organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

17-(Pyrimidin-2-yl)-8,16-dioxa-17-aza­tetra­cyclo­[7.7.1.02,7.010,15]hepta­deca-2,4,6,10,12,14-hexa­ene

aPharmaceutical Research Centre, PCSIR Labs. Complex, Karachi, Pakistan, bDepartment of Chemistry, University of Karachi, Karachi, Pakistan, and cH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

(Received 26 December 2011; accepted 9 January 2012; online 18 January 2012)

In the title compound, C18H13N3O2, the benzene rings form a dihedral angle of 78.49 (9)°. The dihedral angles between the benzene rings and the pyrimidine ring are 76.53 (10) and 27.73 (11)°. The two cis-fused six-membered heterocyclic rings adopt half-chair confirmations. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming chains parallel to the b axis.

Related literature

For the biological activity of Schiff bases, see: Khan et al. (2009[Khan, K. M., Khan, M., Ali, M., Taha, M., Rasheed, S., Perveen, S. & Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 7795-7801.]). For the crystal structures of Schiff bases, see: Aslam et al. (2011[Aslam, M., Anis, I., Afza, N., Nelofar, A. & Yousuf, S. (2011). Acta Cryst. E67, o3215.]); Zeb & Yousuf (2011[Zeb, A. & Yousuf, S. (2011). Acta Cryst. E67, o2801.]). For the importance of carbon–nitro­gen bond-formation reactions for elucidating the mechanism of racemization and transamination reactions in biological systems, see: Lau et al. (1999[Lau, K. Y., Mayr, A. & Cheung, K. K. (1999). Inorg. Chim. Acta, 285, 223-332.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13N3O2

  • Mr = 303.31

  • Monoclinic, C 2/c

  • a = 30.004 (4) Å

  • b = 6.6083 (9) Å

  • c = 15.123 (2) Å

  • β = 99.652 (4)°

  • V = 2956.0 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 273 K

  • 0.54 × 0.09 × 0.08 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.952, Tmax = 0.993

  • 8329 measured reflections

  • 2739 independent reflections

  • 2026 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.097

  • S = 1.03

  • 2739 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O2i 0.93 2.48 3.199 (2) 134
Symmetry code: (i) x, y-1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In organic chemistry, the reactions invloving the carbon-nitrogen bond formation are very important for elucidating the mechanism of racemisation and transamination reactions in biological systems (Lau et al., 1999). The title compound was synthesized as a part of our on going research on Schiff base ligands (Khan et al., 2009; Aslam et al., 2011; Zeb & Yousuf, 2011).

The title compound (Fig. 1) is composed of five fused rings including two benzene (C1–C6 and C8–C13), one pyrimidine (N2/N3/C15–18) and two six membered heterocyclic rings (O1/N1/C7/C8/C13/C14 and O2/N1/C1/C6/C7/C14). The benzene (C8–C13) and pyrimidine (N2/N3/C15–C18) rings are twisted by 27.72 (10)° with respect to each other and form dihedral angles of 76.55 (10) and 78.48 (9)°, respectively, with the benzene ring (C1–C6). The cis fused six membered heterocyclic rings (O1/N1/C7/C8/C13/C14) and (O2/N1/C1/C6/C7/C14) adopt half-chair conformations; the atoms N1 and C7 lie -0.483 (3) and 0.311 (3) Å, respectively, from the plane defined by atoms (O1/C8/C13/C14) and the atoms N1 and C14 lie -0.456 (3) and 0.300 (3) Å, respectively, from the plane defined by atoms (O2/C1/C6/C7). In the crystal structure, the molecules are linked to form chains via C5—H5A···O2 intermolecular hydrogen bonds (Table 1) and lie parallel to the b-axix (Fig. 2). The bond lengths and angles in the title molecule are in accord with the corresponding bond lengths and angles reported in closely related structures (Aslam et al., 2011; Zeb & Yousuf, 2011).

Related literature top

For the biological activity of Schiff bases, see: Khan et al. (2009). For the crystal structures of Schiff bases, see: Aslam et al. (2011); Zeb & Yousuf (2011). For the importance of carbon–nitrogen bond-formation reactions for elucidating the mechanism of racemization and transamination reactions in biological systems, see: Lau et al. (1999).

Experimental top

A mixture of salicylaldehyde (2 mol) and 2-aminopyrimidine (1 mol) in ethanol (50 ml) along with 3 drops of conc. H2SO4 was refluxed for 5 h at 343 K. The mixture was kept at room temperature for ten days to obtain light yellow crystals. The crystalline product was collected, washed with cooled ethanol and dried to afford the title compound in 80% yield. Recrystalization by slow evaporation of an ethanol solution of the title compound afforded light yellow crystals suitable for single-crystal X-ray diffraction studies. All chemicals were purchased from Sigma-Aldrich.

Refinement top

The aryl and methine H-atoms were positioned geometrically with C—H = 0.93 and 0.98 Å, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008, PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound showing intermolecular hydrogen bonds; the hydrogen atoms not involved in hydrogen bonding have been excluded for clarity.
17-(Pyrimidin-2-yl)-8,16-dioxa-17- azatetracyclo[7.7.1.02,7.010,15]heptadeca-2,4,6,10,12,14-hexaene top
Crystal data top
C18H13N3O2F(000) = 1264
Mr = 303.31Dx = 1.363 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1521 reflections
a = 30.004 (4) Åθ = 2.7–21.4°
b = 6.6083 (9) ŵ = 0.09 mm1
c = 15.123 (2) ÅT = 273 K
β = 99.652 (4)°Needle, yellow
V = 2956.0 (7) Å30.54 × 0.09 × 0.08 mm
Z = 8
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2739 independent reflections
Radiation source: fine-focus sealed tube2026 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scanθmax = 25.5°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 3635
Tmin = 0.952, Tmax = 0.993k = 87
8329 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0358P)2 + 1.0438P]
where P = (Fo2 + 2Fc2)/3
2739 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.12 e Å3
Crystal data top
C18H13N3O2V = 2956.0 (7) Å3
Mr = 303.31Z = 8
Monoclinic, C2/cMo Kα radiation
a = 30.004 (4) ŵ = 0.09 mm1
b = 6.6083 (9) ÅT = 273 K
c = 15.123 (2) Å0.54 × 0.09 × 0.08 mm
β = 99.652 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2739 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2026 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.993Rint = 0.032
8329 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.03Δρmax = 0.16 e Å3
2739 reflectionsΔρmin = 0.12 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.14375 (4)0.35324 (17)0.63616 (8)0.0445 (3)
O20.13833 (4)0.06985 (16)0.78989 (7)0.0416 (3)
N10.09854 (4)0.0699 (2)0.65391 (9)0.0406 (4)
N20.02176 (5)0.1398 (3)0.63059 (12)0.0602 (5)
N30.04887 (5)0.2011 (3)0.64007 (12)0.0628 (5)
C10.13535 (5)0.1148 (2)0.83042 (11)0.0355 (4)
C20.14564 (6)0.1211 (3)0.92321 (11)0.0437 (4)
H2A0.15520.00480.95550.052*
C30.14156 (6)0.3003 (3)0.96712 (12)0.0494 (5)
H3A0.14850.30501.02940.059*
C40.12721 (6)0.4732 (3)0.91988 (12)0.0488 (5)
H4A0.12450.59390.95020.059*
C50.11688 (6)0.4670 (3)0.82775 (12)0.0414 (4)
H5A0.10700.58370.79610.050*
C60.12111 (5)0.2880 (2)0.78159 (10)0.0333 (4)
C70.10824 (5)0.2779 (3)0.68069 (11)0.0380 (4)
H7A0.08100.35950.66220.046*
C80.18023 (5)0.2236 (3)0.63998 (11)0.0400 (4)
C90.21881 (6)0.2982 (3)0.61168 (12)0.0504 (5)
H9A0.21970.43080.59140.060*
C100.25570 (6)0.1738 (4)0.61407 (13)0.0579 (5)
H10A0.28160.22310.59540.070*
C110.25481 (6)0.0230 (4)0.64381 (13)0.0571 (5)
H11A0.28010.10560.64560.069*
C120.21623 (6)0.0969 (3)0.67091 (12)0.0483 (5)
H12A0.21560.22980.69100.058*
C130.17824 (5)0.0248 (3)0.66860 (11)0.0382 (4)
C140.13536 (5)0.0582 (3)0.69334 (11)0.0399 (4)
H14A0.13030.19460.66820.048*
C150.05409 (6)0.0009 (3)0.64170 (11)0.0453 (5)
C160.02032 (7)0.0673 (4)0.61509 (18)0.0796 (7)
H16A0.04420.15870.60620.096*
C170.02996 (8)0.1338 (5)0.6117 (2)0.0925 (9)
H17A0.05960.18060.60090.111*
C180.00588 (8)0.2636 (4)0.62481 (18)0.0828 (8)
H18A0.00010.40200.62310.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0480 (7)0.0438 (8)0.0434 (7)0.0028 (6)0.0124 (5)0.0111 (6)
O20.0520 (7)0.0298 (7)0.0446 (7)0.0027 (5)0.0127 (5)0.0019 (5)
N10.0359 (8)0.0398 (9)0.0447 (8)0.0015 (6)0.0026 (6)0.0035 (7)
N20.0370 (9)0.0657 (12)0.0771 (12)0.0010 (8)0.0074 (8)0.0018 (9)
N30.0496 (10)0.0545 (11)0.0825 (13)0.0138 (8)0.0057 (9)0.0044 (9)
C10.0333 (9)0.0305 (10)0.0441 (10)0.0017 (7)0.0103 (7)0.0010 (8)
C20.0492 (10)0.0399 (11)0.0425 (10)0.0030 (8)0.0095 (8)0.0081 (8)
C30.0582 (11)0.0500 (12)0.0398 (10)0.0014 (9)0.0075 (9)0.0010 (9)
C40.0578 (12)0.0384 (11)0.0510 (12)0.0007 (9)0.0112 (9)0.0083 (9)
C50.0440 (10)0.0312 (10)0.0494 (11)0.0011 (8)0.0087 (8)0.0027 (8)
C60.0299 (8)0.0303 (9)0.0405 (9)0.0016 (7)0.0082 (7)0.0031 (7)
C70.0352 (9)0.0355 (10)0.0432 (10)0.0013 (7)0.0059 (7)0.0047 (8)
C80.0408 (9)0.0479 (11)0.0311 (9)0.0009 (8)0.0055 (7)0.0001 (8)
C90.0533 (11)0.0573 (13)0.0422 (10)0.0080 (10)0.0130 (9)0.0030 (9)
C100.0432 (11)0.0820 (17)0.0509 (12)0.0062 (11)0.0145 (9)0.0035 (11)
C110.0421 (11)0.0755 (16)0.0543 (12)0.0113 (10)0.0095 (9)0.0030 (11)
C120.0477 (11)0.0517 (12)0.0444 (11)0.0067 (9)0.0043 (8)0.0015 (9)
C130.0400 (9)0.0405 (11)0.0336 (9)0.0007 (8)0.0042 (7)0.0036 (8)
C140.0450 (10)0.0348 (10)0.0398 (10)0.0011 (8)0.0068 (8)0.0050 (8)
C150.0422 (10)0.0535 (13)0.0405 (10)0.0071 (9)0.0081 (8)0.0030 (9)
C160.0400 (12)0.088 (2)0.110 (2)0.0023 (12)0.0114 (12)0.0051 (15)
C170.0437 (13)0.094 (2)0.137 (2)0.0221 (14)0.0056 (14)0.0016 (18)
C180.0608 (15)0.0690 (17)0.116 (2)0.0225 (13)0.0080 (14)0.0020 (14)
Geometric parameters (Å, º) top
O1—C81.383 (2)C5—H5A0.9300
O1—C71.4409 (18)C6—C71.511 (2)
O2—C11.3749 (19)C7—H7A0.9800
O2—C141.4499 (19)C8—C131.387 (2)
N1—C151.396 (2)C8—C91.390 (2)
N1—C141.440 (2)C9—C101.374 (3)
N1—C71.449 (2)C9—H9A0.9300
N2—C151.334 (2)C10—C111.378 (3)
N2—C161.334 (3)C10—H10A0.9300
N3—C151.333 (2)C11—C121.380 (3)
N3—C181.337 (2)C11—H11A0.9300
C1—C21.386 (2)C12—C131.391 (2)
C1—C61.390 (2)C12—H12A0.9300
C2—C31.373 (2)C13—C141.503 (2)
C2—H2A0.9300C14—H14A0.9800
C3—C41.378 (3)C16—C171.359 (3)
C3—H3A0.9300C16—H16A0.9300
C4—C51.376 (2)C17—C181.364 (3)
C4—H4A0.9300C17—H17A0.9300
C5—C61.390 (2)C18—H18A0.9300
C8—O1—C7114.10 (13)C10—C9—C8119.22 (19)
C1—O2—C14113.85 (12)C10—C9—H9A120.4
C15—N1—C14120.49 (15)C8—C9—H9A120.4
C15—N1—C7119.85 (14)C9—C10—C11120.91 (18)
C14—N1—C7109.76 (13)C9—C10—H10A119.5
C15—N2—C16114.73 (19)C11—C10—H10A119.5
C15—N3—C18114.63 (19)C10—C11—C12119.59 (18)
O2—C1—C2117.26 (14)C10—C11—H11A120.2
O2—C1—C6122.08 (14)C12—C11—H11A120.2
C2—C1—C6120.62 (15)C11—C12—C13120.83 (19)
C3—C2—C1119.53 (16)C11—C12—H12A119.6
C3—C2—H2A120.2C13—C12—H12A119.6
C1—C2—H2A120.2C8—C13—C12118.52 (16)
C2—C3—C4120.66 (17)C8—C13—C14120.47 (15)
C2—C3—H3A119.7C12—C13—C14120.97 (16)
C4—C3—H3A119.7N1—C14—O2111.19 (13)
C5—C4—C3119.87 (17)N1—C14—C13108.15 (14)
C5—C4—H4A120.1O2—C14—C13111.07 (13)
C3—C4—H4A120.1N1—C14—H14A108.8
C4—C5—C6120.64 (16)O2—C14—H14A108.8
C4—C5—H5A119.7C13—C14—H14A108.8
C6—C5—H5A119.7N3—C15—N2127.55 (17)
C5—C6—C1118.67 (15)N3—C15—N1116.23 (16)
C5—C6—C7121.01 (15)N2—C15—N1116.20 (17)
C1—C6—C7120.25 (14)N2—C16—C17123.2 (2)
O1—C7—N1109.07 (13)N2—C16—H16A118.4
O1—C7—C6111.90 (12)C17—C16—H16A118.4
N1—C7—C6109.23 (13)C16—C17—C18116.9 (2)
O1—C7—H7A108.9C16—C17—H17A121.6
N1—C7—H7A108.9C18—C17—H17A121.6
C6—C7—H7A108.9N3—C18—C17123.0 (2)
O1—C8—C13121.61 (15)N3—C18—H18A118.5
O1—C8—C9117.48 (16)C17—C18—H18A118.5
C13—C8—C9120.89 (17)
C14—O2—C1—C2169.13 (14)C10—C11—C12—C130.0 (3)
C14—O2—C1—C613.1 (2)O1—C8—C13—C12179.89 (14)
O2—C1—C2—C3177.58 (15)C9—C8—C13—C121.9 (2)
C6—C1—C2—C30.2 (2)O1—C8—C13—C142.2 (2)
C1—C2—C3—C40.2 (3)C9—C8—C13—C14175.99 (15)
C2—C3—C4—C50.1 (3)C11—C12—C13—C81.2 (2)
C3—C4—C5—C60.5 (3)C11—C12—C13—C14176.69 (16)
C4—C5—C6—C10.9 (2)C15—N1—C14—O277.64 (18)
C4—C5—C6—C7177.79 (15)C7—N1—C14—O267.97 (16)
O2—C1—C6—C5176.91 (14)C15—N1—C14—C13160.16 (14)
C2—C1—C6—C50.8 (2)C7—N1—C14—C1354.23 (17)
O2—C1—C6—C70.0 (2)C1—O2—C14—N146.56 (17)
C2—C1—C6—C7177.66 (14)C1—O2—C14—C1373.93 (16)
C8—O1—C7—N146.98 (17)C8—C13—C14—N119.1 (2)
C8—O1—C7—C673.99 (17)C12—C13—C14—N1158.72 (15)
C15—N1—C7—O1143.14 (14)C8—C13—C14—O2103.18 (17)
C14—N1—C7—O170.99 (16)C12—C13—C14—O279.01 (19)
C15—N1—C7—C694.27 (17)C18—N3—C15—N20.5 (3)
C14—N1—C7—C651.60 (17)C18—N3—C15—N1177.54 (18)
C5—C6—C7—O181.72 (18)C16—N2—C15—N30.9 (3)
C1—C6—C7—O1101.46 (17)C16—N2—C15—N1177.13 (18)
C5—C6—C7—N1157.40 (14)C14—N1—C15—N321.1 (2)
C1—C6—C7—N119.42 (19)C7—N1—C15—N3163.28 (15)
C7—O1—C8—C1311.9 (2)C14—N1—C15—N2160.68 (15)
C7—O1—C8—C9169.77 (14)C7—N1—C15—N218.5 (2)
O1—C8—C9—C10179.70 (15)C15—N2—C16—C170.7 (4)
C13—C8—C9—C101.4 (3)N2—C16—C17—C180.2 (4)
C8—C9—C10—C110.2 (3)C15—N3—C18—C170.1 (4)
C9—C10—C11—C120.5 (3)C16—C17—C18—N30.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O2i0.932.483.199 (2)134
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC18H13N3O2
Mr303.31
Crystal system, space groupMonoclinic, C2/c
Temperature (K)273
a, b, c (Å)30.004 (4), 6.6083 (9), 15.123 (2)
β (°) 99.652 (4)
V3)2956.0 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.54 × 0.09 × 0.08
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.952, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
8329, 2739, 2026
Rint0.032
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.097, 1.03
No. of reflections2739
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.12

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008, PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O2i0.932.483.199 (2)134
Symmetry code: (i) x, y1, z.
 

Footnotes

Additional correspondence author; e-mail maslamchemist@hotmail.com.

Acknowledgements

MA expresses his gratitude to the Pakistan Council of Scientific and Industrial Research Laboratories, Karachi, the Department of Chemistry, University of Karachi, and the H·E.J. Research Institute of Chemistry, Inter­national Center for Chemical and Biological Sciences, University of Karachi, for providing financial support, research facilities and X-ray diffraction facilities, respectively.

References

First citationAslam, M., Anis, I., Afza, N., Nelofar, A. & Yousuf, S. (2011). Acta Cryst. E67, o3215.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKhan, K. M., Khan, M., Ali, M., Taha, M., Rasheed, S., Perveen, S. & Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 7795–7801.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLau, K. Y., Mayr, A. & Cheung, K. K. (1999). Inorg. Chim. Acta, 285, 223–332.  Web of Science CSD CrossRef CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeb, A. & Yousuf, S. (2011). Acta Cryst. E67, o2801.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds