organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o283-o284

(2S,5S,6R)-5-(4-Methyl­phen­yl)-3-phenyl-4,8-dioxa-3-aza­tri­cyclo­[7.4.0.02,6]trideca-1(13),9,11-triene-6-carbo­nitrile

aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and bDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 12 December 2011; accepted 23 December 2011; online 7 January 2012)

In the title compound, C24H20N2O2, the six-membered pyran ring adopts a half-chair conformation with one C atom deviating from the mean plane of the remaining ring atoms by 0.654 (6) Å. The five-membered isoxazole ring adopts an N-envelope conformation with the N atom displaced by 0.742 (5) Å from the mean plane formed by the remaining ring atoms. The carbonitrile side chain is almost linear, with a C—C—N angle of 178.6 (5)°. The crystal packing is stabilized by inter­molecular C—H⋯N inter­actions, through bifurcated acceptor hydrogen bonds formed between the carbonitrile N atom and two alternate C atoms in the unsubstituted benzene ring. The mol­ecular structure and crystal packing are further stabilized by intra­molecular and inter­molecular C—H⋯π inter­actions.

Related literature

For uses of benzopyran and isoxazolidine derivatives, see: Green et al. (1982[Green, M. J., Tiberi, R. L., Friary, R., Lutsky, B. N., Berkenkoph, J., Fernandez, X. & Monahan, M. (1982). J. Med. Chem. 25, 1492-1495.]); Kashiwada et al. (2001[Kashiwada, Y., Yamazaki, K., Ikeshiro, Y., Yamagishi, T., Fujioka, T., Mihashi, K., Mizuki, K., Cosentino, L. M., Fowke, K., Natschke, S. L. M. & Lee, K. H. (2001). Tetrahedron, 57, 1559-1563.]); Mullen et al. (1988[Mullen, G. B., DeCory, T. R., Mitchell, J. T., Allen, S. D., Kinsolving, C. R. & Georgiev, V. S. (1988). J. Med. Chem. 31, 2008-2014.]). For a related structure, see: Swaminathan et al. (2011[Swaminathan, K., Sethusankar, K., Murugan, G. & Bakthadoss, M. (2011). Acta Cryst. E67, o905.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For synthetic details, see: Bakthadoss & Murugan (2010[Bakthadoss, M. & Murugan, G. (2010). Eur. J. Org. Chem. pp. 5825-5830.]).

[Scheme 1]

Experimental

Crystal data
  • C24H20N2O2

  • Mr = 368.42

  • Orthorhombic, P 21 21 21

  • a = 8.9890 (16) Å

  • b = 9.8432 (19) Å

  • c = 22.084 (4) Å

  • V = 1954.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.976, Tmax = 0.980

  • 10510 measured reflections

  • 4476 independent reflections

  • 2396 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.081

  • wR(F2) = 0.252

  • S = 1.00

  • 4476 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C19–C24 and C12–C17 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Cg1 0.93 2.99 3.701 (5) 134
C20—H20⋯Cg2i 0.93 2.95 3.803 (6) 153
C21—H21⋯N2ii 0.93 2.56 3.385 (6) 148
C23—H23⋯N2iii 0.93 2.62 3.466 (7) 151
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}]; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

There has been a flurry of activity on the synthesis of benzopyran and isoxazolidine derivatives owing to their well established biological and pharmacological activities. For example, some benzopyran derivatives exhibit anti-HIV activities (Kashiwada et al., 2001). Similarly, isoxazolidine derivatives exhibit anti-fungal (Mullen et al., 1988), anti-inflammatory (Green et al., 1982) and other such biological activities. In this paper we report the synthesis and crystal structure of the title compound which comprises an isoxazole ring, trans-fused with the pyran ring of the chromene moiety, a methyl benzene ring and a carbonitrile group cis-attached to the adjacent carbon atoms and a benzene ring attached to the nitrogen atom of the isoxazole ring.

In the title molecule (Fig. 1), the six membered pyran ring adopts a half-chair conformation with puckering parameters (Cremer & Pople, 1975): Q = 0.487 (4) Å, θ = 54.1 (5)° and ϕ = 288.0 (5)°; the carbon atom C9 deviates from the mean plane by 0.654 (6) Å. The five membered isoxazole ring adopts an N-envelope conformation with N1 displaced by 0.742 (5) Å from the mean plane formed by the rest of the ring atoms. The carbonitrile side-chain is almost linear, with C–C–N angle of 178.6 (5)°, which is in agreement with the observations made in another similar reported structure (Swaminathan et al., 2011).

The molecular structure is stabilized by a C—H···Cg1 intramolecular interaction (Fig 1); Cg1 is the center of gravity of the phenyl ring (C19–C24). The crystal packing is stabilized by two C–H···N intermolecular interactions, through bifurcated hydrogen bonds formed between the carbonitrile N atom and two alternate C atoms in the unsubstituted benzene ring and a C—H···Cg2 intermolecular interaction (Table 1); Cg2 is the center of gravity of the phenyl ring (C12–C17). The packing arrangement of the title compound is shown in Fig. 2.

Related literature top

For uses of benzopyran and isoxazolidine derivatives, see: Green et al. (1982); Kashiwada et al. (2001); Mullen et al. (1988). For a related structure, see: Swaminathan et al. (2011). For puckering parameters, see: Cremer & Pople (1975). For synthetic details, see: Bakthadoss & Murugan (2010).

Experimental top

The title compound was synthesized using Baylis–Hillman derivatives through in situ formation of nitrones followed by an intramolecular [3 + 2] dipolar cycloaddition reaction sequence (Bakthadoss & Murugan, 2010). A mixture of (E)-2-((2-Formylphenoxy)methyl)-3-o-tolylacrylonitrile (2 mmol, 0.75 g) and N-phenylhydroxylamine (3 mmol, 0.33 g) in ethanol (10 ml) was refluxed for 6 h. After the completion of the reaction, as indicated by TLC, the reaction mixture was concentrated and the resulting crude mass was diluted with water (15 ml) and extracted with ethyl acetate (3 x 15 ml). The combined organic layer was washed with brine (3 x 15 ml) and dried over anhydrous Na2SO4. The solvent was removed under reduced pressure. The crude mass was purified by column chromotography on silica gel (Acme 100–200 mesh), using ethyl acetate-hexane (1:9) to provide the pure title compound as a colourless solid in 80% yield. Block-shaped single crystals of the title compound suitable for X-ray diffraction analysis were obtained from a solution of ethyl acetate by slow evaporation at room temperature.

Refinement top

The hydrogen atoms were placed in calculated positions with C–H = 0.93, 0.96, 0.97 and 0.98 Å for aryl, methyl, methylene and methyne type H-atoms, respectively, and refined in the riding mode with fixed isotropic displacement parameters: Uiso(H) = 1.5 Ueq(C) for methyl and Uiso(H) = 1.2 Ueq(C) for other H-atoms. In the absence of significant anomalous dispersion effects, an absolute structure was not determined, and 1859 Friedel pairs were merged.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme, depicting the C—H···Cg intramolecular interaction as dashed line. Displacement ellipsoids are drawn at 30% probability level. H atoms are present as small spheres of arbitary radius.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound viewed down the a axis; C—H···N and C—H···Cg intermolecular interactions are indicated by dashed lines.
(2S,5S,6R)-5-(4-Methylphenyl)-3-phenyl-4,8-dioxa-3- azatricyclo[7.4.0.02,6]trideca-1(13),9,11-triene-6-carbonitrile top
Crystal data top
C24H20N2O2F(000) = 776
Mr = 368.42Dx = 1.252 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4476 reflections
a = 8.9890 (16) Åθ = 1.8–27.7°
b = 9.8432 (19) ŵ = 0.08 mm1
c = 22.084 (4) ÅT = 293 K
V = 1954.0 (6) Å3Block, colourless
Z = 40.30 × 0.25 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4476 independent reflections
Radiation source: fine-focus sealed tube2396 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ω scansθmax = 27.7°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 711
Tmin = 0.976, Tmax = 0.980k = 912
10510 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.081Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.252H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1392P)2 + 0.1028P]
where P = (Fo2 + 2Fc2)/3
4476 reflections(Δ/σ)max < 0.001
254 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C24H20N2O2V = 1954.0 (6) Å3
Mr = 368.42Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.9890 (16) ŵ = 0.08 mm1
b = 9.8432 (19) ÅT = 293 K
c = 22.084 (4) Å0.30 × 0.25 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4476 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2396 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.980Rint = 0.065
10510 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0810 restraints
wR(F2) = 0.252H-atom parameters constrained
S = 1.00Δρmax = 0.29 e Å3
4476 reflectionsΔρmin = 0.33 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7119 (5)0.2084 (4)0.21685 (18)0.0428 (9)
C20.7325 (5)0.0754 (4)0.2349 (2)0.0576 (12)
H20.69140.00500.21230.069*
C30.8128 (6)0.0469 (5)0.2855 (2)0.0655 (14)
H30.82730.04250.29770.079*
C40.8728 (6)0.1533 (5)0.3188 (2)0.0605 (12)
H40.92730.13520.35370.073*
C50.8522 (5)0.2841 (5)0.30056 (17)0.0522 (11)
H50.89370.35410.32320.063*
C60.7705 (4)0.3161 (4)0.24889 (16)0.0414 (9)
C70.7539 (4)0.4578 (4)0.22771 (15)0.0383 (9)
H70.85160.50170.22590.046*
C80.6754 (4)0.4707 (4)0.16629 (15)0.0402 (9)
C90.5624 (5)0.3556 (4)0.1614 (2)0.0533 (11)
H9A0.49020.36410.19380.064*
H9B0.50970.36320.12320.064*
C100.7823 (6)0.4613 (5)0.11672 (17)0.0520 (11)
C110.5993 (5)0.6120 (4)0.17064 (17)0.0459 (10)
H110.49130.59880.17030.055*
C120.6383 (5)0.7144 (4)0.12342 (16)0.0448 (9)
C130.7633 (6)0.7942 (5)0.12838 (19)0.0609 (13)
H130.82580.78390.16160.073*
C140.7971 (7)0.8890 (5)0.0848 (2)0.0728 (15)
H140.88060.94360.08970.087*
C150.7101 (7)0.9044 (5)0.0344 (2)0.0684 (15)
C160.5876 (7)0.8215 (7)0.0288 (2)0.0774 (17)
H160.52660.82910.00510.093*
C170.5550 (6)0.7284 (6)0.0726 (2)0.0710 (15)
H170.47270.67240.06740.085*
C180.7427 (10)1.0141 (8)0.0113 (3)0.112 (3)
H18A0.72310.98040.05130.168*
H18B0.84531.04040.00830.168*
H18C0.68051.09140.00350.168*
C190.7143 (5)0.5804 (4)0.32222 (16)0.0457 (10)
C200.6470 (6)0.5344 (6)0.37311 (17)0.0678 (14)
H200.56080.48250.37030.081*
C210.7058 (8)0.5643 (8)0.4288 (2)0.088 (2)
H210.65900.53290.46370.105*
C220.8317 (9)0.6392 (7)0.4334 (2)0.091 (2)
H220.87120.65920.47130.110*
C230.9005 (8)0.6853 (6)0.3823 (2)0.0874 (19)
H230.98740.73610.38530.105*
C240.8416 (6)0.6567 (5)0.3261 (2)0.0658 (14)
H240.88770.68880.29120.079*
N10.6521 (4)0.5396 (3)0.26516 (13)0.0454 (8)
N20.8669 (6)0.4523 (5)0.07901 (16)0.0717 (13)
O10.6300 (4)0.2284 (3)0.16486 (13)0.0585 (8)
O20.6411 (4)0.6622 (3)0.22807 (11)0.0539 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.037 (2)0.033 (2)0.059 (2)0.0030 (18)0.0031 (18)0.0012 (18)
C20.045 (3)0.030 (2)0.098 (3)0.002 (2)0.007 (3)0.000 (2)
C30.051 (3)0.041 (3)0.105 (4)0.006 (2)0.014 (3)0.023 (3)
C40.053 (3)0.054 (3)0.074 (3)0.019 (3)0.000 (2)0.015 (2)
C50.053 (3)0.046 (2)0.057 (2)0.007 (2)0.003 (2)0.003 (2)
C60.034 (2)0.039 (2)0.0515 (19)0.0039 (18)0.0058 (16)0.0040 (17)
C70.036 (2)0.035 (2)0.0440 (18)0.0044 (17)0.0030 (16)0.0010 (17)
C80.034 (2)0.039 (2)0.0475 (19)0.0019 (18)0.0014 (16)0.0024 (17)
C90.048 (3)0.045 (3)0.067 (3)0.005 (2)0.008 (2)0.002 (2)
C100.066 (3)0.048 (2)0.0419 (19)0.007 (2)0.002 (2)0.0000 (19)
C110.038 (2)0.049 (2)0.051 (2)0.0084 (19)0.0003 (17)0.0013 (19)
C120.041 (3)0.044 (2)0.0493 (19)0.006 (2)0.0000 (18)0.0058 (18)
C130.060 (3)0.057 (3)0.065 (3)0.002 (3)0.011 (2)0.015 (2)
C140.067 (4)0.057 (3)0.095 (4)0.006 (3)0.003 (3)0.019 (3)
C150.082 (4)0.059 (3)0.064 (3)0.023 (3)0.010 (3)0.020 (3)
C160.077 (4)0.096 (5)0.059 (3)0.011 (4)0.011 (3)0.024 (3)
C170.066 (4)0.077 (4)0.070 (3)0.008 (3)0.022 (2)0.012 (3)
C180.126 (7)0.102 (5)0.108 (4)0.023 (5)0.016 (4)0.055 (4)
C190.053 (3)0.039 (2)0.046 (2)0.009 (2)0.0059 (18)0.0024 (18)
C200.062 (3)0.091 (4)0.050 (2)0.001 (3)0.009 (2)0.007 (3)
C210.100 (5)0.116 (6)0.048 (3)0.003 (5)0.009 (3)0.000 (3)
C220.135 (7)0.083 (4)0.056 (3)0.002 (5)0.016 (3)0.018 (3)
C230.117 (5)0.068 (4)0.077 (3)0.033 (4)0.016 (3)0.011 (3)
C240.085 (4)0.052 (3)0.061 (2)0.018 (3)0.001 (3)0.004 (2)
N10.046 (2)0.0425 (19)0.0473 (16)0.0103 (18)0.0050 (15)0.0043 (15)
N20.076 (3)0.083 (3)0.056 (2)0.017 (3)0.009 (2)0.003 (2)
O10.065 (2)0.0405 (17)0.0696 (18)0.0055 (16)0.0100 (16)0.0047 (14)
O20.067 (2)0.0478 (17)0.0469 (13)0.0153 (17)0.0043 (14)0.0060 (13)
Geometric parameters (Å, º) top
C1—C61.379 (5)C12—C131.376 (6)
C1—O11.378 (5)C13—C141.373 (6)
C1—C21.381 (5)C13—H130.9300
C2—C31.360 (7)C14—C151.369 (7)
C2—H20.9300C14—H140.9300
C3—C41.388 (7)C15—C161.376 (8)
C3—H30.9300C15—C181.507 (7)
C4—C51.362 (6)C16—C171.364 (7)
C4—H40.9300C16—H160.9300
C5—C61.393 (5)C17—H170.9300
C5—H50.9300C18—H18A0.9600
C6—C71.478 (5)C18—H18B0.9600
C7—N11.473 (5)C18—H18C0.9600
C7—C81.534 (5)C19—C201.354 (6)
C7—H70.9800C19—C241.371 (7)
C8—C101.459 (6)C19—N11.436 (5)
C8—C91.526 (6)C20—C211.371 (7)
C8—C111.553 (6)C20—H200.9300
C9—O11.394 (5)C21—C221.355 (10)
C9—H9A0.9700C21—H210.9300
C9—H9B0.9700C22—C231.365 (8)
C10—N21.131 (6)C22—H220.9300
C11—O21.412 (5)C23—C241.377 (7)
C11—C121.492 (5)C23—H230.9300
C11—H110.9800C24—H240.9300
C12—C171.357 (6)N1—O21.461 (4)
C6—C1—O1121.4 (3)C13—C12—C11121.5 (4)
C6—C1—C2122.0 (4)C12—C13—C14120.8 (4)
O1—C1—C2116.6 (4)C12—C13—H13119.6
C3—C2—C1120.3 (4)C14—C13—H13119.6
C3—C2—H2119.9C15—C14—C13121.2 (5)
C1—C2—H2119.9C15—C14—H14119.4
C2—C3—C4119.1 (4)C13—C14—H14119.4
C2—C3—H3120.5C14—C15—C16117.7 (5)
C4—C3—H3120.5C14—C15—C18120.9 (6)
C5—C4—C3120.2 (4)C16—C15—C18121.3 (6)
C5—C4—H4119.9C17—C16—C15120.4 (5)
C3—C4—H4119.9C17—C16—H16119.8
C4—C5—C6121.9 (4)C15—C16—H16119.8
C4—C5—H5119.1C12—C17—C16122.5 (5)
C6—C5—H5119.1C12—C17—H17118.8
C1—C6—C5116.6 (4)C16—C17—H17118.8
C1—C6—C7121.6 (3)C15—C18—H18A109.5
C5—C6—C7121.7 (4)C15—C18—H18B109.5
N1—C7—C6113.6 (3)H18A—C18—H18B109.5
N1—C7—C899.5 (3)C15—C18—H18C109.5
C6—C7—C8113.8 (3)H18A—C18—H18C109.5
N1—C7—H7109.8H18B—C18—H18C109.5
C6—C7—H7109.8C20—C19—C24120.2 (4)
C8—C7—H7109.8C20—C19—N1117.5 (4)
C10—C8—C9109.8 (4)C24—C19—N1122.2 (4)
C10—C8—C7110.8 (3)C19—C20—C21120.1 (6)
C9—C8—C7107.9 (3)C19—C20—H20120.0
C10—C8—C11113.1 (3)C21—C20—H20120.0
C9—C8—C11112.1 (3)C22—C21—C20120.4 (5)
C7—C8—C11102.8 (3)C22—C21—H21119.8
O1—C9—C8111.9 (4)C20—C21—H21119.8
O1—C9—H9A109.2C23—C22—C21119.8 (5)
C8—C9—H9A109.2C23—C22—H22120.1
O1—C9—H9B109.2C21—C22—H22120.1
C8—C9—H9B109.2C22—C23—C24120.2 (6)
H9A—C9—H9B107.9C22—C23—H23119.9
N2—C10—C8178.6 (5)C24—C23—H23119.9
O2—C11—C12109.2 (3)C19—C24—C23119.3 (5)
O2—C11—C8104.6 (3)C19—C24—H24120.3
C12—C11—C8117.3 (3)C23—C24—H24120.3
O2—C11—H11108.5C19—N1—O2106.7 (3)
C12—C11—H11108.5C19—N1—C7113.8 (3)
C8—C11—H11108.5O2—N1—C7100.3 (3)
C17—C12—C13117.3 (4)C1—O1—C9114.0 (3)
C17—C12—C11121.2 (4)C11—O2—N1103.5 (3)
C6—C1—C2—C30.1 (7)C17—C12—C13—C143.3 (7)
O1—C1—C2—C3179.6 (4)C11—C12—C13—C14179.4 (5)
C1—C2—C3—C40.3 (7)C12—C13—C14—C151.8 (8)
C2—C3—C4—C50.5 (8)C13—C14—C15—C160.1 (8)
C3—C4—C5—C60.4 (8)C13—C14—C15—C18176.3 (5)
O1—C1—C6—C5179.6 (3)C14—C15—C16—C170.5 (9)
C2—C1—C6—C50.1 (6)C18—C15—C16—C17176.0 (6)
O1—C1—C6—C72.6 (6)C13—C12—C17—C163.0 (8)
C2—C1—C6—C7177.1 (4)C11—C12—C17—C16179.7 (5)
C4—C5—C6—C10.2 (6)C15—C16—C17—C121.2 (9)
C4—C5—C6—C7177.2 (4)C24—C19—C20—C210.2 (8)
C1—C6—C7—N1109.5 (4)N1—C19—C20—C21176.7 (5)
C5—C6—C7—N173.6 (5)C19—C20—C21—C220.3 (10)
C1—C6—C7—C83.5 (5)C20—C21—C22—C230.0 (11)
C5—C6—C7—C8173.4 (3)C21—C22—C23—C240.5 (10)
N1—C7—C8—C10150.9 (3)C20—C19—C24—C230.3 (8)
C6—C7—C8—C1087.8 (4)N1—C19—C24—C23176.0 (5)
N1—C7—C8—C988.8 (4)C22—C23—C24—C190.7 (9)
C6—C7—C8—C932.4 (4)C20—C19—N1—O2132.9 (4)
N1—C7—C8—C1129.8 (4)C24—C19—N1—O250.7 (5)
C6—C7—C8—C11151.0 (3)C20—C19—N1—C7117.4 (4)
C10—C8—C9—O160.6 (4)C24—C19—N1—C759.0 (5)
C7—C8—C9—O160.3 (4)C6—C7—N1—C1975.1 (4)
C11—C8—C9—O1172.8 (3)C8—C7—N1—C19163.5 (3)
C10—C8—C11—O2118.3 (4)C6—C7—N1—O2171.3 (3)
C9—C8—C11—O2116.9 (4)C8—C7—N1—O249.9 (3)
C7—C8—C11—O21.3 (4)C6—C1—O1—C924.7 (5)
C10—C8—C11—C122.8 (5)C2—C1—O1—C9155.6 (4)
C9—C8—C11—C12122.0 (4)C8—C9—O1—C157.2 (5)
C7—C8—C11—C12122.4 (4)C12—C11—O2—N1158.9 (3)
O2—C11—C12—C17147.9 (4)C8—C11—O2—N132.6 (4)
C8—C11—C12—C1793.4 (5)C19—N1—O2—C11172.2 (3)
O2—C11—C12—C1334.9 (5)C7—N1—O2—C1153.3 (4)
C8—C11—C12—C1383.8 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C19–C24 and C12–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg10.932.993.701 (5)134
C20—H20···Cg2i0.932.953.803 (6)153
C21—H21···N2ii0.932.563.385 (6)148
C23—H23···N2iii0.932.623.466 (7)151
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+3/2, y+1, z+1/2; (iii) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC24H20N2O2
Mr368.42
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)8.9890 (16), 9.8432 (19), 22.084 (4)
V3)1954.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.25 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.976, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
10510, 4476, 2396
Rint0.065
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.081, 0.252, 1.00
No. of reflections4476
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.33

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C19–C24 and C12–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg10.932.993.701 (5)134
C20—H20···Cg2i0.932.953.803 (6)153
C21—H21···N2ii0.932.563.385 (6)148
C23—H23···N2iii0.932.623.466 (7)151
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+3/2, y+1, z+1/2; (iii) x+2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the X-ray intensity data collection. K. Swaminathan and K. Sethusankar thank Dr V. Murugan, Head of the Department of Physics, RKM Vivekananda College, Chennai, India, for providing facilities in the department to carry out this work.

References

First citationBakthadoss, M. & Murugan, G. (2010). Eur. J. Org. Chem. pp. 5825–5830.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGreen, M. J., Tiberi, R. L., Friary, R., Lutsky, B. N., Berkenkoph, J., Fernandez, X. & Monahan, M. (1982). J. Med. Chem. 25, 1492–1495.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKashiwada, Y., Yamazaki, K., Ikeshiro, Y., Yamagishi, T., Fujioka, T., Mihashi, K., Mizuki, K., Cosentino, L. M., Fowke, K., Natschke, S. L. M. & Lee, K. H. (2001). Tetrahedron, 57, 1559–1563.  Web of Science CSD CrossRef CAS Google Scholar
First citationMullen, G. B., DeCory, T. R., Mitchell, J. T., Allen, S. D., Kinsolving, C. R. & Georgiev, V. S. (1988). J. Med. Chem. 31, 2008–2014.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwaminathan, K., Sethusankar, K., Murugan, G. & Bakthadoss, M. (2011). Acta Cryst. E67, o905.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages o283-o284
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds