419 (15)C22—C261.508 (3)
C12—O11.181 (8)C22—H220.9800
C1'—C10'1.329 (17)C23—O51.401 (3)
C1'—C2'1.42 (3)C23—O41.404 (3)
C1'—C12'1.51 (3)C23—C241.534 (4)
C2'—C3'1.47 (3)C23—H230.9800
C2'—H2'0.9300C24—O61.414 (3)
C3'—C4'1.38 (3)C24—C251.508 (4)
C3'—H3'0.9300C24—H240.9800
C4'—C5'1.36 (2)C25—O81.418 (3)
C4'—H4'0.9300C25—C261.541 (3)
C5'—C6'1.45 (2)C25—H250.9800
C5'—C10'1.48 (3)C26—O71.419 (3)
C7'—C6'1.30 (3)C26—H260.9800
C7'—C8'1.42 (5)C27—O61.423 (3)
C7'—H7'0.9300C27—O51.434 (3)
C6'—H6'0.9300C27—C281.496 (4)
C8'—C9'1.33 (3)C27—C291.506 (4)
C8'—H8'0.9300C28—H28A0.9600
C9'—C10'1.35 (4)C28—H28B0.9600
C12'—O1'1.23 (2)C28—H28C0.9600
C13—N11.463 (3)C29—H29A0.9600
C13—C141.582 (8)C29—H29B0.9600
C13—H13A0.9700C29—H29C0.9600
C13—H13B0.9700C30—O71.408 (3)
C14—C151.54 (3)C30—O81.411 (3)
C14—H14A0.9700C30—C311.489 (5)
C14—H14B0.9700C30—C321.512 (5)
C15—C161.592 (16)C31—H31A0.9600
C15—H15A0.9700C31—H31B0.9600
C15—H15B0.9700C31—H31C0.9600
C14'—C15'1.55 (5)C32—H32A0.9600
C14'—H14C0.9700C32—H32B0.9600
C14'—H14D0.9700C32—H32C0.9600
N1—C11—C9118.7 (5)C15—C16—H16110.1
N1—C11—C18101.73 (16)C22—C17—C16117.59 (17)
C9—C11—C18117.1 (5)C22—C17—C18110.33 (16)
N1—C11—C12107.3 (5)C16—C17—C18103.26 (18)
C9—C11—C12102.3 (5)C22—C17—H17108.4
C18—C11—C12109.4 (4)C16—C17—H17108.4
C2—C1—C10120.1 (7)C18—C17—H17108.4
C2—C1—C12131.6 (6)C19—C18—C17114.40 (18)
C10—C1—C12108.2 (6)C19—C18—C11113.31 (17)
C1—C2—C3116.5 (7)C17—C18—C11104.64 (16)
C1—C2—H2121.7C19—C18—H18108.1
C3—C2—H2121.7C17—C18—H18108.1
C4—C3—C2123.0 (6)C11—C18—H18108.1
C4—C3—H3118.5O2—C19—O3123.8 (2)
C2—C3—H3118.5O2—C19—C18125.4 (2)
C3—C4—C5121.5 (6)O3—C19—C18110.7 (2)
C3—C4—H4119.2O3—C20—C21111.2 (3)
C5—C4—H4119.2O3—C20—H20A109.4
C6—C7—C8122.6 (8)C21—C20—H20A109.4
C6—C7—H7118.7O3—C20—H20B109.4
C8—C7—H7118.7C21—C20—H20B109.4
C10—C5—C4115.1 (7)H20A—C20—H20B108.0
C10—C5—C6116.2 (6)C20—C21—H21A109.5
C4—C5—C6128.8 (6)C20—C21—H21B109.5
C7—C6—C5120.7 (7)H21A—C21—H21B109.5
C7—C6—H6119.6C20—C21—H21C109.5
C5—C6—H6119.6H21A—C21—H21C109.5
C9—C8—C7119.5 (10)H21B—C21—H21C109.5
C9—C8—H8120.3O4—C22—C26110.34 (16)
C7—C8—H8120.3O4—C22—C17108.49 (17)
C8—C9—C10117.3 (11)C26—C22—C17114.17 (18)
C8—C9—C11131.6 (11)O4—C22—H22107.9
C10—C9—C11111.0 (5)C26—C22—H22107.9
C5—C10—C1123.7 (7)C17—C22—H22107.9
C5—C10—C9123.7 (6)O5—C23—O4110.12 (18)
C1—C10—C9112.7 (7)O5—C23—C24104.60 (19)
O1—C12—C1129.6 (10)O4—C23—C24114.4 (2)
O1—C12—C11124.9 (10)O5—C23—H23109.2
C1—C12—C11105.4 (4)O4—C23—H23109.2
C10'—C1'—C2'127 (2)C24—C23—H23109.2
C10'—C1'—C12'107.3 (19)O6—C24—C25108.0 (2)
C2'—C1'—C12'126.0 (18)O6—C24—C23103.40 (19)
C1'—C2'—C3'110.9 (17)C25—C24—C23116.4 (2)
C1'—C2'—H2'124.5O6—C24—H24109.6
C3'—C2'—H2'124.5C25—C24—H24109.6
C4'—C3'—C2'122.4 (19)C23—C24—H24109.6
C4'—C3'—H3'118.8O8—C25—C24107.5 (2)
C2'—C3'—H3'118.8O8—C25—C26103.71 (17)
C5'—C4'—C3'123.5 (19)C24—C25—C26114.92 (19)
C5'—C4'—H4'118.2O8—C25—H25110.1
C3'—C4'—H4'118.2C24—C25—H25110.1
C4'—C5'—C6'133.3 (19)C26—C25—H25110.1
C4'—C5'—C10'114.8 (18)O7—C26—C22110.37 (19)
C6'—C5'—C10'111.9 (15)O7—C26—C25103.79 (17)
C6'—C7'—C8'123 (2)C22—C26—C25111.34 (19)
C6'—C7'—H7'118.7O7—C26—H26110.4
C8'—C7'—H7'118.7C22—C26—H26110.4
C7'—C6'—C5'122.8 (17)C25—C26—H26110.4
C7'—C6'—H6'118.6O6—C27—O5104.34 (15)
C5'—C6'—H6'118.6O6—C27—C28107.9 (2)
C9'—C8'—C7'118 (3)O5—C27—C28109.1 (2)
C9'—C8'—H8'120.8O6—C27—C29111.6 (2)
C7'—C8'—H8'120.9O5—C27—C29110.3 (2)
C8'—C9'—C10'122 (3)C28—C27—C29113.2 (2)
C1'—C10'—C9'117 (2)C27—C28—H28A109.5
C1'—C10'—C5'120.3 (18)C27—C28—H28B109.5
C9'—C10'—C5'122.1 (18)H28A—C28—H28B109.5
O1'—C12'—C1'127 (3)C27—C28—H28C109.5
N1—C13—C14104.5 (3)H28A—C28—H28C109.5
N1—C13—H13A110.9H28B—C28—H28C109.5
C14—C13—H13A110.9C27—C29—H29A109.5
N1—C13—H13B110.9C27—C29—H29B109.5
C14—C13—H13B110.9H29A—C29—H29B109.5
H13A—C13—H13B108.9C27—C29—H29C109.5
C15—C14—C1399.4 (10)H29A—C29—H29C109.5
C15—C14—H14A111.9H29B—C29—H29C109.5
C13—C14—H14A111.9O7—C30—O8103.7 (2)
C15—C14—H14B111.9O7—C30—C31109.4 (3)
C13—C14—H14B111.9O8—C30—C31107.8 (3)
H14A—C14—H14B109.6O7—C30—C32110.3 (3)
C14—C15—C1699.8 (14)O8—C30—C32112.1 (3)
C14—C15—H15A111.8C31—C30—C32113.1 (3)
C16—C15—H15A111.8C30—C31—H31A109.5
C14—C15—H15B111.8C30—C31—H31B109.5
C16—C15—H15B111.8H31A—C31—H31B109.5
H15A—C15—H15B109.5C30—C31—H31C109.5
C15'—C14'—H14C109.1H31A—C31—H31C109.5
C15'—C14'—H14D109.1H31B—C31—H31C109.5
H14C—C14'—H14D107.9C30—C32—H32A109.5
C16—C15'—C14'104 (4)C30—C32—H32B109.5
C16—C15'—H15C110.9H32A—C32—H32B109.5
C14'—C15'—H15C110.9C30—C32—H32C109.5
C16—C15'—H15D110.9H32A—C32—H32C109.5
C14'—C15'—H15D110.9H32B—C32—H32C109.5
H15C—C15'—H15D108.9C19—O3—C20117.6 (2)
C15'—C16—N1108 (2)C23—O4—C22112.91 (17)
C15'—C16—C17123 (2)C23—O5—C27109.65 (18)
N1—C16—C17105.42 (17)C24—O6—C27106.59 (19)
N1—C16—C15103.3 (9)C30—O7—C26108.47 (18)
C17—C16—C15117.3 (9)C30—O8—C25107.68 (19)
C15'—C16—H16100.2C13—N1—C11119.48 (19)
N1—C16—H16110.1C13—N1—C16110.0 (2)
C17—C16—H16110.1C11—N1—C16111.78 (17)
C10—C1—C2—C33.7 (12)C15—C16—C17—C18133.1 (10)
C12—C1—C2—C3178.6 (9)C22—C17—C18—C1975.1 (2)
C1—C2—C3—C44.1 (12)C16—C17—C18—C19158.35 (18)
C2—C3—C4—C51.2 (13)C22—C17—C18—C11160.27 (17)
C3—C4—C5—C101.9 (12)C16—C17—C18—C1133.8 (2)
C3—C4—C5—C6179.0 (7)N1—C11—C18—C19160.73 (19)
C8—C7—C6—C51.0 (17)C9—C11—C18—C1929.7 (6)
C10—C5—C6—C70.2 (12)C12—C11—C18—C1986.0 (5)
C4—C5—C6—C7179.3 (9)N1—C11—C18—C1735.5 (2)
C6—C7—C8—C90 (2)C9—C11—C18—C1795.6 (5)
C7—C8—C9—C102 (2)C12—C11—C18—C17148.7 (4)
C7—C8—C9—C11179.9 (12)C17—C18—C19—O21.1 (3)
N1—C11—C9—C869.0 (17)C11—C18—C19—O2120.9 (3)
C18—C11—C9—C853.7 (17)C17—C18—C19—O3179.77 (18)
C12—C11—C9—C8173.2 (16)C11—C18—C19—O360.4 (2)
N1—C11—C9—C10113.0 (8)C16—C17—C22—O442.8 (2)
C18—C11—C9—C10124.3 (8)C18—C17—C22—O475.2 (2)
C12—C11—C9—C104.7 (11)C16—C17—C22—C2680.7 (2)
C4—C5—C10—C12.3 (11)C18—C17—C22—C26161.32 (17)
C6—C5—C10—C1178.5 (7)O5—C23—C24—O618.3 (2)
C4—C5—C10—C9177.4 (10)O4—C23—C24—O6102.3 (2)
C6—C5—C10—C91.8 (13)O5—C23—C24—C25136.6 (2)
C2—C1—C10—C50.6 (12)O4—C23—C24—C2516.0 (3)
C12—C1—C10—C5176.6 (8)O6—C24—C25—O8163.24 (19)
C2—C1—C10—C9179.7 (9)C23—C24—C25—O881.0 (2)
C12—C1—C10—C93.7 (11)O6—C24—C25—C2681.9 (2)
C8—C9—C10—C53.0 (18)C23—C24—C25—C2633.9 (3)
C11—C9—C10—C5178.7 (7)O4—C22—C26—O766.0 (2)
C8—C9—C10—C1177.2 (12)C17—C22—C26—O756.5 (2)
C11—C9—C10—C11.1 (13)O4—C22—C26—C2548.7 (2)
C2—C1—C12—O15.6 (19)C17—C22—C26—C25171.18 (18)
C10—C1—C12—O1169.8 (12)O8—C25—C26—O73.2 (3)
C2—C1—C12—C11178.3 (8)C24—C25—C26—O7120.3 (2)
C10—C1—C12—C116.3 (9)O8—C25—C26—C22115.5 (2)
N1—C11—C12—O164.7 (12)C24—C25—C26—C221.6 (3)
C9—C11—C12—O1169.7 (12)O2—C19—O3—C202.1 (4)
C18—C11—C12—O144.9 (13)C18—C19—O3—C20179.1 (3)
N1—C11—C12—C1119.0 (6)C21—C20—O3—C1983.4 (4)
C9—C11—C12—C16.6 (9)O5—C23—O4—C2281.7 (2)
C18—C11—C12—C1131.5 (6)C24—C23—O4—C2235.8 (3)
C10'—C1'—C2'—C3'4 (3)C26—C22—O4—C2370.9 (2)
C12'—C1'—C2'—C3'178 (2)C17—C22—O4—C23163.39 (17)
C1'—C2'—C3'—C4'8 (3)O4—C23—O5—C27125.5 (2)
C2'—C3'—C4'—C5'14 (3)C24—C23—O5—C272.1 (2)
C3'—C4'—C5'—C6'175 (2)O6—C27—O5—C2321.6 (2)
C3'—C4'—C5'—C10'8 (3)C28—C27—O5—C23136.7 (2)
C8'—C7'—C6'—C5'1 (4)C29—C27—O5—C2398.4 (3)
C4'—C5'—C6'—C7'180 (2)C25—C24—O6—C27156.06 (18)
C10'—C5'—C6'—C7'2 (3)C23—C24—O6—C2732.1 (2)
C6'—C7'—C8'—C9'3 (5)O5—C27—O6—C2433.8 (2)
C7'—C8'—C9'—C10'6 (5)C28—C27—O6—C24149.8 (2)
C2'—C1'—C10'—C9'177 (2)C29—C27—O6—C2485.3 (2)
C12'—C1'—C10'—C9'2 (3)O8—C30—O7—C2633.6 (3)
C2'—C1'—C10'—C5'9 (3)C31—C30—O7—C26148.4 (3)
C12'—C1'—C10'—C5'175.6 (18)C32—C30—O7—C2686.6 (3)
C8'—C9'—C10'—C1'179 (3)C22—C26—O7—C30138.0 (2)
C8'—C9'—C10'—C5'5 (4)C25—C26—O7—C3018.6 (3)
C4'—C5'—C10'—C1'3 (3)O7—C30—O8—C2535.8 (3)
C6'—C5'—C10'—C1'174.8 (19)C31—C30—O8—C25151.7 (3)
C4'—C5'—C10'—C9'177 (2)C32—C30—O8—C2583.2 (3)
C6'—C5'—C10'—C9'1 (3)C24—C25—O8—C30146.0 (2)
C10'—C1'—C12'—O1'176 (3)C26—C25—O8—C3023.9 (3)
C2'—C1'—C12'—O1'1 (4)C14—C13—N1—C11145.8 (4)
N1—C13—C14—C1538.9 (8)C14—C13—N1—C1614.6 (5)
C13—C14—C15—C1646.4 (11)C9—C11—N1—C1324.6 (6)
C14'—C15'—C16—N12 (3)C18—C11—N1—C13154.7 (3)
C14'—C15'—C16—C17125 (2)C12—C11—N1—C1390.5 (5)
C14'—C15'—C16—C1567 (18)C9—C11—N1—C16105.8 (5)
C14—C15—C16—C15'79 (19)C18—C11—N1—C1624.3 (2)
C14—C15—C16—N139.1 (12)C12—C11—N1—C16139.1 (4)
C14—C15—C16—C17154.6 (7)C15'—C16—N1—C136 (2)
C15'—C16—C17—C2296 (2)C17—C16—N1—C13138.8 (2)
N1—C16—C17—C22140.62 (19)C15—C16—N1—C1315.1 (9)
C15—C16—C17—C22105.1 (10)C15'—C16—N1—C11129 (2)
C15'—C16—C17—C18143 (2)C17—C16—N1—C113.6 (2)
N1—C16—C17—C1818.9 (2)C15—C16—N1—C11120.1 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O8i0.932.373.252 (9)157
C26—H26···O1ii0.982.383.211 (7)143
Symmetry codes: (i) x1, y1, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC32H37NO8
Mr563.63
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)11.4723 (4), 8.9548 (2), 15.0543 (5)
β (°) 96.990 (2)
V3)1535.07 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.35 × 0.30
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.966, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
20295, 5063, 3469
Rint0.026
(sin θ/λ)max1)0.719
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.124, 1.05
No. of reflections5039
No. of parameters413
No. of restraints50
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.15

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O8i0.932.373.252 (9)157
C26—H26···O1ii0.982.383.211 (7)143
Symmetry codes: (i) x1, y1, z; (ii) x, y+1, z.
 

Acknowledgements

GJ and KS thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the X-ray intensity data collection and Dr V. Murugan, Head of the Department of Physics, for providing facilities in the department to carry out this work.

References

First citationAthimoolam, S., Radha, V. A., Bahadur, S. A., Kumar, R. R. & Perumal, S. (2008). Acta Cryst. E64, o95–o96.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFerguson, N. M., Cummings, D. A. T., Cauchemez, S., Fraser, C., Riley, S., Meeyai, A., Iamsirithaworn, S. & Burke, D. S. (2005). Nature (London), 437, 209–214.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o382-o383
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds