organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl­pyridine–urea (1/1)

aInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, H. Abdullaev Str. 83, Tashkent 100125, Uzbekistan
*Correspondence e-mail: atom.uz@mail.ru

(Received 30 December 2011; accepted 18 January 2012; online 21 January 2012)

In the crystal structure of the title compound, C6H7N·CH4N2O, the 2-methyl­pyridine and urea mol­ecules are linked via N—H⋯O and N—H⋯N hydrogen bonds, forming ribbons extending along the a axis. The dihedral angle between the 2-methyl­pyridine and urea mean planes is 89.09 (9)°. The methyl group shows rotational disorder wherein the H atoms are located over two sets of sites with equal occupancies.

Related literature

For crystal structures of urea inclusion compounds, see: Izotova et al. (2008[Izotova, L., Ashurov, J., Talipov, S., Ibragimov, B. & Weber, E. (2008). Acta Cryst. E64, o1945.]); Chadwick et al. (2009[Chadwick, K., Davey, R., Sadiq, G., Cross, W. & Pritchard, R. (2009). CrystEngComm, 11, 412-414.]).

[Scheme 1]

Experimental

Crystal data
  • C6H7N·CH4N2O

  • Mr = 153.19

  • Orthorhombic, P b c a

  • a = 7.471 (5) Å

  • b = 14.916 (5) Å

  • c = 15.338 (5) Å

  • V = 1709.2 (14) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.68 mm−1

  • T = 293 K

  • 0.36 × 0.30 × 0.22 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.337, Tmax = 1.000

  • 5969 measured reflections

  • 1756 independent reflections

  • 1011 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.167

  • S = 0.97

  • 1756 reflections

  • 112 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯N1 0.91 (2) 2.26 (2) 3.131 (3) 160 (2)
N2—H2A⋯O1i 0.84 (2) 2.11 (2) 2.953 (3) 179 (2)
N3—H3B⋯N1 0.88 (2) 2.30 (2) 3.137 (3) 161 (2)
N3—H3A⋯O1ii 0.91 (2) 2.03 (2) 2.938 (3) 177 (2)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The crystal structure of the title compound (Fig. 1) consists of a 2-methylpyridine and a urea molecules. The urea molecules are mutually bonded by pair of N—H···O hydrogen bonds and form infinite chains along the a-axis (Fig. 2). The molecules of 2-methylpyridine are connected by its N1-atom to the urea molecules via both amino groups resulting in N—H···N type hydrogen bonds. The mean-planes angle between the planes of 2-methylpyridine and urea is 89.09 (9)°. The methyl group of 2-methylpyridine showed rotational disorder with each H-atom located over two positions with occupation factors of 0.50 and 0.50.

The crystal structures of urea inclusion compounds closely related to the title structure have been recently reported (Izotova et al., (2008); Chadwick et al., 2009).

Related literature top

For crystal structures of urea inclusion compounds, see: Izotova et al. (2008); Chadwick et al. (2009).

Experimental top

The compound was purchased from Sigma-Aldrich and used as supplied. A single-crystal sample of the 1/1 clathrate was recrystallized from a saturated solution of urea in 2-methylpyridine by isothermal solvent evaporation at room temperature (298 K).

Refinement top

All H atoms bonded to C atoms were placed in calculated positions and refined as riding, with C—H = 0.93–0.96Å with Uiso(H) = 1.2–1.5 Ueq(C). The H atoms of amino group were located from a difference Fourier map and refined freely with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the N—-H···O and N—H···N hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity.
2-Methylpyridine–urea (1/1) top
Crystal data top
C6H7N·CH4N2OF(000) = 656
Mr = 153.19Dx = 1.191 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ac 2abCell parameters from 1430 reflections
a = 7.471 (5) Åθ = 4.1–75.6°
b = 14.916 (5) ŵ = 0.68 mm1
c = 15.338 (5) ÅT = 293 K
V = 1709.2 (14) Å3Block, colourless
Z = 80.36 × 0.30 × 0.22 mm
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
1756 independent reflections
Radiation source: fine-focus sealed tube1011 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 10.2576 pixels mm-1θmax = 76.0°, θmin = 5.8°
ω scansh = 59
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 1817
Tmin = 0.337, Tmax = 1.000l = 1819
5969 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0982P)2]
where P = (Fo2 + 2Fc2)/3
1756 reflections(Δ/σ)max < 0.001
112 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C6H7N·CH4N2OV = 1709.2 (14) Å3
Mr = 153.19Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 7.471 (5) ŵ = 0.68 mm1
b = 14.916 (5) ÅT = 293 K
c = 15.338 (5) Å0.36 × 0.30 × 0.22 mm
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
1756 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
1011 reflections with I > 2σ(I)
Tmin = 0.337, Tmax = 1.000Rint = 0.049
5969 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.167H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.16 e Å3
1756 reflectionsΔρmin = 0.20 e Å3
112 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.1107 (2)0.45154 (12)0.27525 (10)0.0620 (5)
C10.1128 (3)0.42217 (15)0.19345 (13)0.0672 (6)
H10.11380.36050.18430.081*
C20.1137 (3)0.47652 (19)0.12219 (13)0.0763 (7)
H20.11530.45280.06610.092*
C30.1121 (3)0.5668 (2)0.13573 (17)0.0910 (8)
H30.11290.60610.08870.109*
C40.1093 (3)0.59912 (18)0.21957 (18)0.0860 (8)
H40.10760.66060.22970.103*
C50.1089 (3)0.53974 (15)0.28912 (13)0.0645 (6)
C60.1069 (3)0.5697 (2)0.38257 (15)0.0963 (9)
H6A0.01450.53820.41350.144*0.50
H6B0.08410.63290.38510.144*0.50
H6C0.22070.55700.40890.144*0.50
H6D0.19840.61390.39150.144*0.50
H6E0.12870.51910.41980.144*0.50
H6F0.00780.59510.39610.144*0.50
O10.11116 (17)0.23145 (9)0.50993 (9)0.0637 (4)
N20.0400 (3)0.31459 (13)0.41139 (12)0.0653 (5)
H2A0.140 (3)0.3013 (17)0.4331 (16)0.078*
H2B0.025 (3)0.3550 (15)0.3672 (14)0.078*
N30.2633 (3)0.31788 (13)0.41459 (13)0.0713 (6)
H3A0.370 (3)0.3003 (18)0.4372 (16)0.086*
H3B0.248 (3)0.3551 (16)0.3712 (14)0.086*
C70.1115 (3)0.28588 (12)0.44860 (12)0.0526 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0673 (11)0.0681 (10)0.0505 (9)0.0007 (8)0.0018 (8)0.0054 (7)
C10.0662 (14)0.0735 (13)0.0619 (12)0.0010 (11)0.0006 (10)0.0058 (10)
C20.0743 (15)0.1072 (19)0.0475 (11)0.0073 (14)0.0015 (10)0.0011 (11)
C30.098 (2)0.108 (2)0.0674 (14)0.0061 (16)0.0033 (14)0.0344 (14)
C40.100 (2)0.0643 (13)0.0932 (18)0.0032 (12)0.0015 (15)0.0087 (12)
C50.0656 (14)0.0698 (12)0.0580 (11)0.0027 (11)0.0015 (10)0.0036 (9)
C60.107 (2)0.112 (2)0.0696 (16)0.0082 (16)0.0021 (14)0.0273 (15)
O10.0554 (9)0.0729 (9)0.0628 (8)0.0026 (7)0.0010 (6)0.0233 (7)
N20.0512 (10)0.0796 (12)0.0652 (11)0.0020 (9)0.0005 (9)0.0235 (9)
N30.0557 (11)0.0851 (13)0.0730 (12)0.0003 (10)0.0030 (9)0.0315 (10)
C70.0527 (11)0.0552 (9)0.0498 (9)0.0006 (9)0.0006 (9)0.0040 (8)
Geometric parameters (Å, º) top
N1—C11.329 (3)C6—H6B0.9600
N1—C51.333 (3)C6—H6C0.9600
C1—C21.361 (3)C6—H6D0.9600
C1—H10.9300C6—H6E0.9600
C2—C31.362 (4)C6—H6F0.9600
C2—H20.9300O1—C71.243 (2)
C3—C41.374 (4)N2—C71.338 (3)
C3—H30.9300N2—H2A0.84 (2)
C4—C51.387 (3)N2—H2B0.91 (2)
C4—H40.9300N3—C71.337 (3)
C5—C61.501 (3)N3—H3A0.91 (2)
C6—H6A0.9600N3—H3B0.88 (2)
C1—N1—C5118.43 (18)H6A—C6—H6D141.1
N1—C1—C2124.2 (2)H6B—C6—H6D56.3
N1—C1—H1117.9H6C—C6—H6D56.3
C2—C1—H1117.9C5—C6—H6E109.5
C1—C2—C3117.8 (2)H6A—C6—H6E56.3
C1—C2—H2121.1H6B—C6—H6E141.1
C3—C2—H2121.1H6C—C6—H6E56.3
C2—C3—C4119.3 (2)H6D—C6—H6E109.5
C2—C3—H3120.3C5—C6—H6F109.5
C4—C3—H3120.3H6A—C6—H6F56.3
C3—C4—C5119.7 (2)H6B—C6—H6F56.3
C3—C4—H4120.1H6C—C6—H6F141.1
C5—C4—H4120.1H6D—C6—H6F109.5
N1—C5—C4120.5 (2)H6E—C6—H6F109.5
N1—C5—C6116.5 (2)C7—N2—H2A120.5 (17)
C4—C5—C6123.0 (2)C7—N2—H2B115.0 (15)
C5—C6—H6A109.5H2A—N2—H2B124 (2)
C5—C6—H6B109.5C7—N3—H3A119.6 (16)
H6A—C6—H6B109.5C7—N3—H3B114.2 (16)
C5—C6—H6C109.5H3A—N3—H3B126 (2)
H6A—C6—H6C109.5O1—C7—N3122.04 (18)
H6B—C6—H6C109.5O1—C7—N2122.02 (19)
C5—C6—H6D109.5N3—C7—N2115.93 (18)
C5—N1—C1—C20.1 (3)C1—N1—C5—C40.0 (3)
N1—C1—C2—C30.1 (4)C1—N1—C5—C6179.89 (19)
C1—C2—C3—C40.2 (4)C3—C4—C5—N10.2 (3)
C2—C3—C4—C50.3 (4)C3—C4—C5—C6179.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N10.91 (2)2.26 (2)3.131 (3)160 (2)
N2—H2A···O1i0.84 (2)2.11 (2)2.953 (3)179 (2)
N3—H3B···N10.88 (2)2.30 (2)3.137 (3)161 (2)
N3—H3A···O1ii0.91 (2)2.03 (2)2.938 (3)177 (2)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC6H7N·CH4N2O
Mr153.19
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)7.471 (5), 14.916 (5), 15.338 (5)
V3)1709.2 (14)
Z8
Radiation typeCu Kα
µ (mm1)0.68
Crystal size (mm)0.36 × 0.30 × 0.22
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.337, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5969, 1756, 1011
Rint0.049
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.167, 0.97
No. of reflections1756
No. of parameters112
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.20

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N10.91 (2)2.26 (2)3.131 (3)160 (2)
N2—H2A···O1i0.84 (2)2.11 (2)2.953 (3)179 (2)
N3—H3B···N10.88 (2)2.30 (2)3.137 (3)161 (2)
N3—H3A···O1ii0.91 (2)2.03 (2)2.938 (3)177 (2)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z+1.
 

Acknowledgements

This work was supported by a Grant for Fundamental Research from the Center of Science and Technology, Uzbek­istan (No. FA—F3—T-141).

References

First citationChadwick, K., Davey, R., Sadiq, G., Cross, W. & Pritchard, R. (2009). CrystEngComm, 11, 412–414.  Web of Science CSD CrossRef CAS Google Scholar
First citationIzotova, L., Ashurov, J., Talipov, S., Ibragimov, B. & Weber, E. (2008). Acta Cryst. E64, o1945.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds