organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A triclinic polymorph of (E)-2-(1-hy­dr­oxy-3-phenyl­prop-2-en-1-yl­­idene)-4,5-dimeth­­oxy­cyclo­pent-4-ene-1,3-dione

aCentre for Natural Products and Drug Discovery, Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia, bDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Mazandaran, Iran, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 4 January 2012; accepted 10 January 2012; online 18 January 2012)

The title compound, C16H14O5, is a triclinic polymorph of a previously reported monoclinic structure [Hosseinzadeh et al. (2011[Hosseinzadeh, M., Mukhtar, M. R., Mohamad, J., Awang, K. & Ng, S. W. (2011). Acta Cryst. E67, o1544.]). Acta Cryst. E67, o1544]. The mol­ecule is roughly planar, the r.m.s. deviation from the least-squares plane of all non-H atoms being 0.092 Å. In the crystal, adjacent mol­ecules are linked through C—H⋯O hydrogen bonds into an infinite two-dimensional network parallel to (011). The layers are further connected via C—H⋯π inter­actions, forming a three-dimensional structure. Intra­molecular O—H⋯O and C—H⋯O hydrogen bonds are also observed.

Related literature

For the crystal structure of the monoclinic polymorph, see: Hosseinzadeh et al. (2011[Hosseinzadeh, M., Mukhtar, M. R., Mohamad, J., Awang, K. & Ng, S. W. (2011). Acta Cryst. E67, o1544.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14O5

  • Mr = 286.27

  • Triclinic, [P \overline 1]

  • a = 5.4055 (2) Å

  • b = 11.2731 (3) Å

  • c = 11.6441 (3) Å

  • α = 72.070 (1)°

  • β = 83.088 (1)°

  • γ = 77.760 (1)°

  • V = 658.59 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.26 × 0.19 × 0.11 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.973, Tmax = 0.988

  • 3340 measured reflections

  • 2300 independent reflections

  • 2041 reflections with I > 2σ(I)

  • Rint = 0.010

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.098

  • S = 1.07

  • 2300 reflections

  • 195 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.89 (2) 1.87 (2) 2.6802 (14) 150 (2)
C8—H8⋯O5 0.95 2.49 3.1015 (17) 122
C15—H15B⋯O3i 0.98 2.49 3.3751 (18) 151
C15—H15C⋯O2ii 0.98 2.49 3.3789 (18) 150
C16—H16A⋯O5iii 0.98 2.56 3.4143 (19) 145
C15—H15ACgiv 0.98 2.71 3.5728 (17) 147
Symmetry codes: (i) -x+2, -y-1, -z+1; (ii) x+1, y, z; (iii) -x+2, -y, -z; (iv) x+1, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem, 1, 189-191.]) and XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The crystal structure of the title compound isolated from Lindera pipericarpa recrystallized from dichloromethane has been reported recently in monoclinic system with gross disorder (Hosseinzadeh et al., 2011). In order to obtain a crystal of better quality, we recrystallized the compound from a different solvent, i. e., dimethyl sulfoxide (DMSO). The preliminary crystallographic data showed that the new crystals were formed in a triclinic system. The crystal structure of the new polymorph in the triclinic system is reported in this paper.

The title molecule (Fig. 1) is essentially planar [maximum atomic deviation = 0.2836 (13) Å for C16] and shows a higher deviation from planarity than is shown by the monoclinic structure [maximum atomic deviation = 0.064 (5) Å]. The crystal shows a three-dimensional supramolecular strucure formed by intermolecular C—H···O (Fig. 2) and C—H···π interactions (Table 1). In addition, intramolecular O—H···O and C—H···O hydrogen bonds are present.

Related literature top

For the crystal structure of the monoclinic polymorph, see: Hosseinzadeh et al. (2011).

Experimental top

The isolation of the title compound from Lindera pipericarpa (Lauraceae) has been reported recently (Hosseinzadeh et al., 2011). Recrystallization of the title compound from DMSO at room temperature resulted in the formation of the triclinic polymorph.

Refinement top

The C-bound hydrogen atoms were placed at calculated positions and refined as riding atoms with H—C = 0.95 and 0.99 Å, for sp2 and methyl H-atoms, respectively. The O-bound H atom was located from a difference Fourier map and refined freely. For all H atoms Uiso(H) were set to 1.2–1.5Ueq(carrier atom).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001) and XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Intra- and intermolecular O—H···O and C—H···O hydrogen bonding in the structure. Symmetry codes: i = -x + 2, -y - 1; iii = -x + 2, -y, -z; v = x-1, y, z.
(E)-2-(1-hydroxy-3-phenylprop-2-en-1-ylidene)- 4,5-dimethoxycyclopent-4-ene-1,3-dione top
Crystal data top
C16H14O5Z = 2
Mr = 286.27F(000) = 300
Triclinic, P1Dx = 1.444 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.4055 (2) ÅCell parameters from 2073 reflections
b = 11.2731 (3) Åθ = 2.3–29.6°
c = 11.6441 (3) ŵ = 0.11 mm1
α = 72.070 (1)°T = 100 K
β = 83.088 (1)°Block, orange
γ = 77.760 (1)°0.26 × 0.19 × 0.11 mm
V = 658.59 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2300 independent reflections
Radiation source: fine-focus sealed tube2041 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.010
ϕ and ω scansθmax = 25.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 64
Tmin = 0.973, Tmax = 0.988k = 1313
3340 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.2122P]
where P = (Fo2 + 2Fc2)/3
2300 reflections(Δ/σ)max < 0.001
195 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C16H14O5γ = 77.760 (1)°
Mr = 286.27V = 658.59 (3) Å3
Triclinic, P1Z = 2
a = 5.4055 (2) ÅMo Kα radiation
b = 11.2731 (3) ŵ = 0.11 mm1
c = 11.6441 (3) ÅT = 100 K
α = 72.070 (1)°0.26 × 0.19 × 0.11 mm
β = 83.088 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2300 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2041 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.988Rint = 0.010
3340 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.18 e Å3
2300 reflectionsΔρmin = 0.25 e Å3
195 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.17619 (19)0.04462 (10)0.41452 (9)0.0200 (3)
H10.223 (3)0.0369 (18)0.4540 (17)0.030*
O20.46326 (19)0.18778 (9)0.47978 (9)0.0197 (2)
O30.9457 (2)0.32456 (9)0.43272 (9)0.0213 (3)
O41.21886 (19)0.14869 (9)0.22747 (9)0.0204 (3)
O50.84852 (19)0.09819 (9)0.16019 (9)0.0203 (3)
C10.0432 (3)0.42536 (13)0.20660 (13)0.0175 (3)
C20.2093 (3)0.48875 (14)0.11858 (13)0.0204 (3)
H20.37150.44390.10050.024*
C30.1391 (3)0.61581 (14)0.05797 (13)0.0217 (3)
H30.25300.65750.00180.026*
C40.0961 (3)0.68287 (14)0.08356 (14)0.0231 (3)
H40.14380.77020.04120.028*
C50.2616 (3)0.62210 (14)0.17131 (15)0.0251 (4)
H50.42240.66800.18970.030*
C60.1921 (3)0.49427 (14)0.23222 (14)0.0215 (3)
H60.30650.45320.29220.026*
C70.1065 (3)0.29054 (13)0.27304 (13)0.0182 (3)
H70.01790.25660.33170.022*
C80.3218 (3)0.20994 (13)0.25971 (12)0.0173 (3)
H80.44960.23990.20090.021*
C90.3647 (3)0.07895 (13)0.33234 (12)0.0165 (3)
C100.5791 (3)0.00870 (13)0.32366 (12)0.0165 (3)
C110.6157 (3)0.13911 (13)0.40132 (12)0.0163 (3)
C120.8704 (3)0.20369 (13)0.36824 (13)0.0173 (3)
C130.9804 (3)0.12165 (13)0.27535 (12)0.0165 (3)
C140.8051 (3)0.00484 (13)0.24166 (12)0.0159 (3)
C151.1901 (3)0.39160 (13)0.39974 (14)0.0216 (3)
H15A1.19430.39120.31520.032*
H15B1.21730.47940.45200.032*
H15C1.32400.34960.40970.032*
C161.2894 (3)0.07311 (14)0.10899 (13)0.0235 (3)
H16A1.17610.07600.05060.035*
H16B1.46460.10660.08610.035*
H16C1.27570.01480.10940.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0194 (6)0.0182 (5)0.0188 (5)0.0031 (4)0.0024 (4)0.0018 (4)
O20.0221 (6)0.0194 (5)0.0170 (5)0.0070 (4)0.0012 (4)0.0029 (4)
O30.0243 (6)0.0130 (5)0.0212 (5)0.0004 (4)0.0015 (4)0.0005 (4)
O40.0181 (6)0.0179 (5)0.0188 (5)0.0011 (4)0.0028 (4)0.0010 (4)
O50.0219 (6)0.0161 (5)0.0187 (5)0.0027 (4)0.0019 (4)0.0007 (4)
C10.0187 (8)0.0187 (7)0.0162 (7)0.0039 (6)0.0020 (6)0.0059 (6)
C20.0188 (8)0.0199 (7)0.0209 (7)0.0007 (6)0.0015 (6)0.0065 (6)
C30.0226 (8)0.0202 (7)0.0207 (8)0.0056 (6)0.0028 (6)0.0041 (6)
C40.0235 (8)0.0163 (7)0.0258 (8)0.0011 (6)0.0030 (6)0.0020 (6)
C50.0177 (8)0.0214 (8)0.0323 (9)0.0011 (6)0.0001 (6)0.0059 (7)
C60.0181 (8)0.0205 (7)0.0236 (8)0.0042 (6)0.0023 (6)0.0040 (6)
C70.0195 (8)0.0194 (7)0.0162 (7)0.0051 (6)0.0010 (6)0.0048 (6)
C80.0183 (7)0.0174 (7)0.0155 (7)0.0039 (6)0.0009 (6)0.0035 (6)
C90.0188 (8)0.0185 (7)0.0135 (7)0.0059 (6)0.0001 (6)0.0049 (6)
C100.0202 (8)0.0154 (7)0.0139 (7)0.0045 (6)0.0010 (6)0.0034 (6)
C110.0201 (7)0.0178 (7)0.0133 (7)0.0063 (6)0.0010 (6)0.0058 (6)
C120.0220 (8)0.0131 (7)0.0163 (7)0.0030 (6)0.0028 (6)0.0032 (6)
C130.0175 (7)0.0162 (7)0.0157 (7)0.0023 (6)0.0012 (6)0.0052 (6)
C140.0184 (7)0.0151 (7)0.0146 (7)0.0037 (5)0.0026 (5)0.0042 (6)
C150.0201 (8)0.0153 (7)0.0256 (8)0.0011 (6)0.0012 (6)0.0029 (6)
C160.0217 (8)0.0226 (8)0.0182 (8)0.0001 (6)0.0054 (6)0.0005 (6)
Geometric parameters (Å, º) top
O1—C91.3447 (17)C5—H50.9500
O1—H10.89 (2)C6—H60.9500
O2—C111.2316 (17)C7—C81.342 (2)
O3—C121.3396 (17)C7—H70.9500
O3—C151.4480 (17)C8—C91.443 (2)
O4—C131.3528 (17)C8—H80.9500
O4—C161.4360 (17)C9—C101.370 (2)
O5—C141.2244 (17)C10—C111.4558 (19)
C1—C61.394 (2)C10—C141.461 (2)
C1—C21.402 (2)C11—C121.481 (2)
C1—C71.465 (2)C12—C131.357 (2)
C2—C31.380 (2)C13—C141.5026 (19)
C2—H20.9500C15—H15A0.9800
C3—C41.384 (2)C15—H15B0.9800
C3—H30.9500C15—H15C0.9800
C4—C51.387 (2)C16—H16A0.9800
C4—H40.9500C16—H16B0.9800
C5—C61.388 (2)C16—H16C0.9800
C9—O1—H1107.7 (12)C10—C9—C8125.01 (13)
C12—O3—C15118.30 (11)C9—C10—C11122.86 (13)
C13—O4—C16119.37 (11)C9—C10—C14129.76 (13)
C6—C1—C2118.33 (13)C11—C10—C14107.39 (12)
C6—C1—C7118.69 (13)O2—C11—C10126.61 (13)
C2—C1—C7122.98 (13)O2—C11—C12125.92 (13)
C3—C2—C1120.58 (14)C10—C11—C12107.47 (12)
C3—C2—H2119.7O3—C12—C13133.61 (13)
C1—C2—H2119.7O3—C12—C11117.03 (12)
C2—C3—C4120.50 (14)C13—C12—C11109.35 (12)
C2—C3—H3119.8O4—C13—C12124.39 (13)
C4—C3—H3119.8O4—C13—C14125.90 (12)
C3—C4—C5119.72 (14)C12—C13—C14109.54 (12)
C3—C4—H4120.1O5—C14—C10128.48 (13)
C5—C4—H4120.1O5—C14—C13125.30 (13)
C4—C5—C6119.99 (14)C10—C14—C13106.22 (11)
C4—C5—H5120.0O3—C15—H15A109.5
C6—C5—H5120.0O3—C15—H15B109.5
C5—C6—C1120.88 (13)H15A—C15—H15B109.5
C5—C6—H6119.6O3—C15—H15C109.5
C1—C6—H6119.6H15A—C15—H15C109.5
C8—C7—C1126.79 (13)H15B—C15—H15C109.5
C8—C7—H7116.6O4—C16—H16A109.5
C1—C7—H7116.6O4—C16—H16B109.5
C7—C8—C9121.76 (13)H16A—C16—H16B109.5
C7—C8—H8119.1O4—C16—H16C109.5
C9—C8—H8119.1H16A—C16—H16C109.5
O1—C9—C10119.60 (13)H16B—C16—H16C109.5
O1—C9—C8115.38 (12)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.89 (2)1.87 (2)2.6802 (14)150 (2)
C8—H8···O50.952.493.1015 (17)122
C16—H16C···O50.982.382.8600 (18)110
C15—H15B···O3i0.982.493.3751 (18)151
C15—H15C···O2ii0.982.493.3789 (18)150
C16—H16A···O5iii0.982.563.4143 (19)145
C15—H15A···Cgiv0.982.713.5728 (17)147
Symmetry codes: (i) x+2, y1, z+1; (ii) x+1, y, z; (iii) x+2, y, z; (iv) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC16H14O5
Mr286.27
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.4055 (2), 11.2731 (3), 11.6441 (3)
α, β, γ (°)72.070 (1), 83.088 (1), 77.760 (1)
V3)658.59 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.26 × 0.19 × 0.11
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.973, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
3340, 2300, 2041
Rint0.010
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.098, 1.07
No. of reflections2300
No. of parameters195
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.25

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001) and XP in SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.89 (2)1.87 (2)2.6802 (14)150 (2)
C8—H8···O50.952.493.1015 (17)122.4
C16—H16C···O50.982.382.8600 (18)109.6
C15—H15B···O3i0.982.493.3751 (18)150.8
C15—H15C···O2ii0.982.493.3789 (18)150.4
C16—H16A···O5iii0.982.563.4143 (19)145.1
C15—H15A···Cgiv0.982.713.5728 (17)147.0
Symmetry codes: (i) x+2, y1, z+1; (ii) x+1, y, z; (iii) x+2, y, z; (iv) x+1, y1, z.
 

Acknowledgements

Financial support from the University of Malaya is highly appreciated (PPP grant No. PS265/2010B).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem, 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHosseinzadeh, M., Mukhtar, M. R., Mohamad, J., Awang, K. & Ng, S. W. (2011). Acta Cryst. E67, o1544.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds