organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(3-Chloro­phenyl­sulfin­yl)-2,4,6-tri­methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 29 December 2011; accepted 4 January 2012; online 14 January 2012)

In the title compound, C17H15ClO2S, the 3-chloro­phenyl ring makes a dihedral angle of 71.46 (4)° with the mean plane of the benzofuran fragment. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds and a slipped ππ inter­action between the 3-chloro­phenyl rings of adjacent mol­ecules [centroid–centroid distance = 3.630 (2) Å, inter­planar distance = 3.375 (2) Å and slippage = 1.337 (2) Å].

Related literature

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2009[Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191-195.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry. 64, 831-834.]). For the crystal structures of related compounds, see: Choi et al. (2010[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o2702.]); Seo et al. (2011[Seo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o3113.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15ClO2S

  • Mr = 318.80

  • Triclinic, [P \overline 1]

  • a = 6.7900 (2) Å

  • b = 8.1288 (3) Å

  • c = 14.6813 (5) Å

  • α = 76.763 (2)°

  • β = 84.145 (2)°

  • γ = 73.241 (2)°

  • V = 754.73 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 173 K

  • 0.28 × 0.25 × 0.21 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.675, Tmax = 0.746

  • 14017 measured reflections

  • 3704 independent reflections

  • 3182 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.105

  • S = 1.05

  • 3704 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11B⋯O2i 0.98 2.30 3.249 (2) 163
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Many compounds involving benzofuran skeleton have drawn much attention owing to their valuable biological properties such as antibacterial and antifungal, antitumor and antiviral, and antimicrobial activities (Aslam et al. , 2009, Galal et al. , 2009, Khan et al. , 2005). These benzofuran derivatives occur in a wide range of natural products (Akgul & Anil, 2003; Soekamto et al. , 2003). As a part of our ongoing study of 2, 4, 6-trimethyl-1-benzofuran derivatives containing either 3-(4-chlorophenylsulfinyl) (Choi et al. , 2010) or 3-(3-fluorophenylsufinyl) (Seo et al. , 2011) substituents, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.005 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle between the 3-chlorophenyl ring and the mean plane of the benzofurn fragment is 71.46 (4)°. The crystal packing (Fig. 2) is stabilized by weak intermolecular C–H···O hydrogen bonds (Table 1). The crystal packing (Fig. 2) is further stabilized by a weak slipped ππ interaction between the 3-chlorophenyl rings of adjacent molecules, with a Cg···Cgii distance of 3.630 (2) Å and an interplanar distance of 3.375 (2) Å resulting in a slippage of 1.337 (2) Å (Cg is the centroid of the C12-C17 3-chlorophenyl ring).

Related literature top

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2009); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For the crystal structures of related compounds, see: Choi et al. (2010); Seo et al. (2011).

Experimental top

77% 3-Chloroperoxybenzoic acid (269 mg, 1.3 mmol) was added in small portions to a stirred solution of 3-(3-chlorophenylsulfanyl)-2,4,6-trimethyl 1-benzofuran (333 mg, 1.1 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 5 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 73%, m.p. 402–403 K; Rf = 0.53 (hexane-ethyl acetate, 4:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98 Å for methyl H atoms. Uiso(H) =1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···O and ππ interactions (dotted lines) in the crystal structure of the title compound. H atoms not participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) x - 1, y, z; (ii) - x + 1, - y + 1, - z + 2; (iii) x + 1, y, z.]
3-(3-Chlorophenylsulfinyl)-2,4,6-trimethyl-1-benzofuran top
Crystal data top
C17H15ClO2SZ = 2
Mr = 318.80F(000) = 332
Triclinic, P1Dx = 1.403 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7900 (2) ÅCell parameters from 6373 reflections
b = 8.1288 (3) Åθ = 2.7–28.1°
c = 14.6813 (5) ŵ = 0.39 mm1
α = 76.763 (2)°T = 173 K
β = 84.145 (2)°Block, colourless
γ = 73.241 (2)°0.28 × 0.25 × 0.21 mm
V = 754.73 (4) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
3704 independent reflections
Radiation source: rotating anode3182 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.030
Detector resolution: 10.0 pixels mm-1θmax = 28.3°, θmin = 1.4°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1010
Tmin = 0.675, Tmax = 0.746l = 1919
14017 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: difference Fourier map
wR(F2) = 0.105H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0546P)2 + 0.219P]
where P = (Fo2 + 2Fc2)/3
3704 reflections(Δ/σ)max = 0.001
193 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C17H15ClO2Sγ = 73.241 (2)°
Mr = 318.80V = 754.73 (4) Å3
Triclinic, P1Z = 2
a = 6.7900 (2) ÅMo Kα radiation
b = 8.1288 (3) ŵ = 0.39 mm1
c = 14.6813 (5) ÅT = 173 K
α = 76.763 (2)°0.28 × 0.25 × 0.21 mm
β = 84.145 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3704 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3182 reflections with I > 2σ(I)
Tmin = 0.675, Tmax = 0.746Rint = 0.030
14017 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.05Δρmax = 0.33 e Å3
3704 reflectionsΔρmin = 0.42 e Å3
193 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.98398 (6)0.23182 (6)0.99982 (3)0.04624 (14)
S10.46056 (6)0.83926 (5)0.83535 (3)0.03407 (12)
O10.14598 (16)0.96772 (15)0.61039 (8)0.0363 (3)
O20.65568 (19)0.88857 (16)0.83626 (9)0.0443 (3)
C10.3829 (2)0.8720 (2)0.72075 (11)0.0312 (3)
C20.4775 (2)0.80409 (19)0.63819 (10)0.0300 (3)
C30.6724 (2)0.7063 (2)0.61075 (11)0.0336 (3)
C40.6909 (2)0.6719 (2)0.52105 (12)0.0368 (3)
H40.82080.60540.50090.044*
C50.5309 (3)0.7288 (2)0.45904 (11)0.0367 (3)
C60.3406 (3)0.8309 (2)0.48513 (11)0.0375 (3)
H60.22890.87450.44420.045*
C70.3229 (2)0.8653 (2)0.57378 (11)0.0325 (3)
C80.1876 (2)0.9692 (2)0.69925 (11)0.0336 (3)
C90.8536 (3)0.6437 (3)0.67277 (13)0.0448 (4)
H9A0.85150.53090.71410.067*
H9B0.84620.73030.71060.067*
H9C0.98130.62910.63400.067*
C100.5634 (3)0.6788 (3)0.36442 (12)0.0464 (4)
H10A0.53960.56330.37060.070*
H10B0.70470.67410.34080.070*
H10C0.46670.76650.32050.070*
C110.0176 (3)1.0752 (2)0.75130 (13)0.0432 (4)
H11A0.06671.07880.81110.065*
H11B0.09721.02170.76300.065*
H11C0.02881.19500.71410.065*
C120.5290 (2)0.6027 (2)0.86348 (10)0.0302 (3)
C130.7090 (2)0.5182 (2)0.91058 (10)0.0317 (3)
H130.79540.58300.92340.038*
C140.7601 (2)0.3376 (2)0.93850 (11)0.0326 (3)
C150.6376 (2)0.2399 (2)0.92032 (11)0.0339 (3)
H150.67620.11550.93940.041*
C160.4574 (3)0.3280 (2)0.87360 (11)0.0355 (3)
H160.37160.26290.86060.043*
C170.4002 (2)0.5095 (2)0.84550 (11)0.0339 (3)
H170.27530.56900.81450.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0373 (2)0.0353 (2)0.0654 (3)0.00594 (17)0.00790 (18)0.01169 (19)
S10.0379 (2)0.0264 (2)0.0417 (2)0.00941 (16)0.00082 (15)0.01471 (16)
O10.0268 (5)0.0343 (6)0.0432 (6)0.0021 (4)0.0024 (4)0.0087 (5)
O20.0469 (7)0.0333 (6)0.0612 (8)0.0190 (5)0.0072 (6)0.0144 (6)
C10.0296 (7)0.0248 (7)0.0394 (8)0.0070 (6)0.0034 (6)0.0094 (6)
C20.0298 (7)0.0223 (7)0.0373 (7)0.0073 (6)0.0040 (6)0.0072 (6)
C30.0305 (7)0.0252 (7)0.0434 (8)0.0060 (6)0.0043 (6)0.0085 (6)
C40.0348 (8)0.0281 (8)0.0443 (8)0.0054 (6)0.0103 (6)0.0105 (6)
C50.0432 (9)0.0302 (8)0.0367 (8)0.0127 (7)0.0082 (6)0.0083 (6)
C60.0379 (8)0.0339 (9)0.0378 (8)0.0083 (7)0.0003 (6)0.0043 (6)
C70.0286 (7)0.0254 (7)0.0401 (8)0.0048 (6)0.0045 (6)0.0061 (6)
C80.0307 (7)0.0277 (8)0.0417 (8)0.0075 (6)0.0055 (6)0.0094 (6)
C90.0308 (8)0.0460 (10)0.0539 (10)0.0006 (7)0.0003 (7)0.0179 (8)
C100.0565 (11)0.0459 (11)0.0392 (9)0.0175 (9)0.0098 (8)0.0144 (8)
C110.0331 (8)0.0382 (9)0.0551 (10)0.0038 (7)0.0090 (7)0.0161 (8)
C120.0358 (7)0.0257 (7)0.0325 (7)0.0109 (6)0.0039 (6)0.0124 (6)
C130.0338 (7)0.0301 (8)0.0365 (8)0.0126 (6)0.0022 (6)0.0139 (6)
C140.0315 (7)0.0315 (8)0.0360 (7)0.0069 (6)0.0035 (6)0.0137 (6)
C150.0429 (8)0.0262 (8)0.0358 (7)0.0111 (6)0.0057 (6)0.0139 (6)
C160.0432 (8)0.0341 (8)0.0381 (8)0.0196 (7)0.0034 (6)0.0161 (6)
C170.0367 (8)0.0353 (8)0.0348 (7)0.0139 (7)0.0002 (6)0.0130 (6)
Geometric parameters (Å, º) top
Cl1—C141.7412 (16)C9—H9A0.9800
S1—O21.4928 (12)C9—H9B0.9800
S1—C11.7534 (16)C9—H9C0.9800
S1—C121.8009 (15)C10—H10A0.9800
O1—C81.3661 (19)C10—H10B0.9800
O1—C71.3863 (18)C10—H10C0.9800
C1—C81.360 (2)C11—H11A0.9800
C1—C21.459 (2)C11—H11B0.9800
C2—C71.389 (2)C11—H11C0.9800
C2—C31.406 (2)C12—C131.384 (2)
C3—C41.394 (2)C12—C171.389 (2)
C3—C91.502 (2)C13—C141.380 (2)
C4—C51.393 (2)C13—H130.9500
C4—H40.9500C14—C151.384 (2)
C5—C61.390 (2)C15—C161.386 (2)
C5—C101.513 (2)C15—H150.9500
C6—C71.379 (2)C16—C171.386 (2)
C6—H60.9500C16—H160.9500
C8—C111.486 (2)C17—H170.9500
O2—S1—C1111.41 (7)H9A—C9—H9C109.5
O2—S1—C12106.01 (7)H9B—C9—H9C109.5
C1—S1—C1298.39 (7)C5—C10—H10A109.5
C8—O1—C7106.59 (12)C5—C10—H10B109.5
C8—C1—C2107.12 (14)H10A—C10—H10B109.5
C8—C1—S1118.56 (12)C5—C10—H10C109.5
C2—C1—S1134.08 (12)H10A—C10—H10C109.5
C7—C2—C3118.49 (14)H10B—C10—H10C109.5
C7—C2—C1104.44 (13)C8—C11—H11A109.5
C3—C2—C1137.02 (14)C8—C11—H11B109.5
C4—C3—C2116.22 (15)H11A—C11—H11B109.5
C4—C3—C9121.02 (14)C8—C11—H11C109.5
C2—C3—C9122.75 (14)H11A—C11—H11C109.5
C5—C4—C3124.16 (15)H11B—C11—H11C109.5
C5—C4—H4117.9C13—C12—C17121.25 (14)
C3—C4—H4117.9C13—C12—S1116.72 (11)
C6—C5—C4119.45 (15)C17—C12—S1121.85 (12)
C6—C5—C10120.21 (16)C14—C13—C12118.42 (13)
C4—C5—C10120.34 (15)C14—C13—H13120.8
C7—C6—C5116.27 (15)C12—C13—H13120.8
C7—C6—H6121.9C13—C14—C15121.98 (15)
C5—C6—H6121.9C13—C14—Cl1118.34 (12)
C6—C7—O1123.93 (14)C15—C14—Cl1119.67 (12)
C6—C7—C2125.32 (14)C14—C15—C16118.42 (14)
O1—C7—C2110.75 (13)C14—C15—H15120.8
C1—C8—O1111.09 (13)C16—C15—H15120.8
C1—C8—C11133.38 (16)C17—C16—C15121.11 (14)
O1—C8—C11115.53 (14)C17—C16—H16119.4
C3—C9—H9A109.5C15—C16—H16119.4
C3—C9—H9B109.5C16—C17—C12118.80 (15)
H9A—C9—H9B109.5C16—C17—H17120.6
C3—C9—H9C109.5C12—C17—H17120.6
O2—S1—C1—C8127.62 (13)C1—C2—C7—C6178.73 (15)
C12—S1—C1—C8121.46 (13)C3—C2—C7—O1176.29 (13)
O2—S1—C1—C258.83 (17)C1—C2—C7—O11.51 (16)
C12—S1—C1—C252.10 (16)C2—C1—C8—O11.05 (17)
C8—C1—C2—C71.54 (16)S1—C1—C8—O1174.11 (10)
S1—C1—C2—C7172.54 (13)C2—C1—C8—C11177.87 (17)
C8—C1—C2—C3175.63 (17)S1—C1—C8—C117.0 (3)
S1—C1—C2—C310.3 (3)C7—O1—C8—C10.11 (17)
C7—C2—C3—C42.9 (2)C7—O1—C8—C11179.01 (13)
C1—C2—C3—C4179.79 (16)O2—S1—C12—C1322.00 (13)
C7—C2—C3—C9176.05 (15)C1—S1—C12—C13137.22 (12)
C1—C2—C3—C90.8 (3)O2—S1—C12—C17162.87 (12)
C2—C3—C4—C50.4 (2)C1—S1—C12—C1747.65 (13)
C9—C3—C4—C5178.61 (16)C17—C12—C13—C140.9 (2)
C3—C4—C5—C61.9 (2)S1—C12—C13—C14176.04 (11)
C3—C4—C5—C10177.54 (15)C12—C13—C14—C150.3 (2)
C4—C5—C6—C71.5 (2)C12—C13—C14—Cl1178.73 (11)
C10—C5—C6—C7177.93 (14)C13—C14—C15—C160.8 (2)
C5—C6—C7—O1178.59 (14)Cl1—C14—C15—C16178.26 (12)
C5—C6—C7—C21.1 (2)C14—C15—C16—C170.1 (2)
C8—O1—C7—C6179.30 (15)C15—C16—C17—C121.1 (2)
C8—O1—C7—C20.93 (16)C13—C12—C17—C161.6 (2)
C3—C2—C7—C63.5 (2)S1—C12—C17—C16176.51 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O2i0.982.303.249 (2)163
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC17H15ClO2S
Mr318.80
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)6.7900 (2), 8.1288 (3), 14.6813 (5)
α, β, γ (°)76.763 (2), 84.145 (2), 73.241 (2)
V3)754.73 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.28 × 0.25 × 0.21
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.675, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
14017, 3704, 3182
Rint0.030
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.105, 1.05
No. of reflections3704
No. of parameters193
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.42

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O2i0.982.303.249 (2)162.8
Symmetry code: (i) x1, y, z.
 

Acknowledgements

This work was supported by the Blue-Bio Industry Regional Innovation Center (RIC08-06-07) at Dongeui University as an RIC program under the Ministry of Knowledge Economy and Busan city.

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191–195.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o2702.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSeo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o3113.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry. 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds